Fermi and the Theory of Weak Interactions

Total Page:16

File Type:pdf, Size:1020Kb

Fermi and the Theory of Weak Interactions GENERAL ARTICLE Fermi and the Theory of Weak Interactions G Rajasekaran The history of weak interactions starting with Fermi's creation of the beta decay theory and culminating in its modern avatar in the form of the electroweak gauge theory is described. Dis- coveries of parity violation, matter{antimatter G Rajasekaran is a asymmetry, W and Z bosons and neutrino mass theoretical physicist at the are highlighted. Institute of Mathematical Sciences, Chennai and Introduction Chennai Mathematical Institute, Siruseri (near Sun gives us light and heat that makes life possible on Chennai). His field of the Earth. How do the Sun and stars produce energy research is quantum field and continue to shine for billions of years? Thermonu- theory and high energy clear fusion is the answer as Eddington proposed in 1920 physics. and Bethe demonstrated explicitly in 1939. Through a series of nuclear reactions, four protons (which are hy- drogen nuclei) in the core of the Sun combine to form a helium nucleus emitting two positrons and two neutrinos and releasing 27 MeV of energy: 4 + + p + p + p + p He + e + e + ºe + ºe + 27MeV: ! This can be regarded as the most important reaction for all life, for without it there can be no life on Earth! The above reaction is caused by one of the basic forces of Nature, called weak interaction. Beta decays of nuclei and in fact the decays of most of the elementary particles are now known to be due to weak interaction. Enrico Fermi formulated the theory of weak interactions in 1934 and his theory has stood the ground very suc- Keywords cessfully with appropriate amendments and generaliza- Fermi, beta decay, parity viola- tion, electroweak theory, neutral tions and ¯nally served as a core part of the Standard current, quarks and leptons, Model of High Energy Physics, which is now known as neutrino mass. the basis of almost all of physics, except for gravitation. 18 RESONANCE January 2014 GENERAL ARTICLE In this article we trace the historical evolution of the the- oretical ideas punctuated by the landmark experimental discoveries. This history can be divided into two parts separated by the year 1972 which marks the watershed year since the gauge theoretic revolution that converted Fermi's theory into the modern electroweak theory oc- curred roughly around that year. Discovery of P and CP violation as well as the discovery of neutrino oscilla- tion and neutrino mass are woven into this tapestry as integral parts of weak interaction physics and its history. Early History: Weak Interactions upto 1972 The story of weak interactions starts with Henri Bec- querel's discovery of radioactivity in 1896 and its subse- quent classi¯cation into alpha, beta and gamma decays of the nucleus by Ernest Rutherford and others. But the real understanding of beta decay in the sense we know it now came only after Enrico Fermi invented a physical mechanism for the beta decay process in 1934. The basic ingredient for Fermi's theory had been pro- vided by Wolfgang Pauli. To solve the puzzle of the continuous energy spectrum of the electrons emitted in the beta decay of the nuclei, Pauli had suggested that along with the electron, an almost massless neutral par- ticle also was emitted. Fermi succeeded in incorporating Pauli's suggestion and thus was born the theory of weak interactions. Fermi also named the particle as neutrino. Drawing an analogy with electromagnetic interaction which at the quantum level is the emission of a pho- ton by an electron, Fermi pictured the weak interaction responsible for the beta decay of the neutron as the emis- Pauli proposed the sion of an electron{neutrino pair, the neutron converting neutrino and Fermi itself into a proton in the process (Figure 1). created his theory of weak By initiating Quantum Electrodynamics, Dirac had laid interactions the foundation for Quantum Field Theory (QFT) in incorporating the 1927. Within a few years Fermi made the ¯rst non- neutrino. RESONANCE January 2014 19 GENERAL ARTICLE Figure 1. Fermi’s analogy. trivial application of QFT to weak interactions in which material particles are created. Either because of the neutrino which most people at that time did not believe in, or because of QFT which most people did not understand at that time or because of both, Fermi's note on beta decay theory was rejected by Nature with the comment \it contained speculations too remote from reality to be of interest to the reader". Fermi then sent the paper to Nuovo Cimento which ac- cepted it; another version was published in Zeitschrift [1,2]. (A vivid picture of those times is given in [3]). In Quantum Electrodynamics (QED) the electromag- netic current JE of the charged particle like the electron interacts with A, the electromagnetic vector potential which becomes the ¯eld operator for the photon: LE = eJEA: Within a few years of the founding of The symbol e is the numerical value of the electrical Quantum Field charge of the electron and characterizes the strength Theory of the electromagnetic interaction. In Fermi's theory by Dirac, Fermi of weak interactions, the weak current of the proton{ made its first neutron pair written as p¹n interacts with the weak cur- nontrivial rent of the electron{neutrino pair denoted by e¹º: application to beta GF decay in which L = (p¹n e¹º + n¹p º¹e) ; F p material particles 2 are created. where the particle symbols p; n; e; º, etc., represent the 20 RESONANCE January 2014 GENERAL ARTICLE corresponding ¯eld operators. Detailed explanation of the language of QFT needed to understand QED and Fermi's theory is given in Box 1. The strength of the weak interaction is characterized by the Fermi coupling constant GF whose value is 10¡5 GF = 2 mp where mp is the proton mass. It is because of the small- ness of this number that this interaction is called `weak' in contrast to the nuclear force which is `strong'. Box 1. Quantum Field Theory (QFT) Quantum Field Theory created by Dirac and used by Fermi to describe weak interactions remains to this day as the correct basic language to understand all high energy physics. Here we give an elementary account of its symbolism and interpretation. We start with Quantum Electrodynamics. The electromagnetic force between two charged particles such as proton and electron can be represented by the diagram in Figure A. The wavy line denotes the photon which is the quantum of the electromagnetic ¯eld and it is exchanged between the proton and the electron. It is this exchange that leads to the electromagnetic force between the charged particles. This is the quantum version of the classical picture where the proton is considered to produce the electromagnetic ¯eld which then in°uences the electron placed in the ¯eld. In QFT, the range of a force is inversely proportional to the mass of the quantum that is exchanged. Since photon mass is zero, the electromagnetic force mediated by the exchange of photons is of in¯nite range. We shall make a rather liberal use of pictorial representations of interactions and processes such as in Figure A. These are called Feynman diagrams, after Feynman whose use of such diagrams in an intuitive interpretation of complex calculations in QFT was an important step in the elucidation of the fundamental processes of Nature. Figure A. Exchange of photon. Box 1. Continued... RESONANCE January 2014 21 GENERAL ARTICLE One can split up the above diagram into two parts, one describing the emission of the photon by the proton and the other describing the absorption of the photon by the electron. So the basic QED interaction in symbolic form is written as eJEA. Here A denotes the quantum ¯eld operator for the photon and JE denotes the electromagnetic current of the charged particles. The photon ¯eld operator A is actually the quantum version of the vector potential of classical electrodynamics (from which the electric ¯eld and magnetic ¯eld can be obtained by taking suitable space and time derivatives). So all the ¯elds become quantum operators whose main property is that they can either create or annihilate particles. In this case, A can create or annihilate a photon, thus explaining the emission or absorption of a photon. Further the current JE also is composed of ¯eld operators, but ¯eld operators of the charged particles like proton and electron. In QFT every particle is a quantum of the corresponding ¯eld; electron is a quantum of the electron ¯eld. Denoting the proton and electron ¯eld operators by p and e respectively, we write JE symbolically as a sum of terms p¹p; e¹e, etc. In general, a ¯eld operator such as p can either annihilate a particle or create the cor- responding antiparticle while a ¯eld operator with a bar above such as p¹ can either annihilate an antiparticle or create a particle. The antielectron is the positron. In gen- eral the antiparticle is di®erent from particle. But for photon antiparticle is not di®erent; antiphoton is the same as photon and so A annihilates or creates the photon only. Hence the interaction described by the combined operator e¹eA actually describes the 8 processes given in Figure B. These describe the emission or absorption of a photon by an electron or positron and also the annihilation or creation of an electron{positron pair. Similar processes exist with proton and antiproton. In all Feynman diagrams time increases vertically upwards. Particles and antiparticles are distinguished by having their arrows in the upward and downward directions respectively. Figure B. The basic QED processes.
Recommended publications
  • Searches for Electroweak Production of Supersymmetric Gauginos and Sleptons and R-Parity Violating and Long-Lived Signatures with the ATLAS Detector
    Searches for electroweak production of supersymmetric gauginos and sleptons and R-parity violating and long-lived signatures with the ATLAS detector Ruo yu Shang University of Illinois at Urbana-Champaign (for the ATLAS collaboration) Supersymmetry (SUSY) • Standard model does not answer: What is dark matter? Why is the mass of Higgs not at Planck scale? • SUSY states the existence of the super partners whose spin differing by 1/2. • A solution to cancel the quantum corrections and restore the Higgs mass. • Also provides a potential candidate to dark matter with a stable WIMP! 2 Search for SUSY at LHC squark gluino 1. Gluino, stop, higgsino are the most important ones to the problem of Higgs mass. 2. Standard search for gluino/squark (top- right plots) usually includes • large jet multiplicity • missing energy ɆT carried away by lightest SUSY particle (LSP) • See next talk by Dr. Vakhtang TSISKARIDZE. 3. Dozens of analyses have extensively excluded gluino mass up to ~2 TeV. Still no sign of SUSY. 4. What are we missing? 3 This talk • Alternative searches to probe supersymmetry. 1. Search for electroweak SUSY 2. Search for R-parity violating SUSY. 3. Search for long-lived particles. 4 Search for electroweak SUSY Look for strong interaction 1. Perhaps gluino mass is beyond LHC energy scale. gluino ↓ 2. Let’s try to find gauginos! multi-jets 3. For electroweak productions we look for Look for electroweak interaction • leptons (e/μ/τ) from chargino/neutralino decay. EW gaugino • ɆT carried away by LSP. ↓ multi-leptons 5 https://cds.cern.ch/record/2267406 Neutralino/chargino via WZ decay 2� 3� 2� SR ɆT [GeV] • Models assume gauginos decay to W/Z + LSP.
    [Show full text]
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • The Nobel Prize in Physics 1999
    The Nobel Prize in Physics 1999 The last Nobel Prize of the Millenium in Physics has been awarded jointly to Professor Gerardus ’t Hooft of the University of Utrecht in Holland and his thesis advisor Professor Emeritus Martinus J.G. Veltman of Holland. According to the Academy’s citation, the Nobel Prize has been awarded for ’elucidating the quantum structure of electroweak interaction in Physics’. It further goes on to say that they have placed particle physics theory on a firmer mathematical foundation. In this short note, we will try to understand both these aspects of the award. The work for which they have been awarded the Nobel Prize was done in 1971. However, the precise predictions of properties of particles that were made possible as a result of their work, were tested to a very high degree of accuracy only in this last decade. To understand the full significance of this Nobel Prize, we will have to summarise briefly the developement of our current theoretical framework about the basic constituents of matter and the forces which hold them together. In fact the path can be partially traced in a chain of Nobel prizes starting from one in 1965 to S. Tomonaga, J. Schwinger and R. Feynman, to the one to S.L. Glashow, A. Salam and S. Weinberg in 1979, and then to C. Rubia and Simon van der Meer in 1984 ending with the current one. In the article on ‘Search for a final theory of matter’ in this issue, Prof. Ashoke Sen has described the ‘Standard Model (SM)’ of particle physics, wherein he has listed all the elementary particles according to the SM.
    [Show full text]
  • Structure of Matter
    STRUCTURE OF MATTER Discoveries and Mysteries Part 2 Rolf Landua CERN Particles Fields Electromagnetic Weak Strong 1895 - e Brownian Radio- 190 Photon motion activity 1 1905 0 Atom 191 Special relativity 0 Nucleus Quantum mechanics 192 p+ Wave / particle 0 Fermions / Bosons 193 Spin + n Fermi Beta- e Yukawa Antimatter Decay 0 π 194 μ - exchange 0 π 195 P, C, CP τ- QED violation p- 0 Particle zoo 196 νe W bosons Higgs 2 0 u d s EW unification νμ 197 GUT QCD c Colour 1975 0 τ- STANDARD MODEL SUSY 198 b ντ Superstrings g 0 W Z 199 3 generations 0 t 2000 ν mass 201 0 WEAK INTERACTION p n Electron (“Beta”) Z Z+1 Henri Becquerel (1900): Beta-radiation = electrons Two-body reaction? But electron energy/momentum is continuous: two-body two-body momentum energy W. Pauli (1930) postulate: - there is a third particle involved + + - neutral - very small or zero mass p n e 휈 - “Neutrino” (Fermi) FERMI THEORY (1934) p n Point-like interaction e 휈 Enrico Fermi W = Overlap of the four wave functions x Universal constant G -5 2 G ~ 10 / M p = “Fermi constant” FERMI: PREDICTION ABOUT NEUTRINO INTERACTIONS p n E = 1 MeV: σ = 10-43 cm2 휈 e (Range: 1020 cm ~ 100 l.yr) time Reines, Cowan (1956): Neutrino ‘beam’ from reactor Reactions prove existence of neutrinos and then ….. THE PREDICTION FAILED !! σ ‘Unitarity limit’ > 100 % probability E2 ~ 300 GeV GLASGOW REFORMULATES FERMI THEORY (1958) p n S. Glashow W(eak) boson Very short range interaction e 휈 If mass of W boson ~ 100 GeV : theory o.k.
    [Show full text]
  • Weak Interaction Processes: Which Quantum Information Is Revealed?
    Weak Interaction Processes: Which Quantum Information is revealed? B. C. Hiesmayr1 1University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria We analyze the achievable limits of the quantum information processing of the weak interaction revealed by hyperons with spin. We find that the weak decay process corresponds to an interferometric device with a fixed visibility and fixed phase difference for each hyperon. Nature chooses rather low visibilities expressing a preference to parity conserving or violating processes (except for the decay Σ+ pπ0). The decay process can be considered as an open quantum channel that carries the information of the−→ hyperon spin to the angular distribution of the momentum of the daughter particles. We find a simple geometrical information theoretic 1 α interpretation of this process: two quantization axes are chosen spontaneously with probabilities ±2 where α is proportional to the visibility times the real part of the phase shift. Differently stated the weak interaction process corresponds to spin measurements with an imperfect Stern-Gerlach apparatus. Equipped with this information theoretic insight we show how entanglement can be measured in these systems and why Bell’s nonlocality (in contradiction to common misconception in literature) cannot be revealed in hyperon decays. We study also under which circumstances contextuality can be revealed. PACS numbers: 03.67.-a, 14.20.Jn, 03.65.Ud Weak interactions are one out of the four fundamental in- systems. teractions that we think that rules our universe. The weak in- Information theoretic content of an interfering and de- teraction is the only interaction that breaks the parity symme- caying system: Let us start by assuming that the initial state try and the combined charge-conjugation–parity( P) symme- of a decaying hyperon is in a separable state between momen- C try.
    [Show full text]
  • 1 Drawing Feynman Diagrams
    1 Drawing Feynman Diagrams 1. A fermion (quark, lepton, neutrino) is drawn by a straight line with an arrow pointing to the left: f f 2. An antifermion is drawn by a straight line with an arrow pointing to the right: f f 3. A photon or W ±, Z0 boson is drawn by a wavy line: γ W ±;Z0 4. A gluon is drawn by a curled line: g 5. The emission of a photon from a lepton or a quark doesn’t change the fermion: γ l; q l; q But a photon cannot be emitted from a neutrino: γ ν ν 6. The emission of a W ± from a fermion changes the flavour of the fermion in the following way: − − − 2 Q = −1 e µ τ u c t Q = + 3 1 Q = 0 νe νµ ντ d s b Q = − 3 But for quarks, we have an additional mixing between families: u c t d s b This means that when emitting a W ±, an u quark for example will mostly change into a d quark, but it has a small chance to change into a s quark instead, and an even smaller chance to change into a b quark. Similarly, a c will mostly change into a s quark, but has small chances of changing into an u or b. Note that there is no horizontal mixing, i.e. an u never changes into a c quark! In practice, we will limit ourselves to the light quarks (u; d; s): 1 DRAWING FEYNMAN DIAGRAMS 2 u d s Some examples for diagrams emitting a W ±: W − W + e− νe u d And using quark mixing: W + u s To know the sign of the W -boson, we use charge conservation: the sum of the charges at the left hand side must equal the sum of the charges at the right hand side.
    [Show full text]
  • Introduction to Supersymmetry
    Introduction to Supersymmetry Pre-SUSY Summer School Corpus Christi, Texas May 15-18, 2019 Stephen P. Martin Northern Illinois University [email protected] 1 Topics: Why: Motivation for supersymmetry (SUSY) • What: SUSY Lagrangians, SUSY breaking and the Minimal • Supersymmetric Standard Model, superpartner decays Who: Sorry, not covered. • For some more details and a slightly better attempt at proper referencing: A supersymmetry primer, hep-ph/9709356, version 7, January 2016 • TASI 2011 lectures notes: two-component fermion notation and • supersymmetry, arXiv:1205.4076. If you find corrections, please do let me know! 2 Lecture 1: Motivation and Introduction to Supersymmetry Motivation: The Hierarchy Problem • Supermultiplets • Particle content of the Minimal Supersymmetric Standard Model • (MSSM) Need for “soft” breaking of supersymmetry • The Wess-Zumino Model • 3 People have cited many reasons why extensions of the Standard Model might involve supersymmetry (SUSY). Some of them are: A possible cold dark matter particle • A light Higgs boson, M = 125 GeV • h Unification of gauge couplings • Mathematical elegance, beauty • ⋆ “What does that even mean? No such thing!” – Some modern pundits ⋆ “We beg to differ.” – Einstein, Dirac, . However, for me, the single compelling reason is: The Hierarchy Problem • 4 An analogy: Coulomb self-energy correction to the electron’s mass A point-like electron would have an infinite classical electrostatic energy. Instead, suppose the electron is a solid sphere of uniform charge density and radius R. An undergraduate problem gives: 3e2 ∆ECoulomb = 20πǫ0R 2 Interpreting this as a correction ∆me = ∆ECoulomb/c to the electron mass: 15 0.86 10− meters m = m + (1 MeV/c2) × .
    [Show full text]
  • Electro-Weak Interactions
    Electro-weak interactions Marcello Fanti Physics Dept. | University of Milan M. Fanti (Physics Dep., UniMi) Fundamental Interactions 1 / 36 The ElectroWeak model M. Fanti (Physics Dep., UniMi) Fundamental Interactions 2 / 36 Electromagnetic vs weak interaction Electromagnetic interactions mediated by a photon, treat left/right fermions in the same way g M = [¯u (eγµ)u ] − µν [¯u (eγν)u ] 3 1 q2 4 2 1 − γ5 Weak charged interactions only apply to left-handed component: = L 2 Fermi theory (effective low-energy theory): GF µ 5 ν 5 M = p u¯3γ (1 − γ )u1 gµν u¯4γ (1 − γ )u2 2 Complete theory with a vector boson W mediator: g 1 − γ5 g g 1 − γ5 p µ µν p ν M = u¯3 γ u1 − 2 2 u¯4 γ u2 2 2 q − MW 2 2 2 g µ 5 ν 5 −−−! u¯3γ (1 − γ )u1 gµν u¯4γ (1 − γ )u2 2 2 low q 8 MW p 2 2 g −5 −2 ) GF = | and from weak decays GF = (1:1663787 ± 0:0000006) · 10 GeV 8 MW M. Fanti (Physics Dep., UniMi) Fundamental Interactions 3 / 36 Experimental facts e e Electromagnetic interactions γ Conserves charge along fermion lines ¡ Perfectly left/right symmetric e e Long-range interaction electromagnetic µ ) neutral mass-less mediator field A (the photon, γ) currents eL νL Weak charged current interactions Produces charge variation in the fermions, ∆Q = ±1 W ± Acts only on left-handed component, !! ¡ L u Short-range interaction L dL ) charged massive mediator field (W ±)µ weak charged − − − currents E.g.
    [Show full text]
  • ELECTROWEAK PHYSICS Theory for the Experimentalist
    ELECTROWEAK PHYSICS Theory for the experimentalist Chris Hays Oxford University CONTENTS Introduction vii 1 The geometry of forces 1 1.1 The fiber bundle of the universe 2 1.2 Spacetime metric 3 1.3 Connections 5 1.4 Curvature 6 1.5 Principle of least action 7 1.6 Conservation laws 9 2 Path integrals and fields 11 2.1 Non-relativistic path integral 12 2.2 Perturbation theory 13 2.2.1 Green’s functions 14 2.3 Path integral of a scalar field 15 2.3.1 Free-field transition amplitude 16 2.3.2 Interacting-field transition amplitude 17 2.4 Path integral of a fermion field 18 2.5 Path integral of a gauge field 19 2.5.1 Free-field generating functional 21 3 The Higgs mechanism 23 iii iv CONTENTS 3.1 Self-interacting scalar field theory 23 3.1.1 Real scalar field 23 3.1.2 Complex scalar field 24 3.2 Gauged scalar field theory 25 3.2.1 U(1)-charged scalar field 25 3.2.2 SU(2)-charged scalar field 26 3.2.3 Propagators after symmetry breaking 27 4 The Electroweak theory 29 4.1 The Electroweak Lagrangian 29 4.2 Electroweak symmetry breaking 30 4.2.1 Scalar field Lagrangian 31 4.2.2 Fermion field Lagrangian 33 4.3 Electroweak propagators 34 5 Cross sections and Feynman diagrams 37 5.1 Scattering matrix 37 5.2 Cross sections and lifetimes 38 5.3 Feynman rules 40 6 Scalar renormalization 47 6.1 Renormalized Lagrangian 47 6.2 Regularization 49 6.2.1 Propagator loop corrections 49 6.2.2 Vertex loop correction 50 6.3 The renormalization group 51 7 QED renormalization 55 7.1 QED divergences 55 7.2 Fermion self energy 56 7.3 Vacuum polarization 57 7.4 Vertex correction 61
    [Show full text]
  • Arxiv:0901.3958V2 [Hep-Ph] 29 Jan 2009 Eul Rkn SU(2) Broken, Neously Information
    Gedanken Worlds without Higgs: QCD-Induced Electroweak Symmetry Breaking Chris Quigg1, 2 and Robert Shrock3 1Theoretical Physics Department Fermi National Accelerator Laboratory, Batavia, Illinois 60510 USA 2Institut f¨ur Theoretische Teilchenphysik Universit¨at Karlsruhe, D-76128 Karlsruhe, Germany 3C. N. Yang Institute for Theoretical Physics Stony Brook University, Stony Brook, New York 11794 USA To illuminate how electroweak symmetry breaking shapes the physical world, we investigate toy models in which no Higgs fields or other constructs are introduced to induce spontaneous symme- ⊗ ⊗ try breaking. Two models incorporate the standard SU(3)c SU(2)L U(1)Y gauge symmetry and fermion content similar to that of the standard model. The first class—like the standard elec- troweak theory—contains no bare mass terms, so the spontaneous breaking of chiral symmetry within quantum chromodynamics is the only source of electroweak symmetry breaking. The second class adds bare fermion masses sufficiently small that QCD remains the dominant source of elec- troweak symmetry breaking and the model can serve as a well-behaved low-energy effective field theory to energies somewhat above the hadronic scale. A third class of models is based on the left- ⊗ ⊗ ⊗ right–symmetric SU(3)c SU(2)L SU(2)R U(1)B−L gauge group. In a fourth class of models, built on SU(4)PS ⊗ SU(2)L ⊗ SU(2)R gauge symmetry, lepton number is treated as a fourth color. Many interesting characteristics of the models stem from the fact that the effective strength of the weak interactions is much closer to that of the residual strong interactions than in the real world.
    [Show full text]
  • New Heavy Resonances: from the Electroweak to the Planck Scale
    New heavy resonances : from the electroweak to the planck scale Florian Lyonnet To cite this version: Florian Lyonnet. New heavy resonances : from the electroweak to the planck scale. High Energy Physics - Phenomenology [hep-ph]. Université de Grenoble, 2014. English. NNT : 2014GRENY035. tel-01110759v2 HAL Id: tel-01110759 https://tel.archives-ouvertes.fr/tel-01110759v2 Submitted on 10 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenirle grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité:Physique Subatomiqueet Astroparticules Arrêtéministériel:7août2006 Présentéepar FlorianLyonnet ThèsedirigéeparIngoSchienbein préparéeau sein Laboratoirede Physique Subatomiqueet de Cosmolo- gie et de Ecoledoctoralede physique de Grenoble New heavy resonances: from the Electroweak to thePlanck scale ThèsesoutenuepubliquementOH VHSWHPEUH , devant le jurycomposéde : Mr. Aldo,Deandrea Prof., UniversitéClaudeBernardLyon 1, Rapporteur Mr. Jean-Loïc,Kneur DR,LaboratoireCharlesCoulombMontpellier,Rapporteur Mr. Roberto Bonciani Dr., UniversitàdegliStudidi Roma”LaSapienza”,Examinateur Mr. MichaelKlasen Prof., UniversitätMünster,Examinateur Mr. FrançoisMontanet Prof.,UniversitéJosephFourierde Grenoble,3UpVLGHQW Mr. JeanOrloff Prof., UniversitéBlaisePascal de Clermont-Ferrand,Examinateur Mr. IngoSchienbein MCF., UniversitéJosephFourier, Directeurde thèse ACKNOWLEDMENGTS My years at the LPSC have been exciting, intense, and I would like to express my sincere gratitude to all the people that contributed to it on the professional as well as personal level.
    [Show full text]
  • The Charm of Theoretical Physics (1958– 1993)?
    Eur. Phys. J. H 42, 611{661 (2017) DOI: 10.1140/epjh/e2017-80040-9 THE EUROPEAN PHYSICAL JOURNAL H Oral history interview The Charm of Theoretical Physics (1958{ 1993)? Luciano Maiani1 and Luisa Bonolis2,a 1 Dipartimento di Fisica and INFN, Piazzale A. Moro 5, 00185 Rome, Italy 2 Max Planck Institute for the History of Science, Boltzmannstraße 22, 14195 Berlin, Germany Received 10 July 2017 / Received in final form 7 August 2017 Published online 4 December 2017 c The Author(s) 2017. This article is published with open access at Springerlink.com Abstract. Personal recollections on theoretical particle physics in the years when the Standard Theory was formed. In the background, the remarkable development of Italian theoretical physics in the second part of the last century, with great personalities like Bruno Touschek, Raoul Gatto, Nicola Cabibbo and their schools. 1 Apprenticeship L. B. How did your interest in physics arise? You enrolled in the late 1950s, when the period of post-war reconstruction of physics in Europe was coming to an end, and Italy was entering into a phase of great expansion. Those were very exciting years. It was the beginning of the space era. L. M. The beginning of the space era certainly had a strong influence on many people, absolutely. The landing on the moon in 1969 was for sure unforgettable, but at that time I was already working in Physics and about to get married. My interest in physics started well before. The real beginning was around 1955. Most important for me was astronomy. It is not surprising that astronomy marked for many people the beginning of their interest in science.
    [Show full text]