MLRQ Subunit of NADH:Ubiquinone Oxidoreductase in the Human Mitochondrial Respiratory Chain

Total Page:16

File Type:pdf, Size:1020Kb

MLRQ Subunit of NADH:Ubiquinone Oxidoreductase in the Human Mitochondrial Respiratory Chain The Molecular and Biochernical Characterization of the MLRQ Subunit of NADH:Ubiquinone Oxidoreductase in the Human Mitochondrial Respiratory Chain Dhush y Kanagarajah A Thesis submitted in codormity with the requirements for the degree of Master of Science Graduate Department of Biochemistry University of Toronto " Copyright by Dhushy Kanagarajah. 200 1 National Library Bibliothèque nationale I*l of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rue Wellington Ottawa ON K1A ON4 ûttawa ON K1A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence ailowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distriie or seil reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/fh, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or othenirise de celle-ci ne doivent être imprimés reproduced without the author' s ou autrement reproduits sans son permission. autorisation. The Molecular and Biochemical Characterization of the MLRQ Subunit of NADH:Ubiquinone Oxidoreductase in the Humsn Mitochondrîal Respiratory Chain Master of Science, 200 1 Dhushy Kanagarajah Department of Biochemistry University of Toronto Abstract Isolated deficiency of NADH:ubiquinone oxidoreductase (Complex 1), the first enzyme of the mitochondrial respiratory chah is the most comrnon cause of human mitochondriocytopathies. In order to characterize the nuclear genes contributing to this disease, the cDNA and genomic sequences encoding the MLRQ subunit of complex I were determined. The NDUF.44 gene encoding MLRQ was localized to chromosome 7 p2 1-22 and a pseudogene was found on chromosome 1 p2 1. Tissue specific expression of MLRQ at both mRNA and protein levels was examined. Overexpression of this subunit in a patient exhibiting complex 1 deficiency is dso discussed. Extraction. immunoprecipitation and cross-linking studies revealed that while the N-teminus of MLRQ has a great afinity for phospholipids of the inner mitochondriai membrane. it likely also associates with the MWFE subunit through other intemediary subunit(s). forming part of the bulky staik region that bridges the two arms of complex 1. Acknowledgements First and foremost, 1wish to express my heartfelt thanks and gratitude to Dr. Brian Robinson for his guidance and support during the course of this degree. 1 tnily feel privileged to have had the opportunity of working with such a great supervisor. 1 am also gratefùl to my CO-supervisors,Dr. B. Sarkar and Dr. R. Baker for their theand assistance with this project. Behind every graduate student's thesis lies a support system so precious that failing to acknowledge it would be unpardonable. 1 count myself lucky to have had the privilege of working with al1 my colleagues @ast and present) at the Robinson lab, but Imust especially thank Agnieszka, Jessie, Maryanna, Nevi, So-Young and Tomoko. Their kindness and fiiendship will never be forgotten. 1 am forever indebted to Dr. Sandy Raha for al1 his expertise, encouragement and humour without which 1 would never have survived. A very special thanks goes to Maureen Waite for her friendship and for always making the time to lend me a hand. This thesis would not have been completed without the extraordinary love and support of each and every person whom 1 cal1 family. My most ardent supporters. they have been with me throughout the trials and tribulations of graduate life. For this, 1 would like to thank my uncle Milroy, my brother Dhilip and especially my husband Ramana for his patience and understanding during these past few years. Finally but most importantly. 1 would like to express my gratitude to my parents for impressing upon me the principles of hard work, perseverance and a firm belief in the merits of education. Their love and prayers have been instrumental in the completion of this study. I dedicate this thesis to the memory of my loved ones whose blessings and encouragement stiil spur me on to greater accomplishments. a-. III CONTRIBUTIONS TO THESIS Screening of PACNAC libraries and FISH Mapping: The Toronto Centre For Applied Genomics Tissue mitochondria: Dr. Sandeep Raha Table of Contents Abstract Acknowledgements Contributions to thesis Table of contents i v a.. a.. List of figures Vtlt List of tables Abbreviations Glossary of Medical Terms Chapter 1 Introduction and Objectives The mitochondrion: structure, function, mode of inheritance and associated diseases Oventiew Part 1. Mitochondrial structure. function and inheritance The mitoc hondrion Mitochondrial ultrastructure Mitochondrial DNA organization Mitochondrial replication. transcription and translation Mitochondrial protein import Energy metabolism Part II. The mitochondrial respiratory chah complexes Organization of the OXPHOS system The OXPHOS system: Role in electron transport and proton translocation Complex 1: The NADHxbiquinone oxidoreductase complex Evolution of compler 1 Subunit composition of the NADH:ubiquinone oxidoreductase corn plex (i) The flavoprotein fraction (FP) (ii) The iron-sulphur protein fraction (IP) (iii) nie hydrophobie protein fraction (HP) a) The rnitochondrially encoded subunits b) The nuclear encoded subunits Structural mode1 of complex 1 (i) Assembly of Complex 1 (ii) Spatial Organization and Subunit Interaction in Human Complex 1 32 Energy conversion in cornplex 1 35 (i) Iron-sulphur clusters. flavin and semiquinones 35 (ii) Electron transfer in cornplex 1 37 (iii) Models for coupling electron flow with proton translocation 42 Complex 1 inhibitors 47 Complex II: The Succinate-ubiquinone oxidoreductase cornplex 48 Complex III: The Ubiquinol-femcytochrome c oxidoreductase complex 49 Complex IV: The cytochrome c oxidase complex 5 1 Cornplex V: The ATP synthase complex 52 Part M. Mitochondrial disorders 54 Typical symptoms of defects in energy metabolism Mitochondrial respiratory chain diseases (i) MtDNA associated diseases (ii) Nuclear DNA associated diseases (iii) Mitochondrial respiratory chain disorders associated with neurological diseases Human Complex I deficiencies (i) MtDNA encoded defects in complex 1 (ii) Nuclear DNA encoded defects in complex 1 (iii) Free radical generation and complex 1 deficiency Objectives and Rationale 62 Chapter 2 Cloning, molecular characterization and chromosomal localization of the MLRQ subunit of hurnan NADH:ubiquinone oridoreductase Abstract Introduction Materiais and methods Part 1. Molecular Characterization of MLRQ cDNA in various tissues. cells and patient cell lines Tissue culture of cardiomyocytes and fibroblasts RNA isolation from tissues and cells cDNA synthesis and PCR cDNA cloning and sequencing of MLRQ Mutational screening of complex 1 deficient patients Part II. Genomic characterization and Iocalization of the NDUE4-C (MLRQ) gene and pseudogene Screening the PAC library Southem blot analysis of PAC clones Northem analysis of MLRQ expression Chromosomal localization Amplification. cloning and sequencing of MLRQ from genomic and PAC DNA Y AC library screening Results and discussion Part 1. Isolation and characterization of MLRQ cDNA MLRQ cDNA structure Mutational analysis of MLRQ cDNA in complex 1 deficient patients Part II. Chromosomal localization and characterization of the iVDUE4-I gene and pseudogene Library screening and FISH mapping MLRQ expression at the transcriptional level Amplification of the iVDUFA-I gene fiom genomic DNA Southem blot analysis Genomic organization of NDUFA-l The pseudogene on chromosome 1 Other MLRQ-like sequenccs in the genorne Chapter 3 Biochemical characterization, protein expression and immunoprecipitation studies pertaining to 1MLRQ and related complex 1 subunits Abstract Introduction Materials and methods Part 1. MLRQ expression in hurnan tissues and cells Antibody generation Western blot analysis of MLRQ expression Part II. Bacterial expression of MLRQ protein Design of MLRQ- fusion protein construct Induction and puritkation of MLRQ-GST fusion protein Factor Xa cleavage of fusion protein Part III. Anti-srnse expression of MLRQ in marnmalian celis Design of sense and anti-sense oriented pREP9 constructs Optimization of transfection conditions Transfection and selection with pREP9 Transfection and selection with the linearized vector pCDNA 3.l+ Western blot analysis of sense anti-sense expression in transfected cells Amplification of MLRQ From transfected cells Part IV. Association of MLRQ with other complex 1 subunits Solubilization of beef heart mitochondria Immunoprecipitation of MLRQ, MWFE and 49 kD subunits Cross-linking with DST and EGS Imrnunoprecipitation of cross-linked bovine hem mitochondria SDS-PAGE and western blot analysis of MLRQ during extraction. immunoprecipitation and cross-linking Results and discussion Part 1. Determining MLRQ fom. îûnction and expression Tissue expression of MLRQ Bacterial expression of MLRQ: Attempts at defining subunit structure vii Antisense expression of MLRQ: Attempts to detemine subunit function 1 13 Part II. Subunit interactions of MLRQ within complex 1 117 Detergent solubilization of cornplex 1 subunits 117 Proximity and association of MLRQ
Recommended publications
  • Proteomic Analysis of the Role of the Quality Control Protease LONP1 in Mitochondrial Protein Aggregation
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.12.439502; this version posted April 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Proteomic analysis of the role of the quality control protease LONP1 in mitochondrial protein aggregation Karen Pollecker1, Marc Sylvester2 and Wolfgang Voos1,* 1Institute of Biochemistry and Molecular Biology (IBMB), University of Bonn, Faculty of Medicine, Nussallee 11, 53115 Bonn, Germany 2Core facility for mass spectrometry, Institute of Biochemistry and Molecular Biology (IBMB), University of Bonn, Faculty of Medicine, Nussallee 11, 53115 Bonn, Germany *Corresponding author Email: [email protected] Phone: +49-228-732426 Abbreviations: AAA+, ATPases associated with a wide variety of cellular activities; Δψ, mitochondrial membrane potential; gKD, genetic knockdown; HSP, heat shock protein; m, mature form; mt, mitochondrial; p, precursor form; PQC, protein quality control; qMS, quantitative mass spectrometry; ROS, reactive oxygen species; SILAC, stable isotope labeling with amino acids in cell culture; siRNA, small interfering RNA; TIM, preprotein translocase complex of the inner membrane; TMRE, tetramethylrhodamine; TOM, preprotein translocase complex of the outer membrane; UPRmt, mitochondrial unfolded protein response; WT, wild type. bioRxiv preprint doi: https://doi.org/10.1101/2021.04.12.439502; this version posted April 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • An Investigation Into the Genetic Architecture of Multiple System Atrophy and Familial Parkinson's Disease
    An investigation into the genetic architecture of multiple system atrophy and familial Parkinson’s disease By Monica Federoff A thesis submitted to University College London for the degree of Doctor of Philosophy Laboratory of Neurogenetics, Department of Molecular Neuroscience, Institute of Neurology, University College London (UCL) 2 I, Monica Federoff, confirm that the work presented in this thesis is my own. Information derived from other sources and collaborative work have been indicated appropriately. Signature: Date: 09/06/2016 3 Acknowledgements: When I first joined the Laboratory of Neurogenetics (LNG), NIA, NIH as a summer intern in 2008, I had minimal experience working in a laboratory and was both excited and anxious at the prospect of it. From my very first day, Dr. Andrew Singleton was incredibly welcoming and introduced me to my first mentor, Dr. Javier Simon- Sanchez. Within just ten weeks working in the lab, both Dr. Singleton and Dr. Simon- Sanchez taught me the fundamental skills in an encouraging and supportive environment. I quickly got to know others in the lab, some of whom are still here today, and I sincerely appreciate their help with my assimilation into the LNG. After returning for an additional summer and one year as an IRTA postbac, I was honored to pursue a PhD in such an intellectually stimulating and comfortable environment. I am so grateful that Dr. Singleton has been such a wonderful mentor, as he is not only a brilliant scientist, but also extremely personable and approachable. If I inquire about meeting with him, he always manages to make time in his busy schedule and provides excellent guidance and mentorship.
    [Show full text]
  • Proteomic and Metabolomic Analyses of Mitochondrial Complex I-Deficient
    THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 287, NO. 24, pp. 20652–20663, June 8, 2012 © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Proteomic and Metabolomic Analyses of Mitochondrial Complex I-deficient Mouse Model Generated by Spontaneous B2 Short Interspersed Nuclear Element (SINE) Insertion into NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 (Ndufs4) Gene*□S Received for publication, November 25, 2011, and in revised form, April 5, 2012 Published, JBC Papers in Press, April 25, 2012, DOI 10.1074/jbc.M111.327601 Dillon W. Leong,a1 Jasper C. Komen,b1 Chelsee A. Hewitt,a Estelle Arnaud,c Matthew McKenzie,d Belinda Phipson,e Melanie Bahlo,e,f Adrienne Laskowski,b Sarah A. Kinkel,a,g,h Gayle M. Davey,g William R. Heath,g Anne K. Voss,a,h René P. Zahedi,i James J. Pitt,j Roman Chrast,c Albert Sickmann,i,k Michael T. Ryan,l Gordon K. Smyth,e,f,h b2 a,h,m,n3 David R. Thorburn, and Hamish S. Scott Downloaded from From the aMolecular Medicine Division, gImmunology Division, and eBioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia, the bMurdoch Childrens Research Institute, Royal Children’s Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia, the cDépartement de Génétique Médicale, Université de Lausanne, 1005 Lausanne, Switzerland, the dCentre for Reproduction and Development, Monash Institute of Medical Research, Clayton, Victoria 3168, Australia, the hDepartment of Medical Biology
    [Show full text]
  • S41467-020-18249-3.Pdf
    ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible.
    [Show full text]
  • Low Abundance of the Matrix Arm of Complex I in Mitochondria Predicts Longevity in Mice
    ARTICLE Received 24 Jan 2014 | Accepted 9 Apr 2014 | Published 12 May 2014 DOI: 10.1038/ncomms4837 OPEN Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice Satomi Miwa1, Howsun Jow2, Karen Baty3, Amy Johnson1, Rafal Czapiewski1, Gabriele Saretzki1, Achim Treumann3 & Thomas von Zglinicki1 Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity. 1 Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 2 Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 3 Newcastle University Protein and Proteome Analysis, Devonshire Building, Devonshire Terrace, Newcastle upon Tyne NE1 7RU, UK. Correspondence and requests for materials should be addressed to T.v.Z.
    [Show full text]
  • Mitochondrial Protein Quality Control Mechanisms
    G C A T T A C G G C A T genes Review Mitochondrial Protein Quality Control Mechanisms Pooja Jadiya * and Dhanendra Tomar * Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA * Correspondence: [email protected] (P.J.); [email protected] (D.T.); Tel.: +1-215-707-9144 (D.T.) Received: 29 April 2020; Accepted: 15 May 2020; Published: 18 May 2020 Abstract: Mitochondria serve as a hub for many cellular processes, including bioenergetics, metabolism, cellular signaling, redox balance, calcium homeostasis, and cell death. The mitochondrial proteome includes over a thousand proteins, encoded by both the mitochondrial and nuclear genomes. The majority (~99%) of proteins are nuclear encoded that are synthesized in the cytosol and subsequently imported into the mitochondria. Within the mitochondria, polypeptides fold and assemble into their native functional form. Mitochondria health and integrity depend on correct protein import, folding, and regulated turnover termed as mitochondrial protein quality control (MPQC). Failure to maintain these processes can cause mitochondrial dysfunction that leads to various pathophysiological outcomes and the commencement of diseases. Here, we summarize the current knowledge about the role of different MPQC regulatory systems such as mitochondrial chaperones, proteases, the ubiquitin-proteasome system, mitochondrial unfolded protein response, mitophagy, and mitochondria-derived vesicles in the maintenance of mitochondrial proteome and health. The proper understanding of mitochondrial protein quality control mechanisms will provide relevant insights to treat multiple human diseases. Keywords: mitochondria; proteome; ubiquitin; proteasome; chaperones; protease; mitophagy; mitochondrial protein quality control; mitochondria-associated degradation; mitochondrial unfolded protein response 1. Introduction Mitochondria are double membrane, dynamic, and semiautonomous organelles which have several critical cellular functions.
    [Show full text]
  • Identification and Evolutionary Analysis of Tissue-Specific Isoforms of Mitochondrial Complex I Subunit NDUFV3
    ÔØ ÅÒÙ×Ö ÔØ Identification and evolutionary analysis of tissue-specific isoforms of mito- chondrial complex I subunit NDUFV3 Sergio Guerrero-Castillo, Alfredo Cabrera-Orefice, Martijn A. Huynen, Susanne Arnold PII: S0005-2728(16)30680-6 DOI: doi:10.1016/j.bbabio.2016.12.004 Reference: BBABIO 47759 To appear in: BBA - Bioenergetics Received date: 30 October 2016 Revised date: 22 November 2016 Accepted date: 13 December 2016 Please cite this article as: Sergio Guerrero-Castillo, Alfredo Cabrera-Orefice, Martijn A. Huynen, Susanne Arnold, Identification and evolutionary analysis of tissue-specific isoforms of mitochondrial complex I subunit NDUFV3, BBA - Bioenergetics (2016), doi:10.1016/j.bbabio.2016.12.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Identification and evolutionary analysis of tissue-specific isoforms of mitochondrial complex I subunit NDUFV3 Sergio Guerrero-Castillo1, Alfredo Cabrera-Orefice1, Martijn A. Huynen1,2 , Susanne Arnold1 1 Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands 2 Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands *Correspondence to: Susanne Arnold Radboud Center for Mitochondrial Medicine Radboud University Medical Center Geert Grooteplein-Zuid 10, Route 774 6525 GA Nijmegen, The Netherlands Telephone: +31ACCEPTED 24 36 19746 MANUSCRIPT E-Mail: [email protected] 1 ACCEPTED MANUSCRIPT Abstract Mitochondrial complex I is the largest respiratory chain complex.
    [Show full text]
  • The Pathogenetic Role of Β-Cell Mitochondria in Type 2 Diabetes
    236 3 Journal of M Fex et al. Mitochondria in β-cells 236:3 R145–R159 Endocrinology REVIEW The pathogenetic role of β-cell mitochondria in type 2 diabetes Malin Fex1, Lisa M Nicholas1, Neelanjan Vishnu1, Anya Medina1, Vladimir V Sharoyko1, David G Nicholls1, Peter Spégel1,2 and Hindrik Mulder1 1Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden 2Department of Chemistry, Center for Analysis and Synthesis, Lund University, Sweden Correspondence should be addressed to H Mulder: [email protected] Abstract Mitochondrial metabolism is a major determinant of insulin secretion from pancreatic Key Words β-cells. Type 2 diabetes evolves when β-cells fail to release appropriate amounts f TCA cycle of insulin in response to glucose. This results in hyperglycemia and metabolic f coupling signal dysregulation. Evidence has recently been mounting that mitochondrial dysfunction f oxidative phosphorylation plays an important role in these processes. Monogenic dysfunction of mitochondria is a f mitochondrial transcription rare condition but causes a type 2 diabetes-like syndrome owing to β-cell failure. Here, f genetic variation we describe novel advances in research on mitochondrial dysfunction in the β-cell in type 2 diabetes, with a focus on human studies. Relevant studies in animal and cell models of the disease are described. Transcriptional and translational regulation in mitochondria are particularly emphasized. The role of metabolic enzymes and pathways and their impact on β-cell function in type 2 diabetes pathophysiology are discussed. The role of genetic variation in mitochondrial function leading to type 2 diabetes is highlighted.
    [Show full text]
  • Mitoxplorer, a Visual Data Mining Platform To
    mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, Cecilia Garcia-Perez, José Villaveces, Salma Gamal, Giovanni Cardone, Fabiana Perocchi, et al. To cite this version: Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, et al.. mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dy- namics and mutations. Nucleic Acids Research, Oxford University Press, 2020, 10.1093/nar/gkz1128. hal-02394433 HAL Id: hal-02394433 https://hal-amu.archives-ouvertes.fr/hal-02394433 Submitted on 4 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Nucleic Acids Research, 2019 1 doi: 10.1093/nar/gkz1128 Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkz1128/5651332 by Bibliothèque de l'université la Méditerranée user on 04 December 2019 mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim1,†, Prasanna Koti1,†, Adrien Bonnard2, Fabio Marchiano3, Milena Durrbaum¨ 1, Cecilia Garcia-Perez4, Jose Villaveces1, Salma Gamal1, Giovanni Cardone1, Fabiana Perocchi4, Zuzana Storchova1,5 and Bianca H.
    [Show full text]
  • SARS-Cov-2 Restructures the Host Chromatin Architecture 2
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.20.453146; this version posted July 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 SARS-CoV-2 Restructures the Host Chromatin Architecture 2 3 Authors: Ruoyu Wang 1,2,†, Joo-Hyung Lee 1,†, Feng Xiong 1, Jieun Kim 3,4, Lana Al Hasani 1,2, Xiaoyi 4 Yuan 3,4, Pooja Shivshankar 1,3,4, Joanna Krakowiak 1, Chuangye Qi 1, Yanyu Wang 3,4, Holger K. 5 Eltzschig 2,3,4, Wenbo Li 1,2,* 6 7 Affiliations: 8 1 Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas 9 Health Science Center, Houston, 77030, TX, USA 10 2 Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and 11 UTHealth, Houston, 77030, TX, USA 12 3 Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, 13 Houston, 77030, TX, USA 14 4 Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science 15 Center, Houston, 77030, TX, USA 16 17 † These authors contributed equally 18 * Correspondence: Wenbo Li, Ph.D. ([email protected]). MSB 6.161, Fannin Street, Houston, 19 Texas, 77030, USA; Tel: 713-500-6103. 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.20.453146; this version posted July 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • A CRISPR-Cas9 Screen Identifies Mitochondrial Translation As An
    A CRISPR-Cas9 screen identifies mitochondrial translation as an essential process in latent KSHV infection of human endothelial cells Daniel L. Holmesa , Daniel T. Vogta , and Michael Lagunoffa,1 aDepartment of Microbiology, University of Washington, Seattle, WA 98109 Edited by Donald E. Ganem, Novartis Institutes for Biomedical Research, Inc., Emeryville, CA, and approved September 30, 2020 (received for review June 9, 2020) Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiologic KS tumors, providing a culture model for KSHV latency in agent of Kaposi’s sarcoma (KS) and primary effusion lymphoma tumors (3). Using cell culture systems, our laboratory has iden- (PEL). The main proliferating component of KS tumors is a tified several cellular pathways, which can be used to selec- cell of endothelial origin termed the spindle cell. Spindle cells tively target latently infected cells in vitro (4–7). Recently are predominantly latently infected with only a small percent- developed lentivirus-encoded CRISPR-Cas9–based screening age of cells undergoing viral replication. As there is no direct platforms have enabled large-scale interrogation of so-called treatment for latent KSHV, identification of host vulnerabili- “Achilles” genes within a population of human cells (8). These ties in latently infected endothelial cells could be exploited screens can be used to identify factors that are essential to the to inhibit KSHV-associated tumor cells. Using a pooled CRISPR- survival of cancer cells. Similar approaches have been used to Cas9 lentivirus library, we identified host factors that are identify genes that are critical for the survival of B cell lym- essential for the survival or proliferation of latently infected phomas infected with Epstein-Barr virus (EBV) (9).
    [Show full text]
  • Mouse Ndufb3 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Ndufb3 Knockout Project (CRISPR/Cas9) Objective: To create a Ndufb3 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Ndufb3 gene (NCBI Reference Sequence: NM_025597 ; Ensembl: ENSMUSG00000026032 ) is located on Mouse chromosome 1. 3 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 3 (Transcript: ENSMUST00000027193). Exon 2~3 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 0.32% of the coding region. Exon 2~3 covers 100.0% of the coding region. The size of effective KO region: ~4711 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 Legends Exon of mouse Ndufb3 Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of start codon is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of stop codon is aligned with itself to determine if there are tandem repeats.
    [Show full text]