Scout Motor Performance Analysis and Prediction Study (Paps)
Total Page:16
File Type:pdf, Size:1020Kb
NASA CONTRACTOR REPORT SCOUT MOTOR PERFORMANCE ANALYSIS AND PREDICTION STUDY (PAPS) by C. K. Whhzey, T. F. Owens, J. Pakind, and M. B. R&h .’ ,. \ -. Prepared under Contract Nos. NAS l-3683, ‘_ NAS l-3684, NAS l-3685, and NAS l-3686 . e; .: .‘. for Langley, Research Center , . _‘. .;. a, I ‘.: .I _ . NATIONALAERONAUTICS AND SPACEADMINISTRATION - WASHINGTON,D.: .C:..:.JEC;E,MBiR 1965 ‘I TECH LIBRARY KAFB, NM NASA CR-336 SCOUT MOTOR PERFORMANCE ANALYSIS AND PREDICTION STUDY (PAPS) BY C. K. Whitney, LTV Astronautics Division T. F. Owens, Thiokol Chemical Corp. J. Paskind, Aerojet-General Corp. M. B. Rubin, Hercules Powder Co. Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it. Prepared under Contract Nos. NAS l- 3683, NAS l- 3684, NAS l-3685, and NAS l-3686 for Langley Research Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - Price $5.00 TABLE OF CONTENTS Page No. N-U~RE . XIII SmIAL DEFINITIONS ....................... xv SUMMARY............................. .xvll 1-O =mCTION. ...... ‘. ................ .1 2.0 =sc~~Ic~1......................5 2.1 fiopulsion Mdms .................... 7 2.1.1 First Stage. ................... 7 2.1-2 smmd Stage. .................. 9 2.1.3ThirdStage ................... ll 2.1.4 Fourth Stage ................... ;r3 3.0 MCYI'ORPERFO~ECONCEPTS ................. 17 3.1 Web Burn Time ..................... -17 3.2 Consumable Weight Remaining .............. .25 3.3Thrust.........................2 8 4.0 MOTCRBURNRATECORRELATIONS................ 33 4.1 First Stage ...................... .33 4.1.1 Introduction ................... a 4.1.2 Data Preparation ................. 33 4.1.3 Correlation Method ................ s 4.2 Second Stage. ..................... 39 4.3 Third and Fourth Stages ................ .u 5.0 NC%lINAL,MOTORCHARACTERISTICS. .............. .1;9 5.1FirstStage. ..................... .I& 5.1.1 Head-cap Pressure ................ .49 5.1.2 Sea Level Thrust ................ .49 5.1.3 Vacuum Thrust .................. 49 5.1.4 Inert Weight Flow ................ 55 5.1.5 Propellant Weight Flow .............. 55 5.1.6 Consumable Weight Remaining ........... .55 5.2 Second Stage ..................... .55 5.2.1 Nominal Thrust and Pressure versus Time ..... .59 5.2.2 Inert Weight Loss ................. .59 5.2.3 Propellant Discharge Rate ............ .63 5.2.4 Consumable Weight Remaining versus Time ..... .63 5.3ThirdStage ..................... .67 5.3.1 Introduction .................. .67 5.3.2 Nominal Thrust and Pressure Trace Configuration. .67 5.3.3 Inert Weight Flow ................ 67 5.3.4 Propellant Weight Flow .............. 67 5.3.5 Consumable Weight Remaining ........... .67 Page No. 5.4FOUTthStage ....................... 74 5.4.1 Introduction ................ i ... 74 5.4.2 Nominal Thrust and Pressure Trace Configuration. .. 74 5.4.3 Inert Weight ~‘10~ ................. .74 5.4.4 Propellant Weight Flow ............... 74 5.4.5 Consumable Weight Remaining ............ .8O 6.0 PEEUQWE PREDICTIONPROCEIXIRE ............... 83 6.1~rstStage ......................... 6.1.1 Correlation ..................... 83 6.1.2 Prediction ..................... 83 6.1.3 Computer Programs .................. 84 6.2 Second Stage. ...................... 85 6.3 Third Stage ....................... 87 6.4 FourthStage ....................... 88 7.0 INSTRUMENTATIONSYSTl9& ................. ...& 7.1 Motor Manufacturers' Facilities .............. 89 7,Llfirst Stage ..................... 7.1.2 Second Stage .................... 94 7.1.3 Third Stage. ................... 101 7.1.4 Fourth Stage. ................... 102 7.2 Arnold Engineering and Development Center Instrumentation 103 7.3 Scout Vehicle Instrumentation. ............. 105 7.3.1 Telemeter ..................... 105 7.3.2 Transducers. ................... 106 7.3.3 Comparison of Head-cap Pressure with Longitudinal. 107 Acceleration, Telemetry Data 8.0 SPECIALS'IUDIES ..................... ..ll3 8.1 First Stage ...................... .11.3 8.1.1 Effects of Propellant Weight Variation. ...... 113 8.1.2 Propellant Weight versus Propellant Density. ... 113 8.1.3 Static Test Specific Impulse versus Chamber. ... ~3 Pressure 8.1.4 Actual Variation in Specific Impulse (Vacuum). .. ~3 8.1.5 Retest of Burning Rate Exponent and Temperature. 122 Sensitivity Values for Algol IIB Propellant 8.2SecondStsge ...................... 127 8.2.1 Actual Variation in Specific Impulse. ....... 127 8.3~hird and Fourth Stage ................. 136 8.3.1 Variation in Powder/Solvent Ratio ......... 130 8.3.2 Variation in Propellant Density .......... 13.0 8.3.3 Tip-off and Thrust Misalignment .......... &34 8.3.4 Spin and Longitudinal Acceleration Effects. .... 1.34 8.3.5 x259 Performance Variables ............ 140 8.3.6 x259 Burn Rate Variation ............. 140 8.3.7 x258 Performance Variable. ............ 141 8.4 Variation in Motor Tail-off Characteristics ....... 142 IV Page No. sis of Tra ectory Prediction Accuracy ... 14 8*[email protected]. 2 .............. : : : : : : 1 48 8.5.2Method........................~ 4 8.5.3 Discussion of Results ................ 156 8.5.4 Improvement in Injection and Orbit Accuracy ..... 165 8.5.5 Conclusions ..................... 167 9.0 CONcLUSI6NS .......................... 1% FuiFERENcEs ........................... ..17 3 APPENDMA RECOWNDEDTESTING/STUDIES ............... 175 APPENDDCB DET-TION aF PROPELTJANTWEIGHTFLaWRATE. 179 APPENDIXC CALCULATIONOF THE INSTANTANEOUSWEIGH!--RRdAINING . 181 OF MOTORCONSUMABLES LIST OF ILLUSTISRTIONS Fi~urc No. Title RLue No. Scout Inboard Profile . 6 AlgolIlBMotor......................8 xM33E5 Castor Motor . 10 X25942 Motor. I.2 X258-C Altair II Motor. 14 Tangent 14ethod of Determining Web Burning Time; . I.8 Pressure versus Time and Burning Surface Area . 21 versus Web Thickness 8 Castor I Burn Rate versus Pressure Inte&ral Ratio. ZZ 9 Ale;01 IIA Burning Rate Correlation - Tangent Method. 23 10 Algol IIA and B Burninz Rate Correlation - Integral. 24 Ratio Method 11 Algol IIA Aver-ace Thrust versus BurninG Rate - . 26 Tangent Method 12 Algo1 IIA Average Thrus-t versus Burning Rate - . 27 Integral Ratio Method 13 AlCol IIB Effect of Method for Calculating Weight . 29 Remaining on the Velocity Increment 1lc Castor I Effect of ikthod for Calculating Weight . 30 Remaining on the Velocity Increment 15 Comparison of Pressure and Acceleration Telemetry . 32 Data with Predicted Performance 16 Algol II Burning Rate Correlation Effective Time . 36 Method 17 Algol IIB Burn Rate vs. Pressure Correlations . 37 18 AlSol IIA and B Burning Rate vs. Liquid Strand Burn Rate. 38 19 Castor I Burning Rate Correlation - Test Motor . l . 41 Kn = Castor K, vii Figure No. Title Fage! No. 20 Castor I BurninS Rate Exponent versus Oxidizer . 42 Grind Ratio 21 U'fcct of Burning Rate Exponent on Scale Factor -. 43 TCZSC Eiotor K, = '20'1 22 Castor I Burning Rate Correlation - Test ktor . 45 Pressure = Castor Pressure 23 Castor I Burning Rate Correlation - Test Motor . 46 Kn = 231 24 Effect of Burnin Rate Exponent on Scale Factor . 47 - Test Jilotor Kn = 231 25 Small Scale Burning Rate versus X2jc) Motor Burning . 48 Rate 26 Ale01 IIB Nominal Performance - Sea Level . 52 27 Algol IIB Nominal Pressure and Thrust vs. Time - . 53 Vacuum 28 Al;01 IIB Inert ileil<it Discharged vs. Time . 56 29 Ale01 IIB Inert Weight Loss vs. Time, . 57 30 AlSol II3 1Joninal Consumable Wci,;ht Remaining vs. 58 Time 31 Castor I ibninal Pressure and Thrust versus Time - . 62 Vacuum Operation 32 Castor I Inert Weight Discharged versus Time . -64 33 Castor I Rate of Inert Weight Loss versus Time . .65 34 Castor I Nominal Consumable Weight Remaining versus. .66 Time 35 X253 Nominal Pressure and Vacuum Thrust versus Time . .@ for Low Burning Rate Powder Lot 21-246 36 X2jg Nominal Pressure and Vacuum Thrust versus Time. .70 for High Burning Rate Powder Lots 21-193 and 207 37 X23 Vacuum Thrust/Pressure Relationship versus Time . .71 for HiCh Burning Rate Powder Lots 21-193 and '207 and Low Burning Rate Powder Lot ZI.-2h6 Viii Fiuure No. Title Page No. 38 X259 Nominal Consumable Weight Remaining vs. Time . 75 39 x258 "c" Motor Nominal Pressure and Vacuum Thrust . n versus Time 40 X256 "C" Motor Vacuum Thrust/Pressure Relationship. 78 versus Time 41 x258 Nominal Consumable Weight Remaining vs. Time . 81 42 Algol Flight Data, Variation in Head-Cap Pressure . 1~ Integral 43 Castor Flight Data, Variation in Head-Cap Pressure . ~0 Integral 44 Algol Flight Data, Variation in Apparent Vacuum . 111 Impulse 45 Castor Flight Data, Variation in Apparent Vacuum . 112 Impulse 46 Algol IIA Impulse vs. Propellant Weight - Static . 114 Test Data 47 Ale01 IIA Variables Study Total Impulse vs. Pro- . 135 pellant Weight - Flight Data 48 Algol IIA Pressure Integral vs. Propellant Weight . -.116 49 Algol IIA Total Impulse vs. Pressure Integral - . a . ~7 Static Test Data 50 Algol IIA Total Impulse vs. Pressure Integral - . .118 Flight Data 51 Algol IIA Average Propellant Density vs. ug Propellant Weight 52 Algol II Static Test Specific Impulse vs. Pressure . 120 53 Algol II33 IOKS-2500 Keyhole Pore Test Motor Data . 125 54 Castor I Static Test Specific Impulse versus . 129 Chamber Pressure 55 Burn Time vs. Powder/Solvent Ratio (Percent Solvent) - . 131 Nominal 60 Sec. Test Motor 56 Alignment Factors Affecting Tip-Off . .135 IX Fi@xre Uo. Rsge uo. 57 Typical Effect of Spinning on