Simultaneous Iliacus and Psoas Muscle Variations Philip A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Iliopsoas Tendonitis/Bursitis Exercises
ILIOPSOAS TENDONITIS / BURSITIS What is the Iliopsoas and Bursa? The iliopsoas is a muscle that runs from your lower back through the pelvis to attach to a small bump (the lesser trochanter) on the top portion of the thighbone near your groin. This muscle has the important job of helping to bend the hip—it helps you to lift your leg when going up and down stairs or to start getting out of a car. A fluid-filled sac (bursa) helps to protect and allow the tendon to glide during these movements. The iliopsoas tendon can become inflamed or overworked during repetitive activities. The tendon can also become irritated after hip replacement surgery. Signs and Symptoms Iliopsoas issues may feel like “a pulled groin muscle”. The main symptom is usually a catch during certain movements such as when trying to put on socks or rising from a seated position. You may find yourself leading with your other leg when going up the stairs to avoid lifting the painful leg. The pain may extend from the groin to the inside of the thigh area. Snapping or clicking within the front of the hip can also be experienced. Do not worry this is not your hip trying to pop out of socket but it is usually the iliopsoas tendon rubbing over the hip joint or pelvis. Treatment Conservative treatment in the form of stretching and strengthening usually helps with the majority of patients with iliopsoas bursitis. This issue is the result of soft tissue inflammation, therefore rest, ice, anti- inflammatory medications, physical therapy exercises, and/or injections are effective treatment options. -
Vastus Medialis: a Reappraisal of VMO and VML
J. Phys. Ther. Sci. 24: 475–479, 2012 Vastus Medialis: a Reappraisal of VMO and VML EMILY J SKINNER1), PHILIP J ADDS1) 1) Division of Biomedical Sciences (Anatomy), St. George’s, University of London: Cranmer Terrace, London SW17 0RE, U.K. TEL: +44 208-7255208, E-mail: [email protected] Abstract. [Purpose] The morphology and innervation pattern of the vastus medialis (VM) were investigated to determine if there was an anatomical distinction between the oblique (VMO) and longus (VML) parts. [Subjects and Methods] Forty lower limbs were dissected. The innervation pattern was observed in 39 specimens. Muscle length and fibre angles of 14 specimens were recorded. [Results] In 22 specimens there was a distinct separation between the VML and VMO (change in fibre angle, fibrofascial plane, vasculature or nerve branch). The mean fibre angle of VMO was 52°, and the mean VML fibre angle was 5° (relative to the shaft of the femur). Ten limbs (25.6%) had separate innervation to the VML. The separation between VMO and VML was found to be more proximal than expected, with the VMO on average accounting for 70% of the VM, in contrast to the much more distal point of separation reported elsewhere, leading us to raise the possibility that VML and vastus intermedius may have been misidentified in some previous studies. [Conclusions] In conclusion the VML/VMO division (when present) is much more proximal than has been previously reported, and there is no consistent pattern of innervation to the two parts of the muscle. Key words: Fibre angle, Vastus medialis, VML, VMO (This article was submitted Nov. -
Netter's Musculoskeletal Flash Cards, 1E
Netter’s Musculoskeletal Flash Cards Jennifer Hart, PA-C, ATC Mark D. Miller, MD University of Virginia This page intentionally left blank Preface In a world dominated by electronics and gadgetry, learning from fl ash cards remains a reassuringly “tried and true” method of building knowledge. They taught us subtraction and multiplication tables when we were young, and here we use them to navigate the basics of musculoskeletal medicine. Netter illustrations are supplemented with clinical, radiographic, and arthroscopic images to review the most common musculoskeletal diseases. These cards provide the user with a steadfast tool for the very best kind of learning—that which is self directed. “Learning is not attained by chance, it must be sought for with ardor and attended to with diligence.” —Abigail Adams (1744–1818) “It’s that moment of dawning comprehension I live for!” —Calvin (Calvin and Hobbes) Jennifer Hart, PA-C, ATC Mark D. Miller, MD Netter’s Musculoskeletal Flash Cards 1600 John F. Kennedy Blvd. Ste 1800 Philadelphia, PA 19103-2899 NETTER’S MUSCULOSKELETAL FLASH CARDS ISBN: 978-1-4160-4630-1 Copyright © 2008 by Saunders, an imprint of Elsevier Inc. All rights reserved. No part of this book may be produced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publishers. Permissions for Netter Art figures may be sought directly from Elsevier’s Health Science Licensing Department in Philadelphia PA, USA: phone 1-800-523-1649, ext. 3276 or (215) 239-3276; or e-mail [email protected]. -
Body Mechanics 18 Mtj/Massage Therapy Journal Spring 2013 Contraction Is Described Asan Eccentriccontraction Isdescribed Contraction
EXPERT CONTENT Body Mechanics by Joseph E. Muscolino | illustrations by Giovanni Rimasti “Perhaps no muscles are more misunderstood and have more dysfunction attributed to them than the psoas muscles. Looking at the multiple joints that the psoas major crosses, and ... it is easy to see why. PSOAS MAJOR FUNCTION A Biomechanical Examination of the Psoas Major INTRODUCTION MUSCLE BIOMECHANICS The psoas major is a multijoint muscle that spans from A typical muscle attaches from the bone of one body the thoracolumbar spine to the femur. Its proximal part to the bone of an adjacent body part, thereby attachments are the anterolateral bodies of T12-L5 crossing the joint that is located between them (Figure and the discs between, and the anterior surfaces of the 2). The essence of muscle function is that when a muscle transverse processes of L1-L5; its distal attachment is contracts, it creates a pulling force toward its center the lesser trochanter of the femur (Figure 1)(15). Because (14). This pulling force is exerted on its attachments, the psoas major blends distally with the iliacus to attach attempting to pull the two body parts toward each onto the lesser trochanter, these two muscles are often other. There are also resistance forces that oppose the www.amtamassage.org/mtj described collectively as the iliopsoas. Some sources movement of each of the body parts. Most commonly, also include the psoas minor as part of the iliopsoas(5). this resistance force is the force of gravity acting on the Although variations occur for every muscle, including mass of each body part and is equal to the weight of the the psoas major, its attachments are fairly clear. -
Femoral Nerve Dimensions at the Inguinal Ligament and Inguinal Crease Levels: Implications for Femoral Nerve Block
Original article http://dx.doi.org/10.4322/jms.062413 Femoral nerve dimensions at the inguinal ligament and inguinal crease levels: implications for femoral nerve block OYEDUN, O. S.1*, RUKEWE, A.2 and FATIREGUN, A.3 1Gross Anatomy Lab, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, +234 Ibadan, Oyo State, Nigéria 2Anaesthesia Unit, Accident and Emergency Department, University College Hospital, +234 Ibadan, Oyo State, Nigéria 3Department of Epidemiology and Medical Statistics, Faculty of Public Health, University of Ibadan, +234 Ibadan, Oyo State, Nigéria *E-mail: [email protected] Abstract Introduction: Femoral nerve block, when used solely or as a supplement to general anaesthesia, provides anaesthesia and analgesia to the anterior thigh. In spite of its established benefits, femoral nerve block is still underutilized in Nigeria. Our objective was to study the dimensions of femoral nerve at the level of the inguinal ligament and inguinal crease using a cadaveric model; no such data exists in Nigeria. Materials and Methods: Using 7 adult human cadavers (6 males and 1 female), the depth and thickness of the femoral nerve were measured at the levels of inguinal ligament and inguinal crease. The spatial relationship of femoral nerve to the surrounding structures was also observed. Result: The study showed a significantly wider thickness and shorter depth of the femoral nerve at the level of inguinal crease relative to inguinal ligament. Conclusion: We concluded that in centers where ultrasound and neurostimulation techniques for femoral nerve block in Nigerians are unavailable, the inguinal crease level where the femoral nerve is more superficial and wider in thickness would be the landmark of choice compared to the inguinal ligament level. -
Sportsmans Groin: the Inguinal Ligament and the Lloyd Technique
Rennie, WJ and Lloyd, DM. Sportsmans Groin: The Inguinal Ligament and the Lloyd Technique. Journal of the Belgian Society of Radiology. 2017; 101(S2): 16, pp. 1–4. DOI: https://doi.org/10.5334/jbr-btr.1404 OPINION ARTICLE Sportsmans Groin: The Inguinal Ligament and the Lloyd Technique WJ Rennie and DM Lloyd Groin pain is a catch all phrase used to define a common set of symptoms that affect many individuals. It is a common condition affecting sportsmen and women (1, 2) and is often referred to as the sportsman groin (SG). Multiple surgical operations have been developed to treat these symptoms yet no definitive imaging modalities exist to diagnose or predict prognosis. This article aims to discuss the anatomy of the groin, suggest a biomechanical pathophysiology and outline a logical surgical solution to treat the underlying pathology. A systematic clinical and imaging approach with inguinal ligament and pubic specific MRI assessment, can result in accurate selection for intervention. Close correlation with clinical examination and imaging in series is recommended to avoid misinterpretation of chronic changes in athletes. Keywords: Groin pain; Inguinal Ligament; MRI; Surgery; Lloyd release Introduction from SG is due to altered biomechanics, with specific pain Groin pain is a catch all phrase used to define a common symptoms that differ from those caused by inguinal or set of symptoms that affect many individuals. It is a com- femoral hernias. mon condition affecting sportsmen and women [1, 2] and is often referred to as the sportsman groin (SG). Multiple Anatomy of Sportsman’s Groin surgical operations have been developed to treat these The anatomical central structure in the groin is the pubic symptoms, yet no definitive imaging modalities exist to bone. -
Origin and Antimeric Distribution of the Obturator Nerves in the New Zealand Rabbits Origem E Distribuição Antimérica Dos
Origin and antimeric distribution of the obturator nerves in the new zealand rabbits 1 DOI: 10.1590/1089-6891v20e-55428 VETERINARY MEDICINE ORIGIN AND ANTIMERIC DISTRIBUTION OF THE OBTURATOR NERVES IN THE NEW ZEALAND RABBITS ORIGEM E DISTRIBUIÇÃO ANTIMÉRICA DOS NERVOS OBTURATÓRIOS EM COELHOS NOVA ZELÂNDIA Renata Medeiros do Nascimento¹ ORCID – http://orcid.org/0000-0002-0473-9545 Thais Mattos Estruc¹ ORCID - http://orcid.org/0000-0003-4559-3746 Jorge Luiz Alves Pereira² ORCID - http://orcid.org/0000-0002-6314-666X Erick Candiota Souza³ ORCID - http://orcid.org/0000-0001-6211-5944 Paulo Souza Junior³ ORCID - http://orcid.org/0000-0002-6488-6491 Marcelo Abidu-Figueiredo1* ORCID - http://orcid.org/0000-0003-2251-171X ¹Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil ²Universidade Estácio de Sá, Rio de Janeiro, RJ, Brazil. ³Universidade Federal do Pampa, Uruguaiana, RS, Brazil. *Correspondent author - [email protected] Abstract New Zealand rabbits are widely used as experimental models and represent an important casuistic in veterinary practices. The musculoskeletal conformation of rabbits frequently leads to the occurrence of lumbosacral lesions with neural involvement. In order to contribute to the comparative anatomy and the understanding of these lesions, the origin and distribution of the obturator nerves of 30 New Zealand rabbits (15 males and 15 females) previously fixed in 10% formaldehyde were studied by dissection. The obturator nerves were originated from the ventral spinal branches of L6 and L7 in 63.3% of the cases, L5 and L6 in 13.4%, only L7 in 13.4%, L7 and S1 in 6.6 % and of L6, L7 and S1 in 3.3%. -
Muscle Activation and Kinematic Analysis During the Inclined Leg Press Exercise in Young Females
International Journal of Environmental Research and Public Health Article Muscle Activation and Kinematic Analysis during the Inclined Leg Press Exercise in Young Females Isabel Martín-Fuentes 1 , José M. Oliva-Lozano 1 and José M. Muyor 1,2,* 1 Health Research Centre, University of Almería, 04120 Almería, Spain; [email protected] (I.M.-F.); [email protected] (J.M.O.-L.) 2 Laboratory of Kinesiology, Biomechanics and Ergonomics (KIBIOMER Lab.), Research Central Services, University of Almería, 04120 Almería, Spain * Correspondence: [email protected]; Tel.: +34-950214429 Received: 24 October 2020; Accepted: 20 November 2020; Published: 23 November 2020 Abstract: Knee joint muscle activation imbalances, especially weakness in the vastus medialis oblique, are related to patellofemoral pain within the female population. The available literature presents the leg press as an exercise which potentially targets vastus medialis oblique activation, thus reducing imbalances in the quadriceps muscles. The main aim of the present study was to compare thigh muscle activation and kinematic parameters under different conditions during the inclined leg press exercise in a young female population. A cross-sectional study was conducted on 10 young, trained females. Muscle activation of the vastus medialis oblique, vastus lateralis, rectus femoris and gluteus medialis was analyzed under five different inclined leg press conditions, modifying the feet rotation (0–45◦ external rotation) and the stance width (100–150% hip width) on the footplate. All the conditions were performed at two different movement velocities: controlled velocity (2” eccentric–2” concentric) and maximal intended velocity. Mean propulsive velocity, maximum velocity and maximum power were also assessed. The results show that both controlled velocity conditions and maximal intended velocity conditions elicited a similar muscle activation pattern with greater activation during the concentric phase (p < 0.001, ηp2 = 0.96). -
Describe the Anatomy of the Inguinal Canal. How May Direct and Indirect Hernias Be Differentiated Anatomically
Describe the anatomy of the inguinal canal. How may direct and indirect hernias be differentiated anatomically. How may they present clinically? Essentially, the function of the inguinal canal is for the passage of the spermatic cord from the scrotum to the abdominal cavity. It would be unreasonable to have a single opening through the abdominal wall, as contents of the abdomen would prolapse through it each time the intraabdominal pressure was raised. To prevent this, the route for passage must be sufficiently tight. This is achieved by passing through the inguinal canal, whose features allow the passage without prolapse under normal conditions. The inguinal canal is approximately 4 cm long and is directed obliquely inferomedially through the inferior part of the anterolateral abdominal wall. The canal lies parallel and 2-4 cm superior to the medial half of the inguinal ligament. This ligament extends from the anterior superior iliac spine to the pubic tubercle. It is the lower free edge of the external oblique aponeurosis. The main occupant of the inguinal canal is the spermatic cord in males and the round ligament of the uterus in females. They are functionally and developmentally distinct structures that happen to occur in the same location. The canal also transmits the blood and lymphatic vessels and the ilioinguinal nerve (L1 collateral) from the lumbar plexus forming within psoas major muscle. The inguinal canal has openings at either end – the deep and superficial inguinal rings. The deep (internal) inguinal ring is the entrance to the inguinal canal. It is the site of an outpouching of the transversalis fascia. -
Static Stretching Time Required to Reduce Iliacus Muscle Stiffness
Sports Biomechanics ISSN: 1476-3141 (Print) 1752-6116 (Online) Journal homepage: https://www.tandfonline.com/loi/rspb20 Static stretching time required to reduce iliacus muscle stiffness Shusuke Nojiri, Masahide Yagi, Yu Mizukami & Noriaki Ichihashi To cite this article: Shusuke Nojiri, Masahide Yagi, Yu Mizukami & Noriaki Ichihashi (2019): Static stretching time required to reduce iliacus muscle stiffness, Sports Biomechanics, DOI: 10.1080/14763141.2019.1620321 To link to this article: https://doi.org/10.1080/14763141.2019.1620321 Published online: 24 Jun 2019. Submit your article to this journal Article views: 29 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=rspb20 SPORTS BIOMECHANICS https://doi.org/10.1080/14763141.2019.1620321 Static stretching time required to reduce iliacus muscle stiffness Shusuke Nojiri , Masahide Yagi, Yu Mizukami and Noriaki Ichihashi Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan ABSTRACT ARTICLE HISTORY Static stretching (SS) is an effective intervention to reduce muscle Received 25 September 2018 stiffness and is also performed for the iliopsoas muscle. The iliop- Accepted 9 May 2019 soas muscle consists of the iliacus and psoas major muscles, KEYWORDS among which the former has a greater physiological cross- Iliacus muscle; static sectional area and hip flexion moment arm. Static stretching stretching; ultrasonic shear time required to reduce muscle stiffness can differ among muscles, wave elastography and the required time for the iliacus muscle remains unclear. The purpose of this study was to investigate the time required to reduce iliacus muscle stiffness. Twenty-six healthy men partici- pated in this study. -
Clinical Pelvic Anatomy
SECTION ONE • Fundamentals 1 Clinical pelvic anatomy Introduction 1 Anatomical points for obstetric analgesia 3 Obstetric anatomy 1 Gynaecological anatomy 5 The pelvic organs during pregnancy 1 Anatomy of the lower urinary tract 13 the necks of the femora tends to compress the pelvis Introduction from the sides, reducing the transverse diameters of this part of the pelvis (Fig. 1.1). At an intermediate level, opposite A thorough understanding of pelvic anatomy is essential for the third segment of the sacrum, the canal retains a circular clinical practice. Not only does it facilitate an understanding cross-section. With this picture in mind, the ‘average’ of the process of labour, it also allows an appreciation of diameters of the pelvis at brim, cavity, and outlet levels can the mechanisms of sexual function and reproduction, and be readily understood (Table 1.1). establishes a background to the understanding of gynae- The distortions from a circular cross-section, however, cological pathology. Congenital abnormalities are discussed are very modest. If, in circumstances of malnutrition or in Chapter 3. metabolic bone disease, the consolidation of bone is impaired, more gross distortion of the pelvic shape is liable to occur, and labour is likely to involve mechanical difficulty. Obstetric anatomy This is termed cephalopelvic disproportion. The changing cross-sectional shape of the true pelvis at different levels The bony pelvis – transverse oval at the brim and anteroposterior oval at the outlet – usually determines a fundamental feature of The girdle of bones formed by the sacrum and the two labour, i.e. that the ovoid fetal head enters the brim with its innominate bones has several important functions (Fig. -
The Role of and Relationship Between Hamstring and Quadriceps Muscle Myofascial Trigger Points in Patients with Patellofemoral Pain Syndrome
The role of and relationship between Hamstring and Quadriceps muscle myofascial trigger points in patients with patellofemoral pain syndrome. By Karen Louise Frandsen Smith A mini-dissertation submitted in partial compliance with the requirements for the Master’s Degree in Technology: Chiropractic at the Durban University of Technology I, Karen Louise Frandsen Smith, declare that this dissertation is representative of my own work in both conception and execution (except where acknowledgements indicate to the contrary). _______________________ ________________ Karen Louise Frandsen Smith Date Approved for Submission _______________________ ________________ Dr Brian Kruger (supervisor) Date M. Tech. Chiro., C.C.S.P. Dedication I dedicate this work to everyone who loves me and have supported me throughout these years of studying and all the difficult times. It is thanks to you that I have reached my dream. Dad, you would be so proud. i Acknowledgements Thank you to the DUT staff, patients, and supervisor, Dr Brian Kruger for making this happen. Thanks to my class mates for making the years fly by, and creating lifelong memories. This dissertation would not have been completed without supportive, generous and helpful people. Special thanks to you, Dr Danella Lubbe for motivating me and thank you so much Dr Charmaine Korporaal for “picking me up” and helping me finish. Endless gratitude goes to you Damon, Cherine, Mom and Viggo. You are / were all my anchors in the storm, and without your belief in me, I would be nowhere. ii Abstract Purpose: Patellofemoral Pain Syndrome is a common condition in all age groups, with a multi- factorial etiology.