The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sphingolipid Metabolism Diseases ⁎ Thomas Kolter, Konrad Sandhoff
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1758 (2006) 2057–2079 www.elsevier.com/locate/bbamem Review Sphingolipid metabolism diseases ⁎ Thomas Kolter, Konrad Sandhoff Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany Received 23 December 2005; received in revised form 26 April 2006; accepted 23 May 2006 Available online 14 June 2006 Abstract Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated “cross correction”, gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT. © 2006 Elsevier B.V. All rights reserved. Keywords: Ceramide; Lysosomal storage disease; Saposin; Sphingolipidose Contents 1. Sphingolipid structure, function and biosynthesis ..........................................2058 1.1. -
Disease Reference Book
The Counsyl Foresight™ Carrier Screen 180 Kimball Way | South San Francisco, CA 94080 www.counsyl.com | [email protected] | (888) COUNSYL The Counsyl Foresight Carrier Screen - Disease Reference Book 11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia .................................................................................................................................................................................... 8 21-hydroxylase-deficient Congenital Adrenal Hyperplasia ...........................................................................................................................................................................................10 6-pyruvoyl-tetrahydropterin Synthase Deficiency ..........................................................................................................................................................................................................12 ABCC8-related Hyperinsulinism........................................................................................................................................................................................................................................ 14 Adenosine Deaminase Deficiency .................................................................................................................................................................................................................................... 16 Alpha Thalassemia............................................................................................................................................................................................................................................................. -
GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies
International Journal of Molecular Sciences Review GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies Andrés Felipe Leal 1 , Eliana Benincore-Flórez 1, Daniela Solano-Galarza 1, Rafael Guillermo Garzón Jaramillo 1 , Olga Yaneth Echeverri-Peña 1, Diego A. Suarez 1,2, Carlos Javier Alméciga-Díaz 1,* and Angela Johana Espejo-Mojica 1,* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] (A.F.L.); [email protected] (E.B.-F.); [email protected] (D.S.-G.); [email protected] (R.G.G.J.); [email protected] (O.Y.E.-P.); [email protected] (D.A.S.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia * Correspondence: [email protected] (C.J.A.-D.); [email protected] (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.) Received: 6 July 2020; Accepted: 7 August 2020; Published: 27 August 2020 Abstract: GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay–Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy. -
HHS Public Access Author Manuscript
HHS Public Access Author manuscript Author Manuscript Author ManuscriptJ Registry Author Manuscript Manag. Author Author Manuscript manuscript; available in PMC 2015 May 11. Published in final edited form as: J Registry Manag. 2014 ; 41(4): 182–189. Exclusion of Progressive Brain Disorders of Childhood for a Cerebral Palsy Monitoring System: A Public Health Perspective Richard S. Olney, MD, MPHa, Nancy S. Doernberga, and Marshalyn Yeargin-Allsopp, MDa aNational Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention (CDC) Abstract Background—Cerebral palsy (CP) is defined by its nonprogressive features. Therefore, a standard definition and list of progressive disorders to exclude would be useful for CP monitoring and epidemiologic studies. Methods—We reviewed the literature on this topic to 1) develop selection criteria for progressive brain disorders of childhood for public health surveillance purposes, 2) identify categories of disorders likely to include individual conditions that are progressive, and 3) ascertain information about the relative frequency and natural history of candidate disorders. Results—Based on 19 criteria that we developed, we ascertained a total of 104 progressive brain disorders of childhood, almost all of which were Mendelian disorders. Discussion—Our list is meant for CP surveillance programs and does not represent a complete catalog of progressive genetic conditions, nor is the list meant to comprehensively characterize disorders that might be mistaken for cerebral -
Mouse Model of GM2 Activator Deficiency Manifests Cerebellar Pathology and Motor Impairment
Proc. Natl. Acad. Sci. USA Vol. 94, pp. 8138–8143, July 1997 Medical Sciences Mouse model of GM2 activator deficiency manifests cerebellar pathology and motor impairment (animal modelyGM2 gangliosidosisygene targetingylysosomal storage disease) YUJING LIU*, ALEXANDER HOFFMANN†,ALEXANDER GRINBERG‡,HEINER WESTPHAL‡,MICHAEL P. MCDONALD§, KATHERINE M. MILLER§,JACQUELINE N. CRAWLEY§,KONRAD SANDHOFF†,KINUKO SUZUKI¶, AND RICHARD L. PROIA* *Section on Biochemical Genetics, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, ‡Laboratory of Mammalian Genes and Development, National Institute of Child Health and Development, and §Section on Behavioral Neuropharmacology, Experimental Therapeutics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892; †Institut fu¨r Oganische Chemie und Biochemie der Universita¨tBonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany; and ¶Department of Pathology and Laboratory Medicine, and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599 Communicated by Stuart A. Kornfeld, Washington University School of Medicine, St. Louis, MO, May 12, 1997 (received for review March 21, 1997) ABSTRACT The GM2 activator deficiency (also known as disorder, the respective genetic lesion results in impairment of the AB variant), Tay–Sachs disease, and Sandhoff disease are the the degradation of GM2 ganglioside and related substrates. major forms of the GM2 gangliosidoses, disorders caused by In humans, in vivo GM2 ganglioside degradation requires the defective degradation of GM2 ganglioside. Tay–Sachs and Sand- GM2 activator protein to form a complex with GM2 ganglioside. hoff diseases are caused by mutations in the genes (HEXA and b-Hexosaminidase A then is able to interact with the activator- HEXB) encoding the subunits of b-hexosaminidase A. -
NCL Disease Mechanisms☆
Biochimica et Biophysica Acta 1832 (2013) 1882–1893 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbadis Review NCL disease mechanisms☆ David N. Palmer a,⁎, Lucy A. Barry a, Jaana Tyynelä b, Jonathan D. Cooper c,⁎⁎ a Department of Wine, Food and Molecular Biosciences, Faculty of Agricultural and Life Sciences, Lincoln University, PO Box 85084, Lincoln 7647, Christchurch, New Zealand b Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland c Pediatric Storage Disorders Lab, Department of Neuroscience, Centre for the Cellular Basis of Behaviour and King's Health Partners Centre for Neurodegeneration Research, James Black Centre, Institute of Psychiatry, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK article info abstract Article history: Despite the identification of a large number of disease-causing genes in recent years, it is still unclear what Received 17 October 2012 disease mechanisms operate in the neuronal ceroid lipofuscinoses (NCLs, Batten disease). As a group they Received in revised form 8 May 2013 are defined by the specific accumulation of protein, either subunit c of mitochondrial ATP synthase or SAPs Accepted 9 May 2013 A and D in lysosome-derived organelles, and regionally specific neurodegeneration. Evidence from biochemical Available online 23 May 2013 and cell biology studies indicates related lesions in intracellular vesicle trafficking and lysosomal function. There is also extensive immunohistological evidence of a causative role of disease associated neuroinflammation. How- Keywords: fi Pathogenesis ever the nature of these lesions is not clear nor is it clear why they lead to the de ning pathology. -
Lafora Disease: Molecular Etiology Lafora Hastalığı: Moleküler Etiyoloji S
Epilepsi 2018;24(1):1-7 DOI: 10.14744/epilepsi.2017.48278 REVIEW / DERLEME Lafora Disease: Molecular Etiology Lafora Hastalığı: Moleküler Etiyoloji S. Hande ÇAĞLAYAN1,2 1Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey S. Hande CAĞLAYAN, Ph.D. 2International Biomedicine and Genome Center, Dokuz Eylül University, İzmir, Turkey Summary Lafora Disease (LD) is a fatal neurodegenerative condition characterized by the accumulation of abnormal glycogen inclusions known as Lafora bodies (LBs). Patients with LD manifest myoclonus and tonic-clonic seizures, visual hallucinations, and progressive neurological deteri- oration beginning at the age of 8-18 years. Mutations in either EPM2A gene encoding protein phosphatase laforin or NHLRC1 gene encoding ubiquitin-ligase malin cause LD. Approximately, 200 distinct mutations accounting for the disease are listed in the Lafora progressive my- oclonus epilepsy mutation and polymorphism database. In this review, the genotype-phenotype correlations, the genetic diagnosis of LD, the downregulation of glycogen metabolism as the main cause of LD pathogenesis and the regulation of glycogen synthesis as a key target for the treatment of LD are discussed. Key words: EPM2A and NHLRC1 gene mutations; genotype-phenotype relationship; Lafora progressive myoclonus epilepsy; LD pathogenesis. Özet Lafora hastalığı (LD) Lafora cisimleri (LB) olarak bilinen anormal glikojen yapıların birikmesi ile karakterize olan ölümcül bir nörodejeneratif hastalıktır. Lafora hastalarında 8–18 yaş arası başlayan miyoklonik ve tonik-klonik nöbetler, halüsinasyonlar ve ilerleyen nörolojik bozulma görülür. Lafora hastalığı protein fosfataz laforini kodlayan EPM2A geni veya ubikitin ligaz malini kodlayan NHLRC1 geni mutasyonları ile orta- ya çıkar. Hastalığa sebep olan yaklaşık 200 farklı mutasyon “Lafora Progressive Myoclonus Epilepsy Mutation and Polymorphism Database” de listelenmiştir. -
ILAE Classification and Definition of Epilepsy Syndromes with Onset in Childhood: Position Paper by the ILAE Task Force on Nosology and Definitions
ILAE Classification and Definition of Epilepsy Syndromes with Onset in Childhood: Position Paper by the ILAE Task Force on Nosology and Definitions N Specchio1, EC Wirrell2*, IE Scheffer3, R Nabbout4, K Riney5, P Samia6, SM Zuberi7, JM Wilmshurst8, E Yozawitz9, R Pressler10, E Hirsch11, S Wiebe12, JH Cross13, P Tinuper14, S Auvin15 1. Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesu’ Children’s Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy 2. Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester MN, USA. 3. University of Melbourne, Austin Health and Royal Children’s Hospital, Florey Institute, Murdoch Children’s Research Institute, Melbourne, Australia. 4. Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker–Enfants Malades Hospital, APHP, Member of European Reference Network EpiCARE, Institut Imagine, INSERM, UMR 1163, Université de Paris, Paris, France. 5. Neurosciences Unit, Queensland Children's Hospital, South Brisbane, Queensland, Australia. Faculty of Medicine, University of Queensland, Queensland, Australia. 6. Department of Paediatrics and Child Health, Aga Khan University, East Africa. 7. Paediatric Neurosciences Research Group, Royal Hospital for Children & Institute of Health & Wellbeing, University of Glasgow, Member of European Refence Network EpiCARE, Glasgow, UK. 8. Department of Paediatric Neurology, Red Cross War Memorial Children’s Hospital, Neuroscience Institute, University of Cape Town, South Africa. 9. Isabelle Rapin Division of Child Neurology of the Saul R Korey Department of Neurology, Montefiore Medical Center, Bronx, NY USA. 10. Programme of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children, London, UK 11. -
Identification of Sandhoff Disease in a Thai Family: Clinical and Biochemical Characterization
Case Report Identification of Sandhoff Disease in a Thai Family: Clinical and Biochemical Characterization Kullasate Sakpichaisakul MD*, Pairat Taeranawich MD*, Achara Nitiapinyasakul MD**, Todsaporn Sirisopikun MD* * Department of Pediatrics, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima, Thailand ** Department of Ophthalmology, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima, Thailand Sandhoff disease is a GM2 gangliosidosis that is rare in Thailand. The authors report a Thai family with two children known to have infantile form of Sandhoff disease. The index case exhibited mitral valve prolapse with mitral regurgitation as an early sign, which is a rare presentation in Sandhoff disease. Thereafter, the patient had developmental regression, startle reaction, and cherry red spots. The diagnosis was confirmed by biochemical analysis. Keywords: Infantile sandhoff disease, Cherry red spot, Mitral valve prolapse J Med Assoc Thai 2010; 93 (9): 1088-92 Full text. e-Journal: http://www.mat.or.th/journal Gangliosides are components of plasma AB-variant (activator defects), most of them cannot be membranes, which comprise sphingosine, fatty distinguished by clinical manifestations(3). acids, hexose, hexosamine, and neuraminic acid. Sandhoff disease has three subtypes, which Gangliosides degraded in cellular lysosomal compart- are infantile, juvenile, and adult onset(4,5). The infantile ment(1). Normally, the hydrolysis of gangliosides is form is characterized by early onset of symptoms, which accomplished by the action of two structurally related usually occur in the first 6 to 18 months of life. An lysosomal enzymes, hexosaminidase A (Hex A) and abnormal acousticomotor reaction, psychomotor hexosaminidase B (Hex B), and the GM2 activator deterioration, together with axial hypotonia and protein(2). -
Mutations in the NHLRC1 Gene Are the Common Cause for Lafora Disease in the Japanese Population
J Hum Genet (2005) 50:347–352 DOI 10.1007/s10038-005-0263-7 ORIGINAL ARTICLE Shweta Singh Æ Toshimitsu Suzuki Æ Akira Uchiyama Satoko Kumada Æ Nobuko Moriyama Æ Shinichi Hirose Yukitoshi Takahashi Æ Hideo Sugie Æ Koichi Mizoguchi Yushi Inoue Æ Kazue Kimura Æ Yukio Sawaishi Kazuhiro Yamakawa Æ Subramaniam Ganesh Mutations in the NHLRC1 gene are the common cause for Lafora disease in the Japanese population Received: 11 March 2005 / Accepted: 30 May 2005 / Published online: 15 July 2005 Ó The Japan Society of Human Genetics and Springer-Verlag 2005 Abstract Lafora disease (LD) is a rare autosomal NHLRC1 and encoding a putative E3 ubiquitin ligase, recessive genetic disorder characterized by epilepsy, was recently identified on chromosome 6p22. The LD is myoclonus, and progressive neurological deterioration. relatively common in southern Europe, the Middle East, LD is caused by mutations in the EMP2A gene encoding and Southeast Asia. A few sporadic cases with typical a protein phosphatase. A second gene for LD, termed LD phenotype have been reported from Japan; however, our earlier study failed to find EPM2A mutations in four Japanese families with LD. We recruited four new fam- S. Singh Æ S. Ganesh Department of Biological Sciences and Bioengineering, ilies from Japan and searched for mutations in EPM2A. Indian Institute of Technology, All eight families were also screened for NHLRC1 Kanpur, India mutations. We found five independent families having T. Suzuki Æ K. Yamakawa (&) novel mutations in NHLRC1. Identified mutations in- Laboratory for Neurogenetics, clude five missense mutations (p.I153M, p.C160R, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako, p.W219R, p.D245N, and p.R253K) and a deletion Saitama 351-0198, Japan mutation (c.897insA; p.S299fs13). -
Lafora Disease Masquerading As Hepatic Dysfunction
Thomas Jefferson University Jefferson Digital Commons Abington Jefferson Health Papers Abington Jefferson Health 8-24-2018 Lafora Disease Masquerading as Hepatic Dysfunction Faisal Inayat Allama Iqbal Medical College Waqas Ullah Abington Jefferson Health Hanan T. Lodhi University of Nebraska at Omaha Zarak H. Khan St. Mary Mercy Hospital Livonia Ghulam Ilyas SUNY Downstate Medical Center Follow this and additional works at: https://jdc.jefferson.edu/abingtonfp See next page for additional authors Part of the Gastroenterology Commons, and the Medical Genetics Commons Let us know how access to this document benefits ouy Recommended Citation Inayat, Faisal; Ullah, Waqas; Lodhi, Hanan T.; Khan, Zarak H.; Ilyas, Ghulam; Ali, Nouman Safdar; and Abdullah, Hafez Mohammad A., "Lafora Disease Masquerading as Hepatic Dysfunction" (2018). Abington Jefferson Health Papers. Paper 7. https://jdc.jefferson.edu/abingtonfp/7 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Abington Jefferson Health Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. Authors Faisal Inayat, Waqas Ullah, Hanan T. Lodhi, Zarak H. Khan, Ghulam Ilyas, Nouman Safdar Ali, and Hafez Mohammad A. -
Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities
1 Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities Fiona M Menzies1ǂ,#, Angeleen Fleming1ǂ, Andrea Caricasole2ǂ, Carla F Bento1ǂ, Steven P Andrews2ǂ, Avraham Ashkenazi1ǂ, Jens Füllgrabe1ǂ, Anne Jackson1ǂ, Maria Jimenez Sanchez1ǂ, Cansu Karabiyik1ǂ, Floriana Licitra1ǂ, Ana Lopez Ramirez1ǂ, Mariana Pavel1ǂ, Claudia Puri1ǂ, Maurizio Renna1ǂ, Thomas Ricketts1ǂ Lars Schlotawa1ǂ, Mariella Vicinanza1ǂ, Hyeran Won1ǂ, Ye Zhu1ǂ, John Skidmore2ǂ and David C Rubinsztein1* 1 Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK. 2 Alzheimer's Research UK Cambridge Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH, UK. # Current address: Eli Lilly and Company Limited, Erl Wood Manor, Sunninghill Road Windlesham, Surrey, GU20 6PH, UK. ǂDenotes equal contribution *E-mail address for correspondence: [email protected] (DCR) 2 In Brief This review discusses the importance of autophagy function for brain health, outlining connections between autophagy dysfunction and neurodegenerative disorders. The potential for autophagy as a therapeutic strategy for neurodegenerative disease is discussed, along with how this may be achieved. Summary Autophagy is a conserved pathway that delivers cytoplasmic contents to the lysosome for degradation. Here we consider its roles in neuronal health and disease. We review evidence from mouse knock-out studies demonstrating the normal functions of autophagy as a protective factor against neurodegeneration associated with intracytoplasmic aggregate-prone protein accumulation, as well as other roles including in neuronal stem cell differentiation. We then describe how autophagy may be affected in a range of neurodegenerative diseases.