Lafora Disease
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Status Epilepticus Clinical Pathway
JOHNS HOPKINS ALL CHILDREN’S HOSPITAL Status Epilepticus Clinical Pathway 1 Johns Hopkins All Children's Hospital Status Epilepticus Clinical Pathway Table of Contents 1. Rationale 2. Background 3. Diagnosis 4. Labs 5. Radiologic Studies 6. General Management 7. Status Epilepticus Pathway 8. Pharmacologic Management 9. Therapeutic Drug Monitoring 10. Inpatient Status Admission Criteria a. Admission Pathway 11. Outcome Measures 12. References Last updated: July 7, 2019 Owners: Danielle Hirsch, MD, Emergency Medicine; Jennifer Avallone, DO, Neurology This pathway is intended as a guide for physicians, physician assistants, nurse practitioners and other healthcare providers. It should be adapted to the care of specific patient based on the patient’s individualized circumstances and the practitioner’s professional judgment. 2 Johns Hopkins All Children's Hospital Status Epilepticus Clinical Pathway Rationale This clinical pathway was developed by a consensus group of JHACH neurologists/epileptologists, emergency physicians, advanced practice providers, hospitalists, intensivists, nurses, and pharmacists to standardize the management of children treated for status epilepticus. The following clinical issues are addressed: ● When to evaluate for status epilepticus ● When to consider admission for further evaluation and treatment of status epilepticus ● When to consult Neurology, Hospitalists, or Critical Care Team for further management of status epilepticus ● When to obtain further neuroimaging for status epilepticus ● What ongoing therapy patients should receive for status epilepticus Background: Status epilepticus (SE) is the most common neurological emergency in children1 and has the potential to cause substantial morbidity and mortality. Incidence among children ranges from 17 to 23 per 100,000 annually.2 Prevalence is highest in pediatric patients from zero to four years of age.3 Ng3 acknowledges the most current definition of SE as a continuous seizure lasting more than five minutes or two or more distinct seizures without regaining awareness in between. -
A Small Number of People Have What Is Known As Reflex Epilepsy, In
A small number of people have what is known What are the features of reflex epilepsy? as reflex epilepsy, in which seizures are set off There are many different types of reflex by specific stimuli. These can include flashing epilepsy, depending on the area of the brain that lights, a flickering computer “monitor”, sudden is affected. Seizure stimuli may be very specific, noises, a particular piece of music, or the phone or they may be broad categories. They can ringing. Some people even have seizures when include: they think about a particular subject or see their own hand! flashing or flickering lights, including computer monitors or video games. This is What are other terms for reflex epilepsy? called photosensitive epilepsy. It is the most Other terms for reflex epilepsy that you may common childhood form of reflex epilepsy, come across include: and the child may eventually outgrow it. the sight of a particular pattern; this is called epilepsy with reflex seizures visual pattern reflex epilepsy sensory precipitation epilepsy thinking about certain things stimulus sensitive epilepsy performing a certain task, such as typing; this is called praxis-induced epilepsy There are also many terms for specific types of reading reflex epilepsy. language-related stimuli such as writing, listening to speech, singing, or reciting What causes reflex epilepsy? certain passages of music; this is called The seizure stimulus is not the underlying cause musicogenic epilepsy of the epilepsy. Rather, it sends a particular certain sounds; this is called audiogenic message to a sensitive, seizure-prone area of the epilepsy brain, excites the neurons there, and causes a surprises or startles seizure. -
The Art of Epilepsy Management
FOCAL EPILEPSY AND SEIZURE SEMIOLOGY Piradee Suwanpakdee, MD. Division of Neurology Department of Pediatrics Phramongkutklao Hospital OUTLINE • Focal onset seizure classification • The definition of semiology • How can we get the elements of semiology? Focal seizures • Originate within networks limited to one hemisphere • May be discretely localized or more widely distributed.… www.ilae.org What is the seizure semiology? • Seizure semiology is an expression of activation and disinhibition of cerebral areas • It thus provides some information what cerebral areas are “involved” during a seizure Symptomatogenic areas Left hemisphere lateral aspect Mesial aspect Symptomatogenic areas Left Insula How can we get the elements of seizure semiology? • The information on semiology comes from patient’s and witness’ history • Video EEG provides objective data on seizure semiology • Seizure classification aims to intellectually organise and summarise information about seizure semiology Notes • Atonic seizures and epileptic spasms would not have level of awareness specified • Pedalling grouped in hyperkinetic rather than automatisms (arbitrary) • Cognitive seizures • impaired language • other cognitive domains • positive features eg déjà vu, hallucinations, perceptual distortions • Emotional seizures: anxiety, fear, joy, etc Focal onset aware seizure • This term replaces simple partial seizure • A seizure that starts in one area of the brain and the person remains alert and able to interact is called a focal onset aware seizure. • These seizures are brief, lasting seconds to less than 2 minutes. Focal clonic seizure • Indicate involvement of contralateral primary motor cortex • Reliability is good Epilepsia partialis continua focal motor status involving a small portion of the sensorimotor cortex Focal Onset Impaired Awareness Seizures • A seizure that starts in one area of the brain and the person is not aware of their surroundings • Focal impaired awareness seizures typically last 1 to 2 minutes. -
Photosensitive Epilepsy
photosensitive epilepsy factsheet If you have epilepsy you may be able to identify triggers – situations that set off your seizures. Common triggers include stress or tiredness. If seizures are triggered by flashing lights 1 or certain patterns, this is called photosensitive epilepsy. how common is photosensitive epilepsy? how is photosensitive epilepsy treated? Around 1 in 100 people has epilepsy, and of these Photosensitive epilepsy usually responds well to people, around 3% have photosensitive epilepsy. anti-epileptic drugs (AEDs) that treat generalised Photosensitive epilepsy is more common in children seizures (seizures that affect both sides of the brain and young people (up to 5%) and is less commonly at once). diagnosed after the age of 20. See our booklet and chart medication for epilepsy for more information. how can I tell if I am photosensitive? Many people know this if they have a seizure Triggers are individual, but the following sources when they are exposed to flashing lights or patterns in themselves are not generally likely to trigger as a photosensitive trigger will usually cause photosensitive seizures. See over the page for a seizure straightaway. possible triggers and what increases the risk. An electroencephalogram (EEG) may include testing • UK TV programme content. Ofcom regulates for photosensitive epilepsy. This involves looking at a material shown on TV in the UK. The regulations light which will flash at different speeds. If this causes restrict the flash rate to three hertz or less, and any changes in brain activity the technician can stop they also restrict the area of screen allowed for the flashing light before a seizure develops. -
Myths and Truths About Pediatric Psychogenic Nonepileptic Seizures
Clin Exp Pediatr Vol. 64, No. 6, 251–259, 2021 Review article CEP https://doi.org/10.3345/cep.2020.00892 Myths and truths about pediatric psychogenic nonepileptic seizures Jung Sook Yeom, MD, PhD1,2,3, Heather Bernard, LCSW4, Sookyong Koh, MD, PhD3,4 1Department of Pediatrics, Gyeongsang National University Hospital, 2Gyeongsang Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, Korea; 3Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; 4Department of Pediatrics, Children's Healthcare of Atlanta, Atlanta, GA, USA Psychogenic nonepileptic seizures (PNES) is a neuropsychiatric • PNES are a manifestation of psychological and emotional condition that causes a transient alteration of consciousness and distress. loss of self-control. PNES, which occur in vulnerable individuals • Treatment for PNES does not begin with the psychological who often have experienced trauma and are precipitated intervention but starts with the diagnosis and how the dia- gnosis is delivered. by overwhelming circumstances, are a body’s expression of • A multifactorial biopsychosocial process and a neurobiological a distressed mind, a cry for help. PNES are misunderstood, review are both essential components when treating PNES mistreated, under-recognized, and underdiagnosed. The mind- body dichotomy, an artificial divide between physical and mental health and brain disorders into neurology and psychi- atry, contributes to undue delays in the diagnosis and treat ment Introduction of PNES. One of the major barriers in the effective dia gnosis and treatment of PNES is the dissonance caused by different illness Psychogenic nonepileptic seizures (PNES) are paroxysmal perceptions between patients and providers. While patients attacks that may resemble epileptic seizures but are not caused are bewildered by their experiences of disabling attacks beyond by abnormal brain electrical discharges. -
Clinicians Using the Classification Will Identify a Seizure As Focal Or Generalized Onset If There Is About an 80% Confidence Level About the Type of Onset
GENERALIZED ONSET SEIZURES Generalized onset seizures are not characterized by level of awareness, because awareness is almost always impaired. Generalized tonic-clonic: Immediate loss of Generalized epileptic spasms: Brief seizures with awareness, with stiffening of all limbs (tonic phase), flexion at the trunk and flexion or extension of the followed by sustained rhythmic jerking of limbs and limbs. Video-EEG recording may be required to face (clonic phase). Duration is typically 1 to 3 minutes. determine focal versus generalized onset. The seizure may produce a cry at the start, falling, tongue biting, and incontinence. Generalized typical absence: Sudden onset when activity stops with a brief pause and staring, Generalized clonic: Rhythmical sustained jerking of sometimes with eye fluttering and head nodding or limbs and/or head with no tonic stiffening phase. other automatic behaviors. If it lasts for more than These seizures most often occur in young children. several seconds, awareness and memory are impaired. Recovery is immediate. The EEG during these seizures Generalized tonic: Stiffening of all limbs, without always shows generalized spike-waves. clonic jerking. Generalized atypical absence: Like typical absence Generalized myoclonic: Irregular, unsustained jerking seizures, but may have slower onset and recovery and of limbs, face, eyes, or eyelids. The jerking of more pronounced changes in tone. Atypical absence generalized myoclonus may not always be left-right seizures can be difficult to distinguish from focal synchronous, but it occurs on both sides. impaired awareness seizures, but absence seizures usually recover more quickly and the EEG patterns are Generalized myoclonic-tonic-clonic: This seizure is like different. -
Myoclonic Status Epilepticus in Juvenile Myoclonic Epilepsy
Original article Epileptic Disord 2009; 11 (4): 309-14 Myoclonic status epilepticus in juvenile myoclonic epilepsy Julia Larch, Iris Unterberger, Gerhard Bauer, Johannes Reichsoellner, Giorgi Kuchukhidze, Eugen Trinka Department of Neurology, Medical University of Innsbruck, Austria Received April 9, 2009; Accepted November 18, 2009 ABSTRACT – Background. Myoclonic status epilepticus (MSE) is rarely found in juvenile myoclonic epilepsy (JME) and its clinical features are not well described. We aimed to analyze MSE incidence, precipitating factors and clini- cal course by studying patients with JME from a large outpatient epilepsy clinic. Methods. We retrospectively screened all patients with JME treated at the Department of Neurology, Medical University of Innsbruck, Austria between 1970 and 2007 for a history of MSE. We analyzed age, sex, age at seizure onset, seizure types, EEG, MRI/CT findings and response to antiepileptic drugs. Results. Seven patients (five women, two men; median age at time of MSE 31 years; range 17-73) with MSE out of a total of 247 patients with JME were identi- fied. The median follow-up time was seven years (range 0-35), the incidence was 3.2/1,000 patient years. Median duration of epilepsy before MSE was 26 years (range 10-58). We identified three subtypes: 1) MSE with myoclonic seizures only in two patients, 2) MSE with generalized tonic clonic seizures in three, and 3) generalized tonic clonic seizures with myoclonic absence status in two patients. All patients responded promptly to benzodiazepines. One patient had repeated episodes of MSE. Precipitating events were identified in all but one patient. Drug withdrawal was identified in four patients, one of whom had additional sleep deprivation and alcohol intake. -
Seizure Disorders
Seizure Disorders Author Anthony Murro, M.D. Medical College of Georgia Epilepsy Program Department of Neurology Medical College of Georgia Augusta, GA 30912 Contents · Seizure Definitions · Types of Seizures · Partial Seizures · Generalized Seizures · Automatisms · Post-ictal state · Evolution of seizure type · Provoked Seizures · Causes of provoked seizures · Causes of unprovoked seizures · Electroencephalogram · Neuroimaging · Epilepsy syndromes o Temporal lobe epilepsy: o Frontal lobe epilepsy: o Occipital lobe epilepsy: o West Syndrome o Lennox Gastaut Syndrome o Benign partial epilepsy syndromes o Childhood absence epilepsy o Juvenile myoclonic epilepsy (JME) o Simple Febrile Seizure o Complex Febrile Seizure o Neonatal seizures · Anticonvulsant therapy o When to start and stop anticonvulsant therapy o Principles of anticonvulsant therapy o Anticonvulsant side effects o Phenytoin o Carbamazepine o Phenobarbital o Valproate o Lamotrigine o ACTH/Corticosteroid o Oxcarbazepine o Zonisamide · Status Epilepticus · Drug Therapy for status epilepticus · Epilepsy Surgery · Counseling and patient education · Self assessment examination · Examination answers · References · Disclaimer · Permitted Use Statement Seizure Definitions · An epileptic seizure is a disorder of abnormal synchronous electrical brain activity. · A clinical seizure is a epileptic seizure with symptoms. · A subclinical seizure is a epileptic seizure without symptoms. · A non-epileptic seizure (pseudoseizure) is a disorder with symptoms similar to a epileptic seizure. However, a non-epileptic seizure is not caused by abnormal synchronous electrical brain activity. · A cryptogenic seizure is a seizure that occurs from an unknown cause. Older publications use idiopathic to describe a seizure of unknown etiology but the current ILAE guidelines discourage the use of idiopathic for describing a seizure of unknown etiology. · A symptomatic seizure is a seizure that occurs from a known or suspected brain insult known to increase the risk of developing epilepsy. -
Epilepsy Syndromes E9 (1)
EPILEPSY SYNDROMES E9 (1) Epilepsy Syndromes Last updated: September 9, 2021 CLASSIFICATION .......................................................................................................................................... 2 LOCALIZATION-RELATED (FOCAL) EPILEPSY SYNDROMES ........................................................................ 3 TEMPORAL LOBE EPILEPSY (TLE) ............................................................................................................... 3 Epidemiology ......................................................................................................................................... 3 Etiology, Pathology ................................................................................................................................ 3 Clinical Features ..................................................................................................................................... 7 Diagnosis ................................................................................................................................................ 8 Treatment ............................................................................................................................................. 15 EXTRATEMPORAL NEOCORTICAL EPILEPSY ............................................................................................... 16 Etiology ................................................................................................................................................ 16 -
Myoclonic Atonic Epilepsy Another Generalized Epilepsy Syndrome That Is “Not So” Generalized
EDITORIAL Myoclonic atonic epilepsy Another generalized epilepsy syndrome that is “not so” generalized John M. Zempel, MD, Myoclonic atonic/astatic epilepsy (MAE), first described have shown predominant thalamic activation PhD well by Doose1 (pronounced dough sah: http://www. and default mode network deactivation.6–8 Even Tadaaki Mano, MD, PhD youtube.com/watch?v5hNNiWXV2wF0), is a general- Lennox-Gastaut syndrome, a devastating epileptic ized electroclinical syndrome with early onset charac- encephalopathy with EEG findings of runs of slow terized by myoclonic, atonic/astatic, generalized spike and wave and paroxysmal higher frequency Correspondence to tonic-clonic, and absence seizures (but not tonic activity, has fMRI correlates that are more focal than Dr. Zempel: [email protected] seizures) in association with generalized spike-wave expected in a syndrome with widespread EEG (GSW) discharges. Thought to have a genetic com- abnormalities.9,10 Neurology® 2014;82:1486–1487 ponent that has proven to be complicated,2 MAE EEG-fMRI is maturing as a research and clinical sometimes occurs in children who have otherwise technique. Recording scalp EEG in an electrically been developing normally and has variable outcome. hostile environment is not an easy task. Substantial MAE is typically treated with antiseizure medications technical artifacts, such as changing imaging gradients that are used for generalized epilepsy syndromes, with and ballistocardiogram (ECG-linked artifact observed perhaps a best response to valproate, felbamate, or the in the scalp electrodes), contaminate the EEG signal. ketogenic diet.3,4 However, the relatively distinctive EEG discharges in In this issue of Neurology®, Moeller et al.5 report patients with epilepsy have partially circumvented on the fMRI correlates of GSW discharges as mea- this problem. -
Lafora Disease: Molecular Etiology Lafora Hastalığı: Moleküler Etiyoloji S
Epilepsi 2018;24(1):1-7 DOI: 10.14744/epilepsi.2017.48278 REVIEW / DERLEME Lafora Disease: Molecular Etiology Lafora Hastalığı: Moleküler Etiyoloji S. Hande ÇAĞLAYAN1,2 1Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey S. Hande CAĞLAYAN, Ph.D. 2International Biomedicine and Genome Center, Dokuz Eylül University, İzmir, Turkey Summary Lafora Disease (LD) is a fatal neurodegenerative condition characterized by the accumulation of abnormal glycogen inclusions known as Lafora bodies (LBs). Patients with LD manifest myoclonus and tonic-clonic seizures, visual hallucinations, and progressive neurological deteri- oration beginning at the age of 8-18 years. Mutations in either EPM2A gene encoding protein phosphatase laforin or NHLRC1 gene encoding ubiquitin-ligase malin cause LD. Approximately, 200 distinct mutations accounting for the disease are listed in the Lafora progressive my- oclonus epilepsy mutation and polymorphism database. In this review, the genotype-phenotype correlations, the genetic diagnosis of LD, the downregulation of glycogen metabolism as the main cause of LD pathogenesis and the regulation of glycogen synthesis as a key target for the treatment of LD are discussed. Key words: EPM2A and NHLRC1 gene mutations; genotype-phenotype relationship; Lafora progressive myoclonus epilepsy; LD pathogenesis. Özet Lafora hastalığı (LD) Lafora cisimleri (LB) olarak bilinen anormal glikojen yapıların birikmesi ile karakterize olan ölümcül bir nörodejeneratif hastalıktır. Lafora hastalarında 8–18 yaş arası başlayan miyoklonik ve tonik-klonik nöbetler, halüsinasyonlar ve ilerleyen nörolojik bozulma görülür. Lafora hastalığı protein fosfataz laforini kodlayan EPM2A geni veya ubikitin ligaz malini kodlayan NHLRC1 geni mutasyonları ile orta- ya çıkar. Hastalığa sebep olan yaklaşık 200 farklı mutasyon “Lafora Progressive Myoclonus Epilepsy Mutation and Polymorphism Database” de listelenmiştir. -
Report of the ILAE Classification Core Group
Epilepsia, 47(9):1558–1568, 2006 Blackwell Publishing, Inc. C 2006 International League Against Epilepsy Special Article Report of the ILAE Classification Core Group Jerome Engel, Jr., Chair Reed Neurological Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, U.S.A. Summary: A Core Group of the Task Force on Classification is to present a list of seizure types and syndromes to the ILAE and Terminology has evaluated the lists of epileptic seizure types Executive Committee for approval as testable working hypothe- and epilepsy syndromes approved by the General Assembly in ses, subject to verification, falsification, and revision. This re- Buenos Aires in 2001, and considered possible alternative sys- port represents completion of this work. If sufficient evidence tems of classification. No new classification has as yet been subsequently becomes available to disprove any hypothesis, the proposed. Because the 1981 classification of epileptic seizure seizure type or syndrome will be reevaluated and revised or dis- types, and the 1989 classification of epilepsy syndromes and carded, with Executive Committee approval. The recognition of epilepsies are generally accepted and workable, they will not specific seizure types and syndromes, as well as any change be discarded unless, and until, clearly better classifications have in classification of seizure types and syndromes, therefore, will been devised, although periodic modifications to the current clas- continue to be an ongoing dynamic process. A major purpose of sifications may be suggested. At this time, however, the Core this approach is to identify research necessary to clarify remain- Group has focused on establishing scientifically rigorous cri- ing issues of uncertainty, and to pave the way for new classifica- teria for identification of specific epileptic seizure types and tions.