Generate Metabolic Map Poster

Total Page:16

File Type:pdf, Size:1020Kb

Generate Metabolic Map Poster Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Rpal258594Cyc: Rhodopseudomonas palustris CGA009 Cellular Overview Connections between pathways are omitted for legibility.
Recommended publications
  • Oxidative Pentose Phosphate Pathway Enzyme 6-Phosphogluconate Dehydrogenase Plays a Key Role in Breast Cancer Metabolism
    biology Article Oxidative Pentose Phosphate Pathway Enzyme 6-Phosphogluconate Dehydrogenase Plays a Key Role in Breast Cancer Metabolism Ibrahim H. Polat 1,2,3 ,Míriam Tarrado-Castellarnau 1,4 , Rohit Bharat 1, Jordi Perarnau 1 , Adrian Benito 1,5 , Roldán Cortés 1, Philippe Sabatier 2 and Marta Cascante 1,4,* 1 Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; [email protected] (I.H.P.); [email protected] (M.T.-C.); [email protected] (R.B.); [email protected] (J.P.); [email protected] (A.B.); [email protected] (R.C.) 2 Equipe Environnement et Prédiction de la Santé des Populations, Laboratoire TIMC (UMR 5525), CHU de Grenoble, Université Grenoble Alpes, 38700 CEDEX La Tronche, France; [email protected] 3 Department of Medicine, Hematology/Oncology, Goethe-University Frankfurt, 60590 Frankfurt, Germany 4 Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28001 Madrid, Spain 5 Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W12 0NN, UK * Correspondence: [email protected] Simple Summary: Cancer cells alter their metabolism to maintain their high need for energy, produce Citation: Polat, I.H.; enough macromolecules for biosynthesis, and preserve their redox status. The investigation of Tarrado-Castellarnau, M.; Bharat, R.; cancer cell-specific metabolic alterations has vital importance to identify targets to be exploited for Perarnau, J.; Benito, A.; Cortés, R.; therapeutic development. The pentose phosphate pathway (PPP) is often highly activated in tumor Sabatier, P.; Cascante, M.
    [Show full text]
  • Enzyme Characterisation and Kinetic Modelling of the Pentose Phosphate
    1 Enzyme characterisation and kinetic modelling of the pentose 2 phosphate pathway in yeast 1;2 3 Hanan L. Messiha Edward Kent 1;3;4 Naglis Malys 1;2;6 Kathleen M. Carroll 1;5 Neil Swainston 1;4 s 1;4;7;∗ t Pedro Mendes 1;4 n Kieran Smallbone i r P 1Manchester Centre for Integrative Systems Biology e r 2Faculty of Life Sciences 3 P Doctoral Training Centre in Integrative Systems Biology 4School of Computer Science 5School of Chemistry University of Manchester, M13 9PL, UK. 6School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK. 7Center for Quantitative Medicine and Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA. 4 Abstract 5 We present the quantification and kinetic characterisation of the enzymes of the pentose 6 phosphate pathway in Saccharomyces cerevisiae. The data are combined into a mathematical 7 model that describes the dynamics of this system and allows us to predict changes in metabo- 8 lite concentrations and fluxes in response to perturbations. We use the model to study the 9 response of yeast to a glucose pulse. We then combine the model with an existing glycolysis 10 model to study the effect of oxidative stress on carbohydrate metabolism. The combina- 11 tion of these two models was made possible by the standardised enzyme kinetic experiments 12 carried out in both studies. This work demonstrates the feasibility of constructing larger 13 network-scale models by merging smaller pathway-scale models. ∗To whom correspondence should be addressed at [email protected] PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.146v4 | CC-BY 3.0 Open Access | received: 10 Apr 2014, published: 10 Apr 2014 1 14 Introduction 15 The pentose phosphate pathway (PPP) is a central and widely conserved metabolic pathway of car- 16 bohydrate metabolism which, in eukaryotic cells, is located in the cytoplasm (see Figure 1).
    [Show full text]
  • The Classification of Esterases: an Important Gene Family Involved in Insecticide Resistance - a Review
    Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 107(4): 437-449, June 2012 437 The classification of esterases: an important gene family involved in insecticide resistance - A Review Isabela Reis Montella1,2, Renata Schama1,2,3/+, Denise Valle1,2,3 1Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz-Fiocruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brasil 2Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brasil 3Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brasil The use of chemical insecticides continues to play a major role in the control of disease vector populations, which is leading to the global dissemination of insecticide resistance. A greater capacity to detoxify insecticides, due to an increase in the expression or activity of three major enzyme families, also known as metabolic resistance, is one major resistance mechanisms. The esterase family of enzymes hydrolyse ester bonds, which are present in a wide range of insecticides; therefore, these enzymes may be involved in resistance to the main chemicals employed in control programs. Historically, insecticide resistance has driven research on insect esterases and schemes for their classification. Currently, several different nomenclatures are used to describe the esterases of distinct species and a universal standard classification does not exist. The esterase gene family appears to be rapidly evolving and each insect species has a unique complement of detoxification genes with only a few orthologues across species. The examples listed in this review cover different aspects of their biochemical nature. However, they do not appear to contribute to reliably distinguish among the different resistance mechanisms.
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000238675-HmpCyc: Bacillus smithii 7_3_47FAA Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Lecture 7 - the Calvin Cycle and the Pentose Phosphate Pathway
    Lecture 7 - The Calvin Cycle and the Pentose Phosphate Pathway Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire 1 Introduction The Calvin cycle Text The dark reactions of photosynthesis in green plants Reduces carbon from CO2 to hexose (C6H12O6) Requires ATP for free energy and NADPH as a reducing agent. 2 2 Introduction NADH versus Text NADPH 3 3 Introduction The Pentose Phosphate Pathway Used in all organisms Glucose is oxidized and decarboxylated to produce reduced NADPH Used for the synthesis and degradation of pentoses Shares reactions with the Calvin cycle 4 4 1. The Calvin Cycle Source of carbon is CO2 Text Takes place in the stroma of the chloroplasts Comprises three stages Fixation of CO2 by ribulose 1,5-bisphosphate to form two 3-phosphoglycerate molecules Reduction of 3-phosphoglycerate to produce hexose sugars Regeneration of ribulose 1,5-bisphosphate 5 5 1. Calvin Cycle Three stages 6 6 1.1 Stage I: Fixation Incorporation of CO2 into 3-phosphoglycerate 7 7 1.1 Stage I: Fixation Rubisco: Ribulose 1,5- bisphosphate carboxylase/ oxygenase 8 8 1.1 Stage I: Fixation Active site contains a divalent metal ion 9 9 1.2 Rubisco Oxygenase Activity Rubisco also catalyzes a wasteful oxygenase reaction: 10 10 1.3 State II: Formation of Hexoses Reactions similar to those of gluconeogenesis But they take place in the chloroplasts And use NADPH instead of NADH 11 11 1.3 State III: Regeneration of Ribulose 1,5-Bisphosphosphate Involves a sequence of transketolase and aldolase reactions. 12 12 1.3 State III:
    [Show full text]
  • The Pentose Phosphate Pathway and Its Involvement in Cisplatin Resistance
    International Journal of Molecular Sciences Review The Pentose Phosphate Pathway and Its Involvement in Cisplatin Resistance Isabella Giacomini 1, Eugenio Ragazzi 1 , Gianfranco Pasut 2 and Monica Montopoli 1,3,* 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Egidio Meneghetti 2, 35131 Padova, Italy; [email protected] (I.G.); [email protected] (E.R.) 2 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131 Padova, Italy; [email protected] 3 Veneto Institute of Molecular Medicine, Via Giuseppe Orus 2, 35129 Padova, Italy * Correspondence: [email protected]; Tel.: +39-049-827-5090 Received: 30 December 2019; Accepted: 29 January 2020; Published: 31 January 2020 Abstract: Cisplatin is the first-line treatment for different types of solid tumors, such as ovarian, testicular, bladder, cervical, head and neck, lung, and esophageal cancers. The main problem related to its clinical use is the onset of drug resistance. In the last decades, among the studied molecular mechanisms of cisplatin resistance, metabolic reprogramming has emerged as a possible one. This review focuses on the pentose phosphate pathway (PPP) playing a pivotal role in maintaining the high cell proliferation rate and representing an advantage for cancer cells. In particular, the oxidative branch of PPP plays a role in oxidative stress and seems to be involved in cisplatin resistance. In light of these considerations, it has been demonstrated that overexpression and higher enzymatic activity of different enzymes of both oxidative and non-oxidative branches (such as glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and transketolase) increase cisplatin resistance, and their silencing or combined treatment with cisplatin could restore cisplatin sensitivity.
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • RESPIRATION Pentose Phosphate Pathway Or Hexose Monophosphate Pathway
    RESPIRATION Pentose Phosphate Pathway or Hexose Monophosphate Pathway Pentose phosphate pathway or hexose monophosphate pathway (HMP pathway) is the other common pathway to break down glucose to pyruvate and operates in both aerobic and anaerobic conditions. This pathway produces NADPH, which carries chemical energy in the form of reducing power and is used almost universally as the reductant in anabolic (energy utilization) pathways (e.g., fatty acid biosynthesis, cholesterol biosynthesis, nucleotide biosynthesis) and detoxification pathways (e.g., reduction of oxidized glutathione, cytochrome P450 monooxygenases). Also, the pentose phosphate pathway generates pentose sugar ribose and its derivatives, which are necessary for the biosynthesis of nucleic acids (DNA and RNA) as well as ATP, NADH, FAD, and coenzyme A. In this way, though the pentose phosphate pathway may be a source of energy in many microorganisms, it is more often of greater importance in various biosynthetic pathways. Pentose phosphate pathway consists of two phases: the oxidative phase and the non-oxidative phase. Oxidative Phase: The oxidative phase of the pentose phosphate pathway initiates with the conversion of glucose 6- phosphate to 6-Phosphogluconate. NADP+ is the electron acceptor yielding NADPH during this reaction. 6-Phosphogluconate, a six-carbon sugar, is then oxidativelydecarboxylated to yield ribulose 5-phosphate, a five-carbon sugar. NADP+ is again the electron acceptor yielding NADPH. In the final step of oxidative phase, there is isomerisation of ribulose 5-phosphatc to ribose 5- phosphate by phosphopentose isomerase and the conversion of ribulose 5-phosphate into its epimerxylulose 5-phosphate by phosphopentose epimerase for the transketolase reaction in non- oxidative phase.
    [Show full text]
  • Rhodococcus Erythropolis Oleate Hydratase: a New Member in the Oleate Hydratase Family Tree – Biochemical and Structural Studies
    Technische Universität München Fakultät für Chemie Werner Siemens-Lehrstuhl für Synthetische Biotechnologie Enzymatic functionalization of bio based fatty acids and algae based triglycerides Jan Lorenzen Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender Prof. Dr. Tom Nilges Prüfer der Dissertation 1. Prof. Dr. Thomas Brück 2. Prof. Dr. Wolfgang Eisenreich 3. Prof. Dr. Uwe Bornscheuer (schriftliche Beurteilung) Prof. Dr. Thomas Fässler (mündliche Prüfung) Die Dissertation wurde am 26.09.2019 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 19.11.2019 angenommen. Abstracts I Abstracts Chapter I In the first chapter, the optimization of the SCCO2 extraction of microalgae derived biomass in an industrially relevant pilot plant that adheres to ATEX standards was reported for the first time. The SCCO2 extraction procedure of the lipid containing biomass of the microalgae strains Scenedesmus obliquus and Scenedesmus obtusiusculus was optimized with batch sizes of up to 1,3 kg of dried biomass. Under optimal conditions lipid recovery up to 92% w/w of the total lipids fraction could be achieved. Moreover, we addressed the purification of crude microalgae lipid extracts obtained by the SCCO2 extraction procedure. We could identify high amounts of hydrophobic contaminants (e.g. chlorophylls or carotenoids) in the crude lipid extract, which we could effectively remove by the application of the standard mineral adsorber bentonite. The obtained, clean microalgae oil can directly be further processed to lubricants, cosmetics or nutraceutical products. This is the first time that a combined SCCO2 extraction and purification process for algae lipids has been developed that could be integrated into existing industrial processes.
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • The Gene for Albicidin Detoxification from Pantoea Dispersa Encodes An
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 9984–9989, September 1997 Plant Biology The gene for albicidin detoxification from Pantoea dispersa encodes an esterase and attenuates pathogenicity of Xanthomonas albilineans to sugarcane (phytotoxin resistanceyleaf scald diseaseyserine hydrolaseypathogenicity factor) LIANHUI ZHANG* AND ROBERT G. BIRCH Department of Botany, The University of Queensland, Brisbane 4072, Australia Communicated by Allen Kerr, University of Adelaide, Adelaide, Australia, June 16, 1997 (received for review April 4, 1997) ABSTRACT Albicidin phytotoxins are pathogenicity fac- produces a family of antibiotics and phytotoxins that block tors in a devastating disease of sugarcane known as leaf scald, DNA replication in bacteria and sugarcane proplastids (13, caused by Xanthomonas albilineans. A gene (albD) from Pantoea 14). The major toxin, named albicidin, has been partially dispersa has been cloned and sequenced and been shown to characterized as a low Mr compound with several aromatic code for a peptide of 235 amino acids that detoxifies albicidin. rings. Because albicidin is rapidly bactericidal to a range of The gene shows no significant homology at the DNA or protein Gram-positive and Gram-negative bacteria at concentrations level to any known sequence, but the gene product contains a as low as 1 ng ml21, it is also of interest as a potential clinical GxSxG motif that is conserved in serine hydrolases. The AlbD antibiotic (15). protein, purified to homogeneity by means of a glutathione Symptoms of leaf scald disease include the emergence of S-transferase gene fusion system, showed strong esterase chlorotic leaves, wilting, necrosis, and sometimes rapid death activity on p-nitrophenyl butyrate and released hydrophilic of plants, often after a prolonged latent period.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]