New Heavy Resonances: from the Electroweak to the Planck Scale
Total Page:16
File Type:pdf, Size:1020Kb
New heavy resonances : from the electroweak to the planck scale Florian Lyonnet To cite this version: Florian Lyonnet. New heavy resonances : from the electroweak to the planck scale. High Energy Physics - Phenomenology [hep-ph]. Université de Grenoble, 2014. English. NNT : 2014GRENY035. tel-01110759v2 HAL Id: tel-01110759 https://tel.archives-ouvertes.fr/tel-01110759v2 Submitted on 10 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenirle grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité:Physique Subatomiqueet Astroparticules Arrêtéministériel:7août2006 Présentéepar FlorianLyonnet ThèsedirigéeparIngoSchienbein préparéeau sein Laboratoirede Physique Subatomiqueet de Cosmolo- gie et de Ecoledoctoralede physique de Grenoble New heavy resonances: from the Electroweak to thePlanck scale ThèsesoutenuepubliquementOH VHSWHPEUH , devant le jurycomposéde : Mr. Aldo,Deandrea Prof., UniversitéClaudeBernardLyon 1, Rapporteur Mr. Jean-Loïc,Kneur DR,LaboratoireCharlesCoulombMontpellier,Rapporteur Mr. Roberto Bonciani Dr., UniversitàdegliStudidi Roma”LaSapienza”,Examinateur Mr. MichaelKlasen Prof., UniversitätMünster,Examinateur Mr. FrançoisMontanet Prof.,UniversitéJosephFourierde Grenoble,3UpVLGHQW Mr. JeanOrloff Prof., UniversitéBlaisePascal de Clermont-Ferrand,Examinateur Mr. IngoSchienbein MCF., UniversitéJosephFourier, Directeurde thèse ACKNOWLEDMENGTS My years at the LPSC have been exciting, intense, and I would like to express my sincere gratitude to all the people that contributed to it on the professional as well as personal level. I would like to thank the members of my jury, François, Michael, Ingo, Jean, Roberto for their useful comments and in particular Aldo and Jean-Loic for referring my manuscript. My career as a physicist started with Michael and my first project as a Master II student in the theory group, and I am grateful to him for giving me this opportunity. Part of this work would not have been possible without the expertise of Roberto to whom I am greatly in debt for everything he has taught me on precision calculations and for the unlimited good mood he spread around the o ffices along those years. Above all, I would like to thank my supervisor, Ingo, for the freedom he gave to me and his support along those years. Thank you Ingo for sharing your wisdom and for trying to pass on me your admirable rigour and love for perfection. I will miss our countless physics discussions. I would also like to thank all my collaborators and in particular Florian for walking me through the technicalities of calculating RGEs. My sincere gratitude goes to all my colleagues at the LPSC, Christopher, Mariane, Sabine, Ji-Young, Akin, Jeremy, Suchita, Beranger for making this group such a nice place to work at and with a special thought to Josselin and Tomáš with whom it has been a great pleasure to share the o ffice. In addition, I would like to say how lucky I was to meet Tomáš and how much I appreciated to work with him. I am truly in debt for everything you have taught me, and I am thankful for all the time you devoted to answer my questions, thank you for your endless patience, and thank you for the great moments we spent together. Along my studies, my parents, family and friends have been a great support and I really appreciated that. In particular, I thank my parents for making me love sciences, and for supporting me in all my choices even though this pushes me further and further away from home. Finally, I will conclude by thanking Camille, for being here since all those years and for bringing so much happiness into my life. I will be the most happy man with you. 5 RÉSUMÉ Le principe d’invariance de jauge local est au centre de la physique des particules moderne. Dans le modèle standard (MS), il repose sur le groupe de jauge ad hoc SU (3) c × SU (2)L × U(1) Y . L’idée d’étendre ce groupe de jauge est particulièrement attrayante dans une perspective de “Grand Uni fied Theory” (GUT) où le MS est la limite basse énergie d’une théorie plus fondamentale basée sur un groupe de jauge beaucoup plus large tel que SO (10) ou E6. En e ffet, lors de la brisure de symétrie du groupe de GUT au MS, des facteurs de groupe non-brisés supplémentaires, tels que U(1) ou SU (2), peuvent apparaitre. Ce manuscrit est consacré à la phénoménologie de modèles avec un groupe de jauge étendu. En particulier, les études présentées sont centrées sur les modèles basés sur le groupe de jauge SU (2) × SU (2) × U(1) dénotés G221. De manière générique, ces modèles prédisent de nouveaux bosons de jauges, Z’ et W’. Après une brève présentation des modèles G221, un nouvau code publique, PyR@TE, qui permet de déterminer les équations du groupe de renormalisation à deux boucles pour une théorie de jauge générique est introduit. Ce code est ensuite utilisé pour déterminer les RGEs des modèles de la classe G221. La suite du manuscrit est dédiée à la présentation des résultats obtenus sur le calcul des corrections radiatives QCD de la production électrofaible d’une paire de quarks top dans le cadre des modèles G221, i.e. en présence d’un nouveau boson de jauge Z’. Ces résultats font l’objet d’une implémentation dans le générateur d’événements Monte Carlo POWHEG BOX et les premiers résultats numériques obtenus sont présentés. Les derniers développements concernant le calcul des corrections QCD à la production électrofaible de single-top sont également revus. En fin, la dernière partie de ce manuscrit est consacrée à l’étude de l’impact de nouvelles résonances W’, Z’, telles que celles présentes dans les modèles G221, sur l’interaction des neutrinos d’ultra-haute énergie dans l’atmosphère. Ces interactions sont recherchées par l’observatoire Pierre Auger dans les douches de particules produites par l’interaction des rayons cosmiques avec les particules de l’atmosphère. The principle of local gauge invariance is a pillar of modern particle physics theories and in the SM relies on the ad-hoc gauge group structure SU (3)c × SU (2)L × U(1)Y . Extending this gauge group is very well motivated in a Grand Uni fied Theory (GUT) perspective in which the SM is the low-energy limit of a more fundamental theory based on a larger gauge group like SO (10) or E6. Indeed, the symmetry breaking (SB) of the underlying GUT gauge group, down to the SM one, leaves some additional group factors unbroken, such as U(1) or SU (2). In this spirit, we focus in this manuscript on the phenomenology of extended gauge group models and on the new heavy neutral and charged resonances, generically called Z′ and W ′ predicted by these. In this manuscript we present di fferent aspects of the phenomenology of the G221 models. After reviewing these extensions, we present a public tool, PyR@TE, that 7 aims at automating the calculation of RGEs at two-loop for arbitrary gauge theories and exemplify its use with the G221 models. In a second part, we present our results for the calculation of the QCD corrections to the electroweak top-pair production as well as their implementation in a general purpose Monte Carlo generator allowing for a consistent matching of next-to-leading order (NLO) matrix elements with parton shower algorithms, the POWHEG BOX . We then review the status of our calculation of the QCD corrections to the electroweak single-top production. Finally, we present a di fferent aspect of the phenomenology of new heavy resonances, Z′, W ′, by studying their impact on the interaction of ultra-high energy neutrinos in the atmosphere. For de finiteness we consider the Pierre Auger Observatory, which is sensible to showers initiated by neutrinos of extreme energies up to 10 12 GeV. 8 Contents Introduction 12 1 Extended gauge group models: G221 class 16 1.1 G221 models general features . 17 1.2 Two-step symmetry breaking and gauge boson masses . ...... 20 1.3 Neutral and charged fermionic currents . ..... 23 1.4 Direct and indirect constraints on the G221 parameter space . 27 2 Automatic generation of renormalization group equations at two-loop with PyR@TE 29 2.1 Glossary of Group Theory . 31 2.2 Renormalization Group Equations: φ4 theory ............... 34 2.3 Renormalization group equations for a general gauge theory . 40 2.4 PyR@TE .................................... 61 2.5 Renormalization group equations of the G221 models............ 87 3 W ′, Z′ at the LHC: QCD corrections to top-pair and single-top produc- tions 100 3.1 Next-to-Leading order techniques . 101 3.2 Top-pair production . 111 3.3 Single-top: a status report . 117 3.4 POWHEG BOX implementation . 120 3.5 Numericalresults ............................... 128 4 W ′ and Z′ at the Pierre Auger Observatory 137 4.1 Ultra-high energy neutrinos at the Pierre Auger Observatory . 138 4.2 Interactions of UHE in the atmosphere in presence of W ′, Z′ . .141 4.3 Results and discussion . 148 Summary and outlook 153 A List of available irreducible representations in PyR@TE 155 B De finition of the tensor and scalar integrals 156 B.1 Scalarintegrals ................................ 156 B.2 Tensorintegrals................................ 157 C Renormalization Group Equations for the G221 model 158 C.1 Quartic and scalar mass terms RGEs . 158 C.2 Gauge couplings RGEs . 168 10 D Sample Model Files for PyR@TE 171 E Top-pair production: Born expression 179 11 INTRODUCTION The Standard Model (SM) of particle physics has emerged over the last century, as many experiments around the world were probing the inner structure of matter, bringing new discoveries, e.g.