The Classification of Esterases: an Important Gene Family Involved in Insecticide Resistance - a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supporting Information
Supporting Information Figure S1. The functionality of the tagged Arp6 and Swr1 was confirmed by monitoring cell growth and sensitivity to hydeoxyurea (HU). Five-fold serial dilutions of each strain were plated on YPD with or without 50 mM HU and incubated at 30°C or 37°C for 3 days. Figure S2. Localization of Arp6 and Swr1 on chromosome 3. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 3L, Tel 3R, CEN3, and the RP gene are shown under the panels. Figure S3. Localization of Arp6 and Swr1 on chromosome 4. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) in the whole chromosome region are compared. The position of Tel 4L, Tel 4R, CEN4, SWR1, and RP genes are shown under the panels. Figure S4. Localization of Arp6 and Swr1 on the region including the SWR1 gene of chromosome 4. The binding of Arp6- FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position and orientation of the SWR1 gene is shown. Figure S5. Localization of Arp6 and Swr1 on chromosome 5. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 5L, Tel 5R, CEN5, and the RP genes are shown under the panels. Figure S6. Preferential localization of Arp6 and Swr1 in the 5′ end of genes. Vertical bars represent the binding ratio of proteins in each locus. -
Interaction of Acetylcholinesterase with Neurexin-1Β Regulates
Xiang et al. Molecular Brain 2014, 7:15 http://www.molecularbrain.com/content/7/1/15 RESEARCH Open Access Interaction of Acetylcholinesterase with Neurexin-1β regulates Glutamatergic Synaptic stability in Hippocampal neurons Yun-Yan Xiang1,2†, Haiheng Dong3†, Burton B Yang4, John F MacDonald1,2 and Wei-Yang Lu1,2,3,5* Abstract Background: Excess expression of acetylcholinesterase (AChE) in the cortex and hippocampus causes a decrease in the number of glutamatergic synapses and alters the expression of neurexin and neuroligin, trans-synaptic proteins that control synaptic stability. The molecular sequence and three-dimensional structure of AChE are homologous to the corresponding aspects of the ectodomain of neuroligin. This study investigated whether excess AChE interacts physically with neurexin to destabilize glutamatergic synapses. Results: The results showed that AChE clusters colocalized with neurexin assemblies in the neurites of hippocampal neurons and that AChE co-immunoprecipitated with neurexin from the lysate of these neurons. Moreover, when expressed in human embryonic kidney 293 cells, N-glycosylated AChE co-immunoprecipitated with non-O–glycosylated neurexin-1β,withN-glycosylation of the AChE being required for this co-precipitation to occur. Increasing extracellular AChE decreased the association of neurexin with neuroligin and inhibited neuroligin-induced synaptogenesis. The number and activity of excitatory synapses in cultured hippocampal neurons were reduced by extracellular catalytically inactive AChE. Conclusions: Excessive glycosylated AChE could competitively disrupt a subset of the neurexin–neuroligin junctions consequently impairing the integrity of glutamatergic synapses. This might serve a molecular mechanism of excessive AChE induced neurodegeneration. Keywords: Protein interaction, Glycosylation, Neurodegeneration, Synaptic apoptosis Introduction globular monomers and dimers of AChE-S. -
Acetylcholinesterase — New Roles for Gate a Relatively Long Distance to Reach the Active Site, Ache Is One of the Fastest an Old Actor Enzymes14
PERSPECTIVES be answered regarding AChE catalysis; for OPINION example, the mechanism behind the extremely fast turnover rate of the enzyme. Despite the fact that the substrate has to navi- Acetylcholinesterase — new roles for gate a relatively long distance to reach the active site, AChE is one of the fastest an old actor enzymes14. One theory to explain this phe- nomenon has to do with the unusually strong electric field of AChE. It has been argued that Hermona Soreq and Shlomo Seidman this field assists catalysis by attracting the cationic substrate and expelling the anionic The discovery of the first neurotransmitter — understanding of AChE functions beyond the acetate product15. Site-directed mutagenesis, acetylcholine — was soon followed by the classical view and suggest the molecular basis however, has indicated that reducing the elec- discovery of its hydrolysing enzyme, for its functional heterogeneity. tric field has no effect on catalysis16.However, acetylcholinesterase. The role of the same approach has indicated an effect on acetylcholinesterase in terminating From early to recent discoveries the rate of association of fasciculin, a peptide acetylcholine-mediated neurotransmission The unique biochemical properties and phys- that can inhibit AChE17. made it the focus of intense research for iological significance of AChE make it an much of the past century. But the complexity interesting target for detailed structure–func- of acetylcholinesterase gene regulation and tion analysis. AChE-coding sequences have recent evidence for some of the long- been cloned so far from a range of evolution- a Peripheral Choline binding site suspected ‘non-classical’ actions of this arily diverse vertebrate and invertebrate binding enzyme have more recently driven a species that include insects, nematodes, fish, site profound revolution in acetylcholinesterase reptiles, birds and several mammals, among Active site research. -
The Gene for Albicidin Detoxification from Pantoea Dispersa Encodes An
Proc. Natl. Acad. Sci. USA Vol. 94, pp. 9984–9989, September 1997 Plant Biology The gene for albicidin detoxification from Pantoea dispersa encodes an esterase and attenuates pathogenicity of Xanthomonas albilineans to sugarcane (phytotoxin resistanceyleaf scald diseaseyserine hydrolaseypathogenicity factor) LIANHUI ZHANG* AND ROBERT G. BIRCH Department of Botany, The University of Queensland, Brisbane 4072, Australia Communicated by Allen Kerr, University of Adelaide, Adelaide, Australia, June 16, 1997 (received for review April 4, 1997) ABSTRACT Albicidin phytotoxins are pathogenicity fac- produces a family of antibiotics and phytotoxins that block tors in a devastating disease of sugarcane known as leaf scald, DNA replication in bacteria and sugarcane proplastids (13, caused by Xanthomonas albilineans. A gene (albD) from Pantoea 14). The major toxin, named albicidin, has been partially dispersa has been cloned and sequenced and been shown to characterized as a low Mr compound with several aromatic code for a peptide of 235 amino acids that detoxifies albicidin. rings. Because albicidin is rapidly bactericidal to a range of The gene shows no significant homology at the DNA or protein Gram-positive and Gram-negative bacteria at concentrations level to any known sequence, but the gene product contains a as low as 1 ng ml21, it is also of interest as a potential clinical GxSxG motif that is conserved in serine hydrolases. The AlbD antibiotic (15). protein, purified to homogeneity by means of a glutathione Symptoms of leaf scald disease include the emergence of S-transferase gene fusion system, showed strong esterase chlorotic leaves, wilting, necrosis, and sometimes rapid death activity on p-nitrophenyl butyrate and released hydrophilic of plants, often after a prolonged latent period. -
744 Hydrolysis of Chiral Organophosphorus Compounds By
[Frontiers in Bioscience, Landmark, 26, 744-770, Jan 1, 2021] Hydrolysis of chiral organophosphorus compounds by phosphotriesterases and mammalian paraoxonase-1 Antonio Monroy-Noyola1, Damianys Almenares-Lopez2, Eugenio Vilanova Gisbert3 1Laboratorio de Neuroproteccion, Facultad de Farmacia, Universidad Autonoma del Estado de Morelos, Morelos, Mexico, 2Division de Ciencias Basicas e Ingenierias, Universidad Popular de la Chontalpa, H. Cardenas, Tabasco, Mexico, 3Instituto de Bioingenieria, Universidad Miguel Hernandez, Elche, Alicante, Spain TABLE OF CONTENTS 1. Abstract 2. Introduction 2.1. Organophosphorus compounds (OPs) and their toxicity 2.2. Metabolism and treatment of OP intoxication 2.3. Chiral OPs 3. Stereoselective hydrolysis 3.1. Stereoselective hydrolysis determines the toxicity of chiral compounds 3.2. Hydrolysis of nerve agents by PTEs 3.2.1. Hydrolysis of V-type agents 3.3. PON1, a protein restricted in its ability to hydrolyze chiral OPs 3.4. Toxicity and stereoselective hydrolysis of OPs in animal tissues 3.4.1. The calcium-dependent stereoselective activity of OPs associated with PON1 3.4.2. Stereoselective hydrolysis commercial OPs pesticides by alloforms of PON1 Q192R 3.4.3. PON1, an enzyme that stereoselectively hydrolyzes OP nerve agents 3.4.4. PON1 recombinants and stereoselective hydrolysis of OP nerve agents 3.5. The activity of PTEs in birds 4. Conclusions 5. Acknowledgments 6. References 1. ABSTRACT Some organophosphorus compounds interaction of the racemic OPs with these B- (OPs), which are used in the manufacturing of esterases (AChE and NTE) and such interactions insecticides and nerve agents, are racemic mixtures have been studied in vivo, ex vivo and in vitro, using with at least one chiral center with a phosphorus stereoselective hydrolysis by A-esterases or atom. -
Neurexin–Neuroligin Signaling in Synapse Development Ann Marie Craig and Yunhee Kang
Neurexin–neuroligin signaling in synapse development Ann Marie Craig and Yunhee Kang Neurexins and neuroligins are emerging as central organizing and knockdown of neuroligins in culture led to the idea molecules for excitatory glutamatergic and inhibitory that these molecules control the balance of GABAergic GABAergic synapses in mammalian brain. They function as cell and glutamatergic inputs [4,5]. We focus our discussion adhesion molecules, bridging the synaptic cleft. Remarkably, here on studies from the past two years that address how each partner can trigger formation of a hemisynapse: alternative splicing in both neurexin and neuroligin tran- neuroligins trigger presynaptic differentiation and neurexins scripts regulates their function. We also discuss initial trigger postsynaptic differentiation. Recent protein interaction results from studies of knockout mice and disease-linked assays and cell culture studies indicate a selectivity of function mutations. conferred by alternative splicing in both partners. An insert at site 4 of b-neurexins selectively promotes GABAergic synaptic Structure of neurexins and neuroligins function, whereas an insert at site B of neuroligin 1 selectively There are three neurexin genes in mammals, each of promotes glutamatergic synaptic function. Initial knockdown which has both an upstream promoter that is used to and knockout studies indicate that neurexins and neuroligins generate the larger a-neurexins and a downstream pro- have an essential role in synaptic transmission, particularly at moter that is used to generate the b-neurexins (Figure 1) GABAergic synapses, but further studies are needed to assess [6]. Alternative splicing at five sites and N- and O-gly- the in vivo functions of these complex protein families. -
Enzymatic Degradation of Organophosphorus Pesticides and Nerve Agents by EC: 3.1.8.2
catalysts Review Enzymatic Degradation of Organophosphorus Pesticides and Nerve Agents by EC: 3.1.8.2 Marek Matula 1, Tomas Kucera 1 , Ondrej Soukup 1,2 and Jaroslav Pejchal 1,* 1 Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; [email protected] (M.M.); [email protected] (T.K.); [email protected] (O.S.) 2 Biomedical Research Center, University Hospital Hradec Kralove, Sokolovska 581, 500 05 Hradec Kralove, Czech Republic * Correspondence: [email protected] Received: 26 October 2020; Accepted: 20 November 2020; Published: 24 November 2020 Abstract: The organophosphorus substances, including pesticides and nerve agents (NAs), represent highly toxic compounds. Standard decontamination procedures place a heavy burden on the environment. Given their continued utilization or existence, considerable efforts are being made to develop environmentally friendly methods of decontamination and medical countermeasures against their intoxication. Enzymes can offer both environmental and medical applications. One of the most promising enzymes cleaving organophosphorus compounds is the enzyme with enzyme commission number (EC): 3.1.8.2, called diisopropyl fluorophosphatase (DFPase) or organophosphorus acid anhydrolase from Loligo Vulgaris or Alteromonas sp. JD6.5, respectively. Structure, mechanisms of action and substrate profiles are described for both enzymes. Wild-type (WT) enzymes have a catalytic activity against organophosphorus compounds, including G-type nerve agents. Their stereochemical preference aims their activity towards less toxic enantiomers of the chiral phosphorus center found in most chemical warfare agents. Site-direct mutagenesis has systematically improved the active site of the enzyme. These efforts have resulted in the improvement of catalytic activity and have led to the identification of variants that are more effective at detoxifying both G-type and V-type nerve agents. -
Protein Network Analyses of Pulmonary Endothelial Cells In
www.nature.com/scientificreports OPEN Protein network analyses of pulmonary endothelial cells in chronic thromboembolic pulmonary hypertension Sarath Babu Nukala1,8,9*, Olga Tura‑Ceide3,4,5,9, Giancarlo Aldini1, Valérie F. E. D. Smolders2,3, Isabel Blanco3,4, Victor I. Peinado3,4, Manuel Castell6, Joan Albert Barber3,4, Alessandra Altomare1, Giovanna Baron1, Marina Carini1, Marta Cascante2,7,9 & Alfonsina D’Amato1,9* Chronic thromboembolic pulmonary hypertension (CTEPH) is a vascular disease characterized by the presence of organized thromboembolic material in pulmonary arteries leading to increased vascular resistance, heart failure and death. Dysfunction of endothelial cells is involved in CTEPH. The present study describes for the frst time the molecular processes underlying endothelial dysfunction in the development of the CTEPH. The advanced analytical approach and the protein network analyses of patient derived CTEPH endothelial cells allowed the quantitation of 3258 proteins. The 673 diferentially regulated proteins were associated with functional and disease protein network modules. The protein network analyses resulted in the characterization of dysregulated pathways associated with endothelial dysfunction, such as mitochondrial dysfunction, oxidative phosphorylation, sirtuin signaling, infammatory response, oxidative stress and fatty acid metabolism related pathways. In addition, the quantifcation of advanced oxidation protein products, total protein carbonyl content, and intracellular reactive oxygen species resulted increased -
Neuroligin 3 (Nlgn3) Knockout Rat
Genetically engineered models (GEMS) Neuroligin 3 (Nlgn3) knockout rat Model Neuroligin 3 (Nlgn3) knockout rat Strain HsdSage:SD- Nlgn3tm1sage Location U.S. Availability Cryopreserved Characteristics/husbandry Research use + This model was created in collaboration with Autism Speaks + Autism and is currently undergoing phenotypic characterization by + Asperger’s syndrome Dr. Richard Paylor at Baylor College of Medicine + Synaptic plasticity + Preliminary results suggest that Nlgn3 knockout rats are less anxious and exhibit decreased juvenile play, deficits in Origin sensorimotor gating and increased perseverative behaviors The Neuroligin 3 (Nlgn3) KO rat model was originally created + Homozygous knockout rats exhibit complete loss of target at SAGE Labs, Inc. in St. Louis, MO and distributed out of the protein as demonstrated by Western blot Boyertown, PA facility. The line continues to be maintained through the original SAGE Labs animal inventory acquired by + Mutations in Nlgn3 have been associated with autism and Asperger’s syndrome Envigo. + Nlgn3 is a member of the broader neuroligins, neuronal cell surface proteins thought to play a role in synaptic plasticity Description This model contains a biallelic deletion of the neuroligin 3 gene + Background strain: Sprague Dawley (Nlgn3). Mutations in Nlgn3 have been linked with autism and Asperger’s syndrome. This model is useful for understanding Zygosity genotype the role of neuroligins in the development of autism spectrum disorders. + Cryopreserved as heterozygous embryos Neuroligins -
Generate Metabolic Map Poster
Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_900114035Cyc: Amycolatopsis sacchari DSM 44468 Cellular Overview Connections between pathways are omitted for legibility. -
Reevaluation of Serum Arylesterase Activity in Neurodevelopmental Disorders
antioxidants Article Reevaluation of Serum Arylesterase Activity in Neurodevelopmental Disorders Ignazio Stefano Piras 1,2, Stefano Gabriele 1, Laura Altieri 1, Federica Lombardi 1, Roberto Sacco 1, Carla Lintas 1 , Barbara Manzi 3, Paolo Curatolo 3, Maria Nobile 4, Catia Rigoletto 4, Massimo Molteni 4 and Antonio M. Persico 5,* 1 Unit of Child & Adolescent Neuropsychiatry, University Campus Bio-Medico, I-00128 Rome, Italy; [email protected] (I.S.P.); [email protected] (S.G.); [email protected] (L.A.); [email protected] (F.L.); [email protected] (R.S.); [email protected] (C.L.) 2 Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ 85254, USA 3 Unit of Child and Adolescent Neuropsychiatry, University of Rome “Tor Vergata”, I-00133 Rome, Italy; [email protected] (B.M.); [email protected] (P.C.) 4 Child Psychopathology Unit, Scientific Institute, IRCCS ‘E. Medea’, I-23842 Bosisio Parini (LC), Italy; [email protected] (M.N.); [email protected] (C.R.); [email protected] (M.M.) 5 Interdepartmental Program “Autism 0–90”, “G. Martino” University Hospital, University of Messina, I-98122 Messina, Italy * Correspondence: [email protected] Abstract: Organophosphate compounds (OPs) interfere with neurodevelopment and are neuro- toxic for humans and animals. They are first biotransformed to the more toxic oxon form, and then hydrolyzed to specific metabolites by the enzyme paraoxonase/arylesterase, encoded by the gene PON1 located on human chr. 7q21.3. In autism spectrum disorder (ASD) and in attention- deficit/hyperactivity disorder (ADHD), a correlation between OP exposure and disease onset has Citation: Piras, I.S.; Gabriele, S.; been reported. -
Reconsideration of the Catalytic Center and Mechanism of Mammalian
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 7187-7191, August 1995 Genetics Reconsideration of the catalytic center and mechanism of mammalian paraoxonase/arylesterase (organophosphatase/A-esterase/site-directed mutagenesis/high density lipoprotein/phosphotriesterase) ROBERT C. SORENSON*, SERGIO L. PRIMO-PARMOt, CHUNG-LIANG Kuot, STEVE ADKINS0§, OKSANA LOCKRIDGEI, AND BERT N. LA DU*tll *Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-0632; tDepartment of Anesthesiology, Research Division, 4038 Kresge Research II, University of Michigan Medical School, Ann Arbor, MI 48109-0572; tDepartment of Environmental and Industrial Health, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029; §Mental Health Research Institute and Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-0720; and lEppley Institute, University of Nebraska Medical Center, Omaha, NB 68198-6805 Communicated by James V Neel, University ofMichigan Medical School, Ann Arbor, MI, May 2, 1995 ABSTRACT For three decades, mammalian paraoxonase basis for the human polymorphism was the presence of argi- (A-esterase, aromatic esterase, arylesterase; PON, EC 3.1.8.1) nine (high PON activity, B-type allozyme) or glutamine (low has been thought to be a cysteine esterase demonstrating PON activity, A-type allozyme) at position 191 (11-13). structural and mechanistic homologies with the serine ester- Augustinsson (14, 15) suggested that PON, the carboxyes- ases (cholinesterases and carboxyesterases). Human, mouse, terases, and the cholinesterases were products of divergent and rabbit PONs each contain only three cysteine residues, evolution from an ancestral arylesterase but that PON utilized and their positions within PON have been conserved.