Club News Hobby Show News by Bob Wiersbe NAR Standards &Testing

Total Page:16

File Type:pdf, Size:1020Kb

Club News Hobby Show News by Bob Wiersbe NAR Standards &Testing Newsletter of the Northern Illinois Rocketry Association, Volume 24, Number 3 NAR Section #117 May/June 2001 Club News Hobby Show News NAR Standards &Testing News By Bob Wiersbe R69: NAR S&T NEW MOTOR CERTIFI- MRFF 2001 – The Midwest Regional Fun Fly is I'm co-chairing the event this year with Mike CATIONS less then a month away! Information and a regis- The following motors have been certified by tration form are located on pages 4 & 5 of this Jungclas, and need to start lining up volunteers for this year. NAR Standards & Testing for general use as issue. high power rocket motors effective May 7, 2001. Volunteers are still needed to work a shift on the The dates are September 8th & 9th, at the Rose- They will not be certified for NAR contest use as range. More information about how to sign up is mont Convention Center, 10 am-5 pm on both they are not model rocket motors. days. Please note: This is almost two months included in the MRFF information. Working a The following are Aerotech reloadable motors, range shift not only helps the launch but it’s a earlier then in previous years so check and mark your calendars! certified only with the indicated size casing and great way to meet a lot of new and interesting manufacturer supplied nozzle, end closures, de- people. We are looking for people to work on both days, lays, and propellant slugs. All use the new At the last club meeting, there were some safety whatever they can fit into their schedules. “Redline” propellant. issue brought up. As a reminder, there will be no The deal is that if you work a shift (3.5 hours or Aerotech: smoking in the prep area and no grills either (this more) you get a pass to get into the show. The 29mm x 238mm (RMS-29/240 casing): should be common sense, but it needs to be ‘standard’ shifts are 10 am to 1:30 pm and H210R-10 (220.0 Newton-seconds total impulse, brought up). 1:30 pm to 5 pm Saturday and Sunday. We usu- 110.8 grams propellant mass) ally have about about 18 tables, so we need at Field Search – Although a new High Power 38mm x 203mm (RMS-38/360 casing): capable field wasn’t found before MRFF this least 13 - 15 people per shift, plus runners, plus someone up front to run the show. That's 18 peo- I218R-6,14 (330.0 Newton-seconds total im- year it doesn’t mean that we should give up pulse, 172.7 grams propellant mass) looking. ple minimum per shift. Jim Cook, Secretary for Adrian Butler contacted the manager of a sod Please mark your calendars today, and let me know you're planning to help out! I can be NAR Standards & Testing farm where R/C airplane are known to fly. Un- <[email protected]> fortunately the manager evidently had some reached at (630) 979-1336 (work), by email at problems with them because he told Adrian that [email protected], or by signing up at a Jack Kane, Chairman % “the airplane people are bad enough.” So much monthly club meeting. for a promising field. R70: NAR S&T NEW MOTOR CERTIFI- If you know of a possible field (or think you April Model of the Month contest – CATIONS have a good way to find one), please tell Steve Victoria House – FireFlash (Youth) (Winner) The following motors have been certified by Piette (who is heading up the search) so we can NAR Standards & Testing for general use as follow up on it. Adam Goodwin – Bandit model rocket motors effective May 7, 2001. All Equipment Storage & Transport – One of the Loni Howard – PML IO (Adult Winner) are certified for NAR contest use effective July more pressing needs for the club is to find a Ken Goodwin – Phoenix 6, 2001. place to store the club’s equipment and a means Adam Elliot – NARAM Cluster Altitude model Estes: to transport it to launches. Rick Gaff – Estes V2 13mm x 45mm: Bob Kaplow – AOL.CON A10-PT (2.50 Newton-seconds total impulse, 3.8 One of the better suggestions is to buy an en- Cal Jestice – Big Daddy closed trailer and store the equipment in it. The grams propellant mass) only problem with this idea is where do we store May Model of the Month contest – 24mm x 70mm: the trailer? Victoria House – X-Ray (Youth) (Winner) D11-P (18.0 Newton-seconds total impulse, 24.5 If you have a place that a trailer could be stored Dave Ketchledge – PML Bullpup (Adult winner) grams propellant mass) between launches (and is easily accessible prior Adam Elliot – ‘Battle of the Worlds’ A23 Jim Cook, Secretary for to launches), please let the club know. Also if Dave Dornblaser – Phantom % NAR Standards & Testing you have a better suggestion for storage or trans- <[email protected]> portation please let the club know about that too! Jack Kane, Chairman % May/June 2001 Page 1 CLUB MEETING DATES North Ave. All meetings start at 7:30 pm. Bring a model for Swift Rd. St. Charles N ‘Model of the Month.’ We always need volunteers for Geneva Rd. Volume 24, Number 3 pre-meeting lectures, contact Rick Gaff if you want to Glen Ellyn schedule a date. The location is the Glen Ellyn Civic May/June 2001 Chicago Northwestern RR Center, 535 Duane Street (usually the 3rd floor, but check the board in the lobby). NIRA Officers Duane St. 53 President – Rick Gaff June 1 July 6 Vice President – Pierre Miller Civic Parking Secretary/Treasurer – Ken Hutchinson August 3 Main St. Center RSO – David Wallis September - To Be Announced Leading Edge Staff Editor – Jeff Pleimling Lombard Rd. Roosevelt Rd. Production – Julie, Beth & Brian Pleimling Wendy's This Issues Contributors CLUB LAUNCH DATES Jonathan Charbonneau, Norm Dziedzic, 88 Rick Gaff, Kurt Gunther, Tim Johnson, Mark Kotolski, Launches are BYOL (bring your own launcher). The Steve Piette, David Wallis, location for our launches is the Greene Valley Forest Bob Wiersbe Preserve (see map at right). Call the NIRA infoline for pre-launch information: 630-483-2468. THE LEADING EDGE is published bimonthly June 16-17 – Midwest Regional Fun Fly Hobson Road by and for members of the Northern Illinois 355 July 15 – Greene Valley Forest Preserve Rocketry Association (NIRA), NAR Section August 19 – Greene Valley Forest Preserve 53 #117, and is dedicated to the idea that Sport Parking Rocketry is FUN! September 9 – Youth Group Launch at Greene Valley Articles, plans, photos, other newsletters, and September 16 – Greene Valley Forest Preserve 75th Street news items of interest should be sent to: Greene Rd Jeff Pleimling, Editor October 21 – Greene Valley Forest Preserve The Leading Edge November 18 – Greene Valley Forest Preserve 245 Superior Circle Greene Valley N Bartlett, IL 60103-2029 Forest Preserve or emailed to [email protected] Photos will be returned, other material returned upon requested. Any item appearing in the Leading Edge may be reprinted by Sport Rocketry Magazine with proper credit given; all other uses require prior written permission of the author or the Northern Illinois Rocketry Association. Send membership applications (dues: $6 per youth, $8 per adult, $12 per family, including a six issue subscription to the Leading Edge), non- member subscriptions ($10 per six issues), and change of address notifications to: Ken Hutchinson 82 Talcott Avenue Crystal Lake, IL 60014-4541 NIRA’s web site is at: http://nira.chicago.il.us/ Model of the Month Winners! (photos by Jeff Pleimling) April – Loni Howard won the Adult category with his PML IO (named ‘My First “Missile” ’) and Victoria House won the Youth category with her Estes FireFlash. May – Adult winner was Dave Ketchledge with his PML Bullpup and Victoria House was the Youth winner with her Estes X-Ray (and a different hair style then in April). Page 2 The Leading Edge, Vol 24, No. 3 I took the opportunity to try out April 2001 Club Launch - Flights April 2001 Launch Report 50 160 my own new odd-rock, the 45 155 45 148 151 By David Wallis 140 “Space Shuttle Cock-lumbia.” I 40 38 built this one from a standard 120 35 110 NIRA held its first official club launch of the badminton birdie, or shuttlecock, 29 100 30 new year on Sunday, April 15. After having a mini motor mount, and a bit of 27 25 80 rained all night, and with dark skies and drizzle hot-melt glue (hmmmm…. does- 20 65 60 all morning, I wasn’t too hopeful that this launch n’t that sound a bit familiar?). It Flights Total 15 would take place. flew well on low-thrust motors 40 Flights per Motor Class Class Motor per Flights 36 10 6 like the 1/2A3, but was only mar- 4 20 By the time we arrived to set up the range, how- 5 2 3 ever, the skies had begun to clear, and the sun ginally stable on higher thrust 1 1 3 9 motors. All in all, I was happy 0 0 took some of the chill out of the air. Somehow, 1/10A 1/4A 1/2A A B C D E F with its performance, especially Motor Class the field had dried out enough that it wasn’t Flights Per Motor Class Total Flights muddy. By mid-afternoon, everyone had taken considering how much time went off their jackets, and enjoyed a wonderfully into building it! warm Sunday under a clear blue sky. C. Hammerslough (darn, I can’t remember his F Flights: 4 G Flights: 0 The turnout was small, due mostly to the first name!) flew a really unique rocket, and the weather, I think, with about 35 or 40 people to- only Micro Max flight of the day.
Recommended publications
  • The European Launchers Between Commerce and Geopolitics
    The European Launchers between Commerce and Geopolitics Report 56 March 2016 Marco Aliberti Matteo Tugnoli Short title: ESPI Report 56 ISSN: 2218-0931 (print), 2076-6688 (online) Published in March 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 56; March 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 56 2 March 2016 The European Launchers between Commerce and Geopolitics Table of Contents Executive Summary 5 1. Introduction 10 1.1 Access to Space at the Nexus of Commerce and Geopolitics 10 1.2 Objectives of the Report 12 1.3 Methodology and Structure 12 2. Access to Space in Europe 14 2.1 European Launchers: from Political Autonomy to Market Dominance 14 2.1.1 The Quest for European Independent Access to Space 14 2.1.3 European Launchers: the Current Family 16 2.1.3 The Working System: Launcher Strategy, Development and Exploitation 19 2.2 Preparing for the Future: the 2014 ESA Ministerial Council 22 2.2.1 The Path to the Ministerial 22 2.2.2 A Look at Europe’s Future Launchers and Infrastructure 26 2.2.3 A Revolution in Governance 30 3.
    [Show full text]
  • GLONASS Global Satellite Navigation System
    GLONASS Global Satellite System GLONASSGLONASS GlobalGlobal SatelliteSatellite NavigationNavigation SystemSystem Author: Y. Medvedkov - GEOTsUP Presented by: M. Sowinski - SGS Belgium Status: December 2002 GLONASS Global Satellite System About the presentation • This presentation was developed in the scope of the EuropeAid funded project: “Certification of the Global Satellite Navigation System (GNSS) - creation of a unified system to certify GNSS equipment and a certification centre” • Project duration: 7 June 2000 - 7 August 2002 • Project leader: SGS-Belgium • Consortium Members: – International Institute of Air and Space Law (IIASL) - NL – IMEC - B, Aero-DB - B – Russian and CIS experts from: GeoTSUP, RAKA, Rostelecom, Gosstandard of RF, Morsvyazsputnik, SDB Kamerton -BR, MinTran - Ukraine, Temir Zholy - KZ GLONASS Global Satellite System GLONASS System Architecture OrbitalOrbital Constellation: Constellation: 2424 satellites satellites (3(3 planes planes x x 8 8 satellites satellites)) OrbitOrbit type: type:circularcircular, , HH = = 19 19 100 100 km km,, i i= = 64.8° 64.8° OrbitalOrbital period: period: 1111hrhr1515minmin TheThe orbits orbits are are shifted shifted by by 120°120° along along the the equator equator GLONASS Global Satellite System Normative documents of the GLONASS development Directive of the RF President ? 38-rp as of February 18th, 1999 Ø GLONASS is treated as a dual-purpose space technology. Ø It is allowed to attract foreign investments to finance works on GLONASS through making the system available for the implementation of an international global satellite navigation system. Resolution of the RF Government ? 346 as of March 29th, 1999 Ø Decision on making GLONASS available for the implementation and development of international global satellite navigation systems. Ø Regulation validated on sharing responsibilities on maintenance, operation and development of GLONASS between the Federal Executive Agencies.
    [Show full text]
  • Failures in Spacecraft Systems: an Analysis from The
    FAILURES IN SPACECRAFT SYSTEMS: AN ANALYSIS FROM THE PERSPECTIVE OF DECISION MAKING A Thesis Submitted to the Faculty of Purdue University by Vikranth R. Kattakuri In Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering August 2019 Purdue University West Lafayette, Indiana ii THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF THESIS APPROVAL Dr. Jitesh H. Panchal, Chair School of Mechanical Engineering Dr. Ilias Bilionis School of Mechanical Engineering Dr. William Crossley School of Aeronautics and Astronautics Approved by: Dr. Jay P. Gore Associate Head of Graduate Studies iii ACKNOWLEDGMENTS I am extremely grateful to my advisor Prof. Jitesh Panchal for his patient guidance throughout the two years of my studies. I am indebted to him for considering me to be a part of his research group and for providing this opportunity to work in the fields of systems engineering and mechanical design for a period of 2 years. Being a research and teaching assistant under him had been a rewarding experience. Without his valuable insights, this work would not only have been possible, but also inconceivable. I would like to thank my co-advisor Prof. Ilias Bilionis for his valuable inputs, timely guidance and extremely engaging research meetings. I thank my committee member, Prof. William Crossley for his interest in my work. I had a great opportunity to attend all three courses taught by my committee members and they are the best among all the courses I had at Purdue. I would like to thank my mentors Dr. Jagannath Raju of Systemantics India Pri- vate Limited and Prof.
    [Show full text]
  • Space Activities 2018
    Space Activities in 2018 Jonathan McDowell [email protected] 2019 Feb 20 Rev 1.4 Preface In this paper I present some statistics characterizing astronautical activity in calendar year 2018. In the 2014 edition of this review, I described my methodological approach and some issues of definitional ambguity; that discussion is not repeated here, and it is assumed that the reader has consulted the earlier document, available at http://planet4589.org/space/papers/space14.pdf (This paper may be found as space18.pdf at the same location). Orbital Launch Attempts During 2018 there were 114 orbital launch attempts, with 112 reaching orbit. Table 1: Orbital Launch Attempts 2009-2013 2014 2015 2016 2017 2018 Average USA 19.0 24 20 22 30 31 Russia 30.2 32 26 17 19 17 China 14.8 16 19 22 18 39 Europe 11 12 11 11 11 Japan 4 4 4 7 6 India 4 5 7 5 7 Israel 1 0 1 0 0 N Korea 0 0 1 0 0 S Korea 0 0 0 0 0 Iran 0 1 0 1 0 New Zealand 0 0 0 0 3 Other 9 10 13 13 16 Total 79.0 92 87 85 91 114 The Arianespace-managed Soyuz launches from French Guiana are counted as European. Electron is licensed in the USA but launched from New Zealand territory. However, in late 2018 New Zealand registered the upper stages from the Jan 2018 Electron launch with the UN. Based on this, in rev 1.4 of this document I am changing Electron to count as a New Zealand launch vehicle.
    [Show full text]
  • Download Paper
    ESA'S ACTIVITIES ON THE BOUNDARIES BETWEEN NEO AND DEBRIS DETECTION Juan L. Cano(1,5), Marta Ceccaroni(1,6), Laura Faggioli(1,6), Rüdiger Jehn(2), Detlef Koschny(3,7), Stijn Lemmens(4), Francesca Letizia(4,8), Stefan Löhle(9), Javier Martín(1,5), Marco Micheli(1,6) (1)ESA-ESRIN NEO Coordination Centre, Largo Galileo Galilei, 1, 00044 Frascati (RM), Italy [email protected], [email protected], [email protected], [email protected], [email protected] (2)ESA-ESOC, Planetary Defence Office, Robert-Bosch-Strasse 5, 64293 Darmstadt, Germany [email protected] (3)ESA-ESTEC, Planetary Defence Office, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands [email protected] (4)ESA-ESOC, Space Debris Office, Robert-Bosch-Strasse 5, 64293 Darmstadt, Germany [email protected], [email protected] (5)Elecnor Deimos, (6)RHEA Systems, (7)Lehrstuhl für Raumfahrttechnik, TU Munich, (8)IMS Space Consultancy GmbH (9)Universität Stuttgart, Institut für Raumfahrtsysteme, Stuttgart, Germany [email protected] ABSTRACT information such as area-to-mass ratio or colour-band photometry. In this work, we provide a review of such As of 2018, over 210 spacecraft have been launched into methods and characterise the trajectories of artificial interplanetary trajectories or towards Lagrange points in space debris object which could interfere once more with the Solar System. More often than not, these spacecraft the Earth–Moon system, including their observability. on exploration missions were trailed by one or two stages We also explain a novel metric to discern between the from the launch vehicle that put them into orbit.
    [Show full text]
  • Venera-D VEXAG Briefing 161126.Pptx
    Report of the Venera-D Joint Science Definition Team: "Together to Venus" L. Zasova1, D. Senske2, T. Economou3, N. Eismont1, L. Esposito4, M. Gerasimov1, N. Ignatiev1, M. Ivanov5, I. Khatuntsev1, O. Korablev1, T. Kremic7, K. Lea Jessup6, S. Limaye8, I. Lomakin9, A. Martynov9, A. Ocampo10 1 Space Research Institute RAS, Moscow, Russia, 2 Jet Propulsion Laboratory, Pasadena, USA, 3 Enrico Fermi Institute, Chicago, USA, 4University of Colorado, Boulder, USA, 5 Vernadsky Inst. RAS, Moscow, Russia, 6 Southwest Research Institute, Boulder, USA, 7 Glenn Research Center, Cleveland, USA, 8 Univ. of Wisconsin, St Madison, USA, 9 Lavochkin Assoc., Moscow, Russia. 10 NASA Headquarters, Washington DC, USA, 29 November 2016 VEXAG, NASA HQ 1 Pre-Decisional — For Planning and Discussion Purposes Only Goals of the Venera-D SDT 1) Identify, prioritize and develop science goals, investigations, and measurements consistent with the current Venera-D concept; 2) Assess the Venera-D mission architecture including possible modular options (e.g., subsystems) for collaboration opportunities and required instrumentation capabilities. Assess technology readiness level to implement the mission concept and identify areas for which development is required; 3) Identify mission components (mission elements/subsystems/instruments) that best lend themselves to potential collaboration. Outline a general maturation schedule needed to support the Venera-D mission for launches in the post-2025 time frame; 4) Assess the precursor observations and instrumentation validation experiments needed to enable or enhance the Venera-D mission (e.g., instrument testing in a chamber that emulates the chemistry, pressures and temperatures found in the atmosphere or at the surface of Venus); 5) Evaluate how Venera-D would advance the scientific understanding of Venus and feed forward to future missions with the ultimate goal of sample return.
    [Show full text]
  • Activity of Russian Federation on Space Debris Problem
    FEDERAL SPACE AGENCY OF RUSSIAN FEDERATION ACTIVITY OF RUSSIAN FEDERATION ON SPACE DEBRIS PROBLEM 48 -th session of the Scientific and Technical Subcommittee of the UN Committee on the Peaceful Uses of Outer Space (COPUOS) 7-18 February 2011 1 FEDERAL SPACE AGENCY OF RUSSIAN FEDERATION • Federal Space Agency of Russia continues consecutive activity in the field of space debris problems. This work concerns the safety of spacecraft and the International Space Station, the latest one in a especial meaning. • The activity on debris mitigation is being carried out within the framework of Russian National Legislation, taking into account the dynamics of similar measures and practices of other space-faring nations and also the international initiatives on space debris mitigation, especially the UN Space Debris Mitigation Guidelines (Ref. Doc. is A/RES/62/217 issued 10 January, 2008). • Russian designers and operators of spacecraft and orbital stages are in charge to follow the requirements of National Standard of the Russian Federation "Space Technology Items. General Requirements on Space Systems for the Mitigation of Human-Produced near-Earth Space Population" in all projects of space vehicles being again developed. 2 FEDERAL SPACE AGENCY OF RUSSIAN FEDERATION DYNAMICS OF LAUNCHES IN RUSSIA AND IN OTHER STATES AND ORGANIZATIONS 18 17 3 FEDERAL SPACE AGENCY OF RUSSIAN FEDERATION RUSSIAN LAUNCHES IN 20 10 Type Accelerating Number of Type of Orbit №/№ of Launcher Engine Launches 1 “Proton-M” “Briz-M 9 Geostationary 2 “Rokot” “Briz-KM” 1 Circular
    [Show full text]
  • List of Russian Space Launch Vehicle Failures Since Dec. 2010
    Fact Sheet Updated March 25, 2019 LIST OF RUSSIAN SPACE LAUNCH FAILURES SINCE DEC. 2010 Russia’s once reliable fleet of space launch vehicles began a string of failures beginning in December 2010 that has created significant consternation in Russia’s space program and brought about firings and reorganizations, but the failures continue. Following is a list, with links to SpacePolicyOnline.com articles where available. • December 2010, Proton-Block DM, upper stage failure, three Russian GLONASS navigation satellites lost • February 2011, GEO-IK2, Rokot-Briz, upper stage failure, Russian geodetic satellite stranded in transfer orbit • August 2011, Ekspress AM-4, Proton-Briz, upper stage failure, Russian communications satellite stranded in transfer orbit • August 2011, Progress M-12M (called Progress 44 by NASA), Soyuz U-Fregat, third stage failure due to clogged fuel line, Russian cargo spacecraft for International Space Station lost • November 2011, Phobos-Grunt, Zenit-Fregat, upper stage failure, Russian Mars-bound spacecraft stranded in Earth orbit • December 2011, Soyuz 2.1a, third stage failure, Russian Meridian military communication satellite lost • August 2012, Proton-Briz, upper stage failure, Russian Ekspress-MD2 and Indonesian Telkom-3 communications satellites stranded in transfer orbit • December 2012, Proton-Briz, upper stage failure, Russian Yamal 402 communications satellite delivered to wrong orbit. • January 2013, Rokot-Briz KM, upper stage failure. Three Russian Strela military communications satellites incorrectly placed
    [Show full text]
  • Proton (UR-500) Family Home Launch Vehicles USSR / Russia
    Please make a donation to support Gunter's Space Page. Thank you very much for visiting Gunter's Space Page. I hope that this site is useful a nd informative for you. If you appreciate the information provided on this site, please consider supporting my work by making a simp le and secure donation via PayPal. Please help to run the website and keep everything free of charge. Thank you very much. Proton (UR-500) family Home Launch Vehicles USSR / Russia Proton Proton-K Proton-K Blok-D (Zond L1) Proton-K Blok-D-1 (Granat) [ILS] Proton-K Blok-DM-2 Proton-K Blok-DM1 (Inmarsat-3 F3) similar: Proton-K Blok-D, Proton-K Blok-D-2 Proton-K Blok-DM2 Proton-K Blok-DM3 Proton-M Briz-M (Thor 5) [ILS] similar: Proton-K Blok-DM-5 similar: Proton-K Blok-DM4, similar: Proton-K Briz-M Proton-K Blok-DM-2M Version Stage 1 Stage 2 Stage 3 Stage 4 Proton (8K82) 8S810 / 6 × RD-253 8S811 / 3 × RD-0208 + 1 × RD-0209 - - Proton-K (8K82K) 8S810 / 6 × RD-253 8S811 / 3 × RD-0210 + 1 × RD-0211 8S812 / RD-0212 - Proton-K Blok-D (8K82K 11S824) 8S810 / 6 × RD-253 8S811 / 3 × RD-0210 + 1 × RD-0211 8S812 / RD-0212 Blok-D / RD-58 Proton-K Blok-D-1 (8K82K 11S824M) 8S810 / 6 × RD-253 8S811 / 3 × RD-0210 + 1 × RD-0211 8S812 / RD-0212 Blok-D-1 / RD-58M Proton-K Blok-D-2 (8K82K 11S824F) 8S810 / 6 × RD-253 8S811 / 3 × RD-0210 + 1 × RD-0211 8S812 / RD-0212 Blok-D-2 / RD-58M Proton-K Blok-DM (8K82K 11S86) 8S810 / 6 × RD-253 8S811 / 3 × RD-0210 + 1 × RD-0211 8S812 / RD-0212 Blok-DM / RD-58M Proton-K Blok-DM-2 (8K82K 11S861) 8S810 / 6 × RD-253 8S811 / 3 × RD-0210 + 1 × RD-0211 8S812
    [Show full text]
  • Activity of Russian Federation on Space Debris Problem
    FEDERAL SPACE AGENCY OF RUSSIA ACTIVITY OF RUSSIAN FEDERATION ON SPACE DEBRIS PROBLEM 51-th session of the UN Committee on the Peaceful Uses of Outer Space (COPUOS) June 11-20, 2008 1 FEDERAL SPACE AGENCY OF RUSSIA • Federal Space Agency of Russia continues consecutive activity in the field of space debris problems. This work concerns the safety of spacecraft and the International Space Station, the latest one in a especial meaning. • The activity on debris mitigation is being carried out within the framework of Russian National Legislation, taking into account the dynamics of similar measures and practices of other space-faring nations and also the international initiatives on space debris mitigation, especially the UN Space Debris Mitigation Guidelines (Ref. Doc. is A/RES/62/217 issued 10 January, 2008). • Russian designers and operators of spacecraft and orbital stages are in charge to follow the requirements of Federal Space Agency Standard "Space Technology Items. General Requirements for Mitigation of Space Debris Population" in all projects of space vehicles being again developed. June 11-20, 2008 2 FEDERAL SPACE AGENCY OF RUSSIA DYNAMICS OF LAUNCHES IN RUSSIA AND IN OTHER STATES AND ORGANIZATIONS 30 26 25 26 25 23 23 21 19 20 18 18 17 15 16 15 13 12 12 10 6 4 5 5 5 3 0 2003 2004 2005 2006 2007 Russia USA ESA The others June 11-20, 2008 3 FEDERAL SPACE AGENCY OF RUSSIA RUSSIAN LAUNCHES IN 2007 Type Accelerating Number of Type of Orbit / of Launcher Engine Launches 1 “Proton-K” “DM” 1 Circular 2 “Proton-M” “Briz-M 4 + 1*) Geostationary
    [Show full text]
  • Ranking Upper Stages in Low Earth Orbit for Active Removal
    6TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) Ranking upper stages in low Earth orbit for active removal L. Anselmo and C. Pardini Space Flight Dynamics Laboratory, ISTI/CNR Via G. Moruzzi 1, 56124 Pisa, Italy Abstract This paper addresses the problem of ranking the upper stages in orbit in order to evaluate their potential detrimental effects on the debris environment over the long-term, and the relative advantage of having them actively de-orbited. To do so, a new ranking scheme is introduced, applicable to any object in low Earth orbit (LEO) and able to prioritize the target objects potentially most critical for the future preservation of the LEO protected region. Applying the proposed approach, it was found, for instance, that the 22 most massive upper stages abandoned in LEO, at the beginning of 2015, are on the whole equivalent to several hundred average intact objects in sun-synchronous orbit, regarding their latent detrimental effects on the debris environment over the next 200 years. Most of them could therefore be the top priority targets of any worldwide coordinated effort for active removal and the prevention of new collisional debris. The ranking scheme was also applied to other main models of rocket bodies currently in orbit, trying to identify the combinations of orbital elements and upper stage types requiring particular attention. 1. Introduction Currently, spent upper stages represent more than 42% of the intact objects abandoned in orbit, accounting for 57% of the abandoned mass (and 48% of the total mass, including operational spacecraft). Due to the fact that they belong to a relatively small number of models, compared to spacecraft, and are typically much more symmetric and simple shaped, rocket bodies are ideal candidates for active debris removal missions.
    [Show full text]
  • Activity of the Russian Federation on Space Debris Problems
    ACTIVITY OF THE RUSSIAN FEDERATION ON SPACE DEBRIS PROBLEMS Loginov S.(1), Yakovlev M.(1), Mikhailov M.(1), Gorlov A.(1), Feldstein V.(1), Oleynikov I.(1), Makarov Y.(2), Bulynin Y.(3), Trushlyakov V.(4) (1) Central Research Institute for Machine Building, Pionerskaya Str., 4, Korolev, Moscow Region, Russian Federation, Email: [email protected] (2)Federal Space Agency, Schepkina st., 42, Moscow, Russian Federation (3)-6&³,QIRUPDWLRQ6DWHOOLWH6\VWHPV´5HVKHWQHY&RPSDQ\=KHOH]QRJRUVN-2, Krasnoyarsk Region, Russian Federation, Email: [email protected] (4)Omsk State Technical University, Omsk, Russian Federation, Email: [email protected] ABSTRACT Table 1. Russian Federation launches, 2012 Type of Type of Number of Type of Research of space debris problems in the Russian Launcher Booster Launches Orbit Federation is carried out in following aspects 1) observation, 2) modelling, 3) protection and 1 Soyuz-2.1 : Fregat 1 High 4) mitigation. The Russian Federation is devoted to the elliptical orbit international efforts on space debris problem resolution 2 Soyuz-2.1 : Fregat 1 Circular and is already implementing practical steps on space NEO debris mitigation on a voluntary basis within its own 3 Soyuz-FG - 4 Circular national mechanisms taking into account the COPUOS NEO UN and IADC Space Debris Mitigation Guidelines. 4 Soyuz-U - 5 Circular NEO ARTICLE 5 Soyuz-ST-B Fregat- 1 Circular FL MEO The space activity of the world community conducts 6 Soyuz-ST-A Fregat- 1 Circular results in the growth of the near-earth space pollution FL NEO with artificial fragments and as a consequence in the 7 Soyuz-FG Fregat 1 Circular space mission safety diminishing.
    [Show full text]