<<

0K Finite Temperature Higgs Mechanism Higgs Mechanism References

The Higgs Mechanism Electroweak Breaking

Christopher Dessert

November 27, 2017

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Lagrangian Finite Temperature Higgs Mechanism Higgs Potential Standard Model Higgs Mechanism Symmetry Breaking False Vacuum Decay Acquiring a mass References Higgs Mechanism Lagrangian

The Lagrangian L is the zero-temperature analogue of the free energy F.

1 2 1 1 1 L = φ(˙x) − (∇φ(x))2 − µ2φ(x)2 + λφ(x)4 2 2 2 4 1 1 V (φ) = − µ2φ(x)2 + λφ(x)4 2 4

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Lagrangian Finite Temperature Higgs Mechanism Higgs Potential Standard Model Higgs Mechanism Symmetry Breaking False Vacuum Decay Acquiring a mass References Higgs Mechanism Higgs Potential

Higgs potential withμ=1,λ=1 1 2 2 1 4 V(ϕ) V (φ) = − µ φ(x) + λφ(x) 1.0 2 4

0.8 Initially the system has the Z2 0.6 symmetry φ ↔ −φ.

0.4 2 2 d V (φ) 2 2 2 0.2 m = = −µ + 3λφ = −µ φ dφ2

ϕ -2 -1 0 1 2 µ Vmin = v = √ λ

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Lagrangian Finite Temperature Higgs Mechanism Higgs Potential Standard Model Higgs Mechanism Symmetry Breaking False Vacuum Decay Acquiring a mass References Higgs Mechanism Symmetry Breaking

Higgs potential withμ=1,λ=1 Let φ(x) = v + σ(x). V(ϕ) 1.0 √ 1 0.8 V (σ) = µ2σ(x)2+ λµσ(x)3+ λσ(x)4 4 0.6

0.4 Does not have symmetry σ ↔ −σ. This symmetry is broken sponta- 0.2 neously. ϕ 2 2 -2 -1 0 1 2 mσ = 2µ

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Lagrangian Finite Temperature Higgs Mechanism Higgs Potential Standard Model Higgs Mechanism Symmetry Breaking False Vacuum Decay Acquiring a mass References Higgs Mechanism Acquiring a mass

If there is another field ψ in L then it Higgs potential withμ=1,λ=1 V(ϕ) gets a mass even if it is initially mass- 1.0 less.

0.8 2 0.6 V (φ, ψ) = V (φ) + V (ψ) + gφψ

0.4 2 mψ = 0 0.2 V (σ, ψ) = V (σ)+V (ψ)+gvψ2+gσψ2 ϕ -2 -1 0 1 2 2 mψ = 2gv

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Lagrangian Finite Temperature Higgs Mechanism Higgs Potential Standard Model Higgs Mechanism Symmetry Breaking False Vacuum Decay Acquiring a mass References Higgs Mechanism Higgs Mechanism

The field φ gives other fields masses when the φ ↔ −φ symmetry breaks. We call σ the Higgs field. The process by which other fields get masses is called the Higgs mechanism.

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Free Energy Finite Temperature Higgs Mechanism Standard Model Higgs Mechanism Order Parameter False Vacuum Decay Acquiring a mass References Free Energy

F = H − T S 1 2 1 1 1 1 π2 = φ(˙x) − (∇φ(x))2 − µ2φ(x)2 + λφ(x)4 + m2 T 2 − T 4 2 2 2 4 24 φ 90 Effective potential

1 1 1 π2 V (φ) = − µ2φ(x)2 + λφ(x)4 + m2 T 2 − T 4 2 4 24 φ 90 1 1 1 1 π2 = − µ2φ(x)2 + λφ(x)4 − µ2T 2 + λφ2T 2 − T 4 2 4 24 8 90

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Free Energy Finite Temperature Higgs Mechanism Phase Transition Standard Model Higgs Mechanism Order Parameter False Vacuum Decay Acquiring a mass References Symmetric State

Higgs symmetric potential withμ=1,λ=1 V(ϕ) 1.0

0.8 At high temperatures early in the uni-

0.6 verse (<10s), the Higgs potential was

0.4 symmetric and the Higgs had a posi- tive mass. 0.2

ϕ -2 -1 0 1 2

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Free Energy Finite Temperature Higgs Mechanism Phase Transition Standard Model Higgs Mechanism Order Parameter False Vacuum Decay Acquiring a mass References Critical State

Higgs critical potential withμ=1,λ=1 V(ϕ) 1.0

0.8 At the critical temperature (≈10s), 0.6 the second order phase transition oc- 0.4 curs and the Higgs is massless.

0.2

ϕ -2 -1 0 1 2

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Free Energy Finite Temperature Higgs Mechanism Phase Transition Standard Model Higgs Mechanism Order Parameter False Vacuum Decay Acquiring a mass References Broken State

Higgs broken potential withμ=1,λ=1 V(ϕ) 1.0 After the phase transition, the temper-

0.8 ature continues to fall and the Higgs (σ) has a positive mass. The ground 0.6 state moves away from φ = 0 and any 0.4 particles interacting with the Higgs ac-

0.2 quire a mass. At zero temperature we

ϕ reach the final state. -2 -1 0 1 2

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Free Energy Finite Temperature Higgs Mechanism Phase Transition Standard Model Higgs Mechanism Order Parameter False Vacuum Decay Acquiring a mass References Order Parameter

ϕ VEV withμ=1,λ=1 ϕmin  1.0 0 T ≥ 2v   0.5 φmin(T ) = r 1  2 2 T  v − T T < 2v 1 2 3 4  4

-0.5 φmin is an order parameter for this -1.0 system!

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Free Energy Finite Temperature Higgs Mechanism Phase Transition Standard Model Higgs Mechanism Order Parameter False Vacuum Decay Acquiring a mass References Higgs mass

ϕ mass2 withμ=1,λ=1 2 mϕ

3.0

2.5  1 −µ2 + λT 2 T ≥ 2v 2.0  4 2  1.5 mφ(T ) = 1.0  1  2µ2 − λT 2 T < 2v 0.5 2 T 1 2 3 4

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Free Energy Finite Temperature Higgs Mechanism Phase Transition Standard Model Higgs Mechanism Order Parameter False Vacuum Decay Acquiring a mass References Psi mass

mψ withμ=1,λ=1,g=1 mψ 2 1.4 V (σ, ψ) ⊃ gφminψ

1.2

1.0  0 T ≥ 2v 0.8   0.6  m2 (T ) = 0.4 ψ r  1 0.2  2 2 2g v − T T < 2v T 4 1 2 3 4

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Finite Temperature Higgs Mechanism Standard Model Electroweak Lagrangian Standard Model Higgs Mechanism Spontaneous Symmetry Breaking False Vacuum Decay Electromagnetic and Weak Standard Model References Standard Model Electroweak Lagrangian

3 ! 2 g X g 0 X X L ⊃ −V (φ)+ − W i + B φ − λ qq¯ φ− λ ll¯ φ SM 2 2 q l i=1 quarks

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Finite Temperature Higgs Mechanism Standard Model Electroweak Lagrangian Standard Model Higgs Mechanism Spontaneous Symmetry Breaking False Vacuum Decay Electromagnetic and Weak Standard Model References Vector

When we take φ(x) = v + σ(x),

3 ! 2 g X g 0 X X L ⊃ −V (φ)+ − W i + B φ − λ qq¯ φ− λ ll¯ φ SM 2 2 q l i=1 quarks leptons

 2  2 1 1 1 2 1 1 2 2 → gv W + gv W 2 2 2 2 1  g 2 gg 0 W 3 + v 2 W 3 B 8 gg 0 g 02 B

1 W 1 and W 2 bosons get a mass m = gv, these are the charged W 2 vector bosons W ± that mediate the weak .

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Finite Temperature Higgs Mechanism Standard Model Electroweak Lagrangian Standard Model Higgs Mechanism Spontaneous Symmetry Breaking False Vacuum Decay Electromagnetic and Weak Standard Model References Vector Bosons

When we take φ(x) = v + σ(x),

3 ! 2 g X g 0 X X L ⊃ −V (φ)+ − W i + B φ − λ qq¯ φ− λ ll¯ φ SM 2 2 q l i=1 quarks leptons

 2  2 1 1 1 2 1 1 2 2 → gv W + gv W 2 2 2 2 1  g 2 −gg 0 W 3 + v 2 W 3 B 8 −gg 0 g 02 B

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Finite Temperature Higgs Mechanism Standard Model Electroweak Lagrangian Standard Model Higgs Mechanism Spontaneous Symmetry Breaking False Vacuum Decay Electromagnetic and Weak Standard Model References Vector Bosons

When we take φ(x) = v + σ(x),

3 ! 2 g X g 0 X X L ⊃ −V (φ)+ − W i + B φ − λ qq¯ φ− λ ll¯ φ SM 2 2 q l i=1 quarks leptons

 2  2 1 1 1 2 1 1 2 2 → gv W + gv W 2 2 2 2 1 0 0  A + v 2 AZ 8 0 g 2 + g 02 Z W 3 and B turn into A, the massless field that mediates , and Z, the final massive vector that 1 mediates weak interactions, with m2 = v 2(g 2 + g 02). Z 4 Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Finite Temperature Higgs Mechanism Standard Model Electroweak Lagrangian Standard Model Higgs Mechanism Spontaneous Symmetry Breaking False Vacuum Decay Electromagnetic and Weak Standard Model References

When we take φ(x) = v + σ(x),

3 ! 2 g X g 0 X X L ⊃ −V (φ)+ − W i + B φ − λ qq¯ φ − λ ll¯ φ SM 2 2 q l i=1 quarks leptons X X → − λqvqq¯ − λl vll¯ quarks leptons 2 So the fermions get masses mf = 2λf v.

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Finite Temperature Higgs Mechanism Standard Model Electroweak Lagrangian Standard Model Higgs Mechanism Spontaneous Symmetry Breaking False Vacuum Decay Electromagnetic and Weak Standard Model References Electromagnetic and Weak Standard Model

We identify the field σ as the Standard Model that gives the vector bosons and the leptons their masses. The electroweak has broken into separate Lagrangians for the electromagnetic interaction and the . X X LEM ⊃ − mqqq¯ − ml ll¯ quarks leptons

 2  2 1 1 + 2 1 1 − 2 1 2 2 02 2 LWeak ⊃ gv W + gv W + v (g +g ) |Z| 2 2 2 2 8

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism True Vacuum Finite Temperature Higgs Mechanism Critical Temperature Standard Model Higgs Mechanism Metastability False Vacuum Decay Current Bounds References Broken State

False Vacuum Decay Possibility V(ϕ)

4

2 This is, to our best understanding, the Higgs potential today. ϕ -2 -1 1 2

-2

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism True Vacuum Finite Temperature Higgs Mechanism Critical Temperature Standard Model Higgs Mechanism Metastability False Vacuum Decay Current Bounds References More Minima Appear

False Vacuum Decay Possibility V(ϕ) It could be that the Higgs has a differ- ent potential than we think, allowing 4 for the possibility of a first order tran-

2 sition. After the electroweak symme- try breaking, the continued ϕ -2 -1 1 2 to cool and more minima may have appeared. In this plot, however, the -2 Higgs is still in a global minimum.

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism True Vacuum Finite Temperature Higgs Mechanism Critical Temperature Standard Model Higgs Mechanism Metastability False Vacuum Decay Current Bounds References 1st Order Critical State

False Vacuum Decay Possibility V(ϕ)

4 As the universe cools more, the extra

2 minima keep falling. At the critical temperature, both minima have the ϕ -2 -1 1 2 same value.

-2

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism True Vacuum Finite Temperature Higgs Mechanism Critical Temperature Standard Model Higgs Mechanism Metastability False Vacuum Decay Current Bounds References 1st Order Broken State

Now the extra minima are the global minima! The current Higgs state False Vacuum Decay Possibility V(ϕ) is only metastable and becomes the "false vacuum." It could quantum 4 tunnel into the true vacuum at any

2 time. When this happens the transi- tion will release energy, and the walls ϕ -2 -1 1 2 will expand at the speed of , leav- ing behind the true vacuum state. -2 Most of the particle masses will be changed and the universe as we know it will cease to exist.

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism True Vacuum Finite Temperature Higgs Mechanism Critical Temperature Standard Model Higgs Mechanism Metastability False Vacuum Decay Current Bounds References Current Bounds on the False Vacuum

Christopher Dessert Higgs Mechanism 0K Higgs Mechanism Finite Temperature Higgs Mechanism Standard Model Higgs Mechanism False Vacuum Decay References References

Papers Broken Symmetries and the Masses of Gauge Bosons (P. Higgs, Phys. Rev. Lett. 13 (1964) 508) A Model of Leptons (S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264) Electroweak phase transition in the early universe and – Arka Banerjee Quantum Theory An Introduction to QFT – Peskin and Schroeder QFT for the Gifted Amateur – Lancaster and Blundell Lecture Notes Higgs Mechanism – Vadim Kaplunovsky Cosmology II – Hannu Kurki-Suonio

Christopher Dessert Higgs Mechanism