1 Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities Fiona M Menzies1ǂ,#, Angeleen Fleming1ǂ, Andrea Caricasole2ǂ, Carla F Bento1ǂ, Steven P Andrews2ǂ, Avraham Ashkenazi1ǂ, Jens Füllgrabe1ǂ, Anne Jackson1ǂ, Maria Jimenez Sanchez1ǂ, Cansu Karabiyik1ǂ, Floriana Licitra1ǂ, Ana Lopez Ramirez1ǂ, Mariana Pavel1ǂ, Claudia Puri1ǂ, Maurizio Renna1ǂ, Thomas Ricketts1ǂ Lars Schlotawa1ǂ, Mariella Vicinanza1ǂ, Hyeran Won1ǂ, Ye Zhu1ǂ, John Skidmore2ǂ and David C Rubinsztein1* 1 Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK. 2 Alzheimer's Research UK Cambridge Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH, UK. # Current address: Eli Lilly and Company Limited, Erl Wood Manor, Sunninghill Road Windlesham, Surrey, GU20 6PH, UK. ǂDenotes equal contribution *E-mail address for correspondence:
[email protected] (DCR) 2 In Brief This review discusses the importance of autophagy function for brain health, outlining connections between autophagy dysfunction and neurodegenerative disorders. The potential for autophagy as a therapeutic strategy for neurodegenerative disease is discussed, along with how this may be achieved. Summary Autophagy is a conserved pathway that delivers cytoplasmic contents to the lysosome for degradation. Here we consider its roles in neuronal health and disease. We review evidence from mouse knock-out studies demonstrating the normal functions of autophagy as a protective factor against neurodegeneration associated with intracytoplasmic aggregate-prone protein accumulation, as well as other roles including in neuronal stem cell differentiation. We then describe how autophagy may be affected in a range of neurodegenerative diseases.