South Georgia Icefish Pelagic Trawl

Total Page:16

File Type:pdf, Size:1020Kb

South Georgia Icefish Pelagic Trawl MSC SUSTAINABLE FISHERIES CERTIFICATION South Georgia Icefish Pelagic Trawl Final Report May 2016 Prepared For: Polar Ltd Prepared By: Acoura Marine Ltd. Acoura Marine Final Report South Georgia Icefish Pelagic Trawl Final Report May 2016 Authors: Andy Hough, Jim Andrews, Graham Piling Certification Body: Client: Acoura Marine Polar Ltd Address: Address: 6 Redheughs Rigg 37 Fitzroy Road Edinburgh PO Box 215 EH12 9DQ Stanley Scotland, UK Falkland Islands Name: Fisheries Department Name: Alex Reid Tel: +44(0) 131 335 6601 Tel: +500 22669 Email: [email protected] Email: [email protected] Web: www.Acoura.com version 3.0(24/03/15) Acoura Marine Final Report South Georgia Icefish Pelagic Trawl Contents 1 Executive Summary ....................................................................................................... 6 2 Authorship and Peer Reviewers ..................................................................................... 8 2.1 Assessment Team .................................................................................................. 8 2.2 Peer Reviewers ...................................................................................................... 9 3 Description of the Fishery ............................................................................................ 11 3.1 Unit(s) of Assessment (UoA) and Scope of Certification Sought ........................... 11 3.1.1 UoA and Proposed Unit of Certification (UoC) ............................................... 11 3.1.2 Final UoC(s)................................................................................................... 12 3.1.3 Total Allowable Catch (TAC) and Catch Data ................................................ 13 3.1.4 Scope of Assessment in Relation to Enhanced Fisheries .............................. 13 3.2 Overview of the fishery ......................................................................................... 13 3.3 Principle One: Target species background ............................................................ 16 3.4 Principle Two: Ecosystem background .................................................................. 25 3.4.1 The aquatic ecosystem .................................................................................. 25 3.4.2 Retained and bycatch species ....................................................................... 26 3.4.3 Endangered, threatened or protected (ETP) species ..................................... 29 3.4.4 Habitats ......................................................................................................... 30 3.5 Principle Three: Management system background................................................ 32 3.5.1 Administrative boundaries .............................................................................. 32 3.5.2 Sovereignty .................................................................................................... 33 3.5.3 CCAMLR ....................................................................................................... 33 3.5.4 Administration of the fishery ........................................................................... 33 3.5.5 Licensing of fishing vessels ............................................................................ 33 3.5.6 Fishery Management objectives..................................................................... 34 3.5.7 Incentives for sustainable fishing ......................................................................... 37 3.5.8 Compliance monitoring .................................................................................. 38 3.5.9 Research ....................................................................................................... 38 3.5.10 Monitoring & evaluation of management performance ................................... 39 4 Evaluation Procedure ................................................................................................... 40 4.1 Harmonised Fishery Assessment .......................................................................... 40 4.2 Previous assessments .......................................................................................... 40 4.3 Assessment Methodologies .................................................................................. 41 Requirements .............................................................................................................. 41 4.4 Evaluation Processes and Techniques ................................................................. 42 4.4.1 Site Visits ....................................................................................................... 42 4.4.2 Consultations ................................................................................................. 42 Page 2 of 143 version 3.0(24/03/15) Acoura Marine Final Report South Georgia Icefish Pelagic Trawl 4.4.3 Evaluation Techniques ................................................................................... 42 5 Traceability .................................................................................................................. 45 5.1 Eligibility Date ....................................................................................................... 45 5.2 Traceability within the Fishery ............................................................................... 45 5.2.1 Tracking, tracing and segregation systems within the fishery ......................... 46 5.2.2 Management systems related to traceability .................................................. 46 5.3 Eligibility to Enter Further Chains of Custody ........................................................ 46 5.3.1 Parties eligible to use the fishery certificate ................................................... 46 5.3.2 Change of ownership ..................................................................................... 47 5.3.3 Landing points ............................................................................................... 47 5.3.4 Eligibility of Inseparable or Practicably Inseparable (IPI) stock(s) to Enter Further Chains of Custody ........................................................................................... 47 6 Evaluation Results ....................................................................................................... 48 6.1 Principle Level Scores .......................................................................................... 48 6.2 Summary of PI Level Scores ................................................................................. 48 6.3 Summary of Conditions ......................................................................................... 49 6.4 Recommendations ................................................................................................ 49 6.5 Determination, Formal Conclusion and Agreement ............................................... 49 7 References .................................................................................................................. 50 Appendix 1 Scoring and Rationales .................................................................................... 57 Appendix 1.1 Performance Indicator Scores and Rationale .......................................... 57 Appendix 1.2 Risk Based Framework (RBF) Outputs ................................................. 117 Appendix 1.3 Conditions ............................................................................................. 118 Appendix 2 Peer Review Reports...................................................................................... 119 Appendix 2.1 Peer Reviewer 1 ................................................................................... 119 Peer Reviewer 2 ........................................................................................................... 126 Appendix 3 Stakeholder Submissions ............................................................................... 136 Appendix 3.1 Written Submissions Made by Stakeholders ......................................... 136 Appendix 3.1.1 Comments on entry into assessment .............................................. 136 Appendix 3.1.2 Comments on Public Comment Draft Report .................................. 136 Appendix 3.1.3 Verbal Submissions Made by Stakeholders .................................... 140 Appendix 4 Surveillance Frequency .................................................................................. 141 Appendix 5 Objections Process ........................................................................................ 142 Appendix 6 Consultancy ................................................................................................... 143 Page 3 of 143 version 3.0(24/03/15) Acoura Marine Final Report South Georgia Icefish Pelagic Trawl Index of Tables Table 3.1: TAC and Catch Data ......................................................................................... 13 Table 3.2. Biomass estimates of C. gunnari from trawl survey data from surveys 2000-2015 (Belchier et al., 2015). ......................................................................................................... 19 Table 3.3. Icefish in Subarea 48.3 – Biomass (tonnes) estimates from groundfish surveys since 2000. Surveys in 2007 and 2008 were in September and April, respectively. The CCAMLR Total Allowable Catch (TAC) and catch taken are shown relative to the median biomass estimated by the survey. From Earl and Darby (2015). ........................................
Recommended publications
  • Advance and Unedited Reporting Material for the Resumed Review
    Advance and unedited reporting material for the resumed Review Conference on the Agreement for the Implementation of the Provisions of the United Nations Convention on the Law of the Sea of 10 December 1982 relating to the Conservation and Management of Straddling Fish Stocks and Highly Migratory Fish Stocks (New York, 23-27 May 2016) (English only) Summary The present report has been prepared in response to the request made to the Secretary-General, in paragraph 41 of General Assembly resolution 69/109, to submit to the resumed Review Conference on the Agreement for the Implementation of the Provisions of the United Nations Convention on the Law of the Sea of 10 December 1982 relating to the Conservation and Management of Straddling Fish Stocks and Highly Migratory Fish Stocks (the Agreement) an updated comprehensive report, prepared in cooperation with the Food and Agriculture Organization of the United Nations (FAO), to assist the Conference in discharging its mandate under article 36, paragraph 2, of the Agreement. It is also based on information provided by States and regional fisheries management organizations and arrangements and other related bodies, in response to a questionnaire circulated in March 2015. The report provides an update of information contained in the reports of the Secretary-General to the Review Conference in 20061 and 2010. 2 1 A/CONF.210/2006/1. 2 A/CONF.210/2010/1. Contents Page Abbreviations .............................................................. I. Introduction................................................................ II. Overview of the status and trends of straddling fish stocks and highly migratory fish stocks, discrete high seas stocks and non-target, associated and dependent species ........................
    [Show full text]
  • Variations in the Diet Composition and Feeding Intensity of Mackerel Icefish Champsocephalus Gunnariat South Georgia (Antarctic)
    MARINE ECOLOGY PROGRESS SERIES Published May 12 Mar. Ecol. Prog. Ser. Variations in the diet composition and feeding intensity of mackerel icefish Champsocephalus gunnari at South Georgia (Antarctic) K.-H. Kock l, S. Wilhelms 2, I. Everson3, J. Groger 'Institut fiir Seefischerei, Bundesforschungsanstalt fur Fischerei, Palmaille 9, D-22767 Hamburg, Germany 'Deutsches Ozeanographisches Datenzentrum, Bundesamt fiir Seeschiffahrt und Hydrographie, Bernhard-Nocht StraOe, D-20359 Hamburg, Germany 3British Antarctic Survey, High Cross Madingley Road, Cambridge CB3 OET. United Kingdom 41nstitut fur Ostseefischerei, Bundesforschungsanstalt fiir Fischerei, An der Jlgerbak 2, D-18069 Rostock, Germany ABSTRACT. The diet composition and feeding intensity of mackerel icefish Champsocephalus gunnari around Shag Rocks and the mainland of South Georgia was analyzed from ca 8700 stomachs collected in January/February 1985, January/February 1991 and January 1992. Main prey items were krill Euphausia superba, the amphipod hyperiid Themisto gaudrchaudii, mysids (primarily Antarctomysis maxima), and in 1985 also Thysanoessa species The proportion of krill and 7: gaudichaudii in the diet varied considerably among the 3 years, whereas the proportion of mysids in the diet rema~nedfairly constant. Krill appears to be the preferred food. In years of krill shortage, such as in 1991, krill was replaced by 7: gaudichaudii. The occurrence of krill in the diet in 1991 was among the lowest within a 28 yr period of investigation. Variation in food composition among sampling sites was high. This high variat~onappears to be primarily associated with differences in prey availability, but much less with prey size selectivity. Feeding intensity varied considerably among seasons. It was highest in 1992.
    [Show full text]
  • Age-Length Composition of Mackerel Icefish (Champsocephalus Gunnari, Perciformes, Notothenioidei, Channichthyidae) from Different Parts of the South Georgia Shelf
    CCAMLR Scieilce, Vol. 8 (2001): 133-146 AGE-LENGTH COMPOSITION OF MACKEREL ICEFISH (CHAMPSOCEPHALUS GUNNARI, PERCIFORMES, NOTOTHENIOIDEI, CHANNICHTHYIDAE) FROM DIFFERENT PARTS OF THE SOUTH GEORGIA SHELF G.A. Frolkina AtlantNIRO 5 Dmitry Donskoy Street Kaliningrad 236000, Russia Email - atlantQbaltnet.ru Abstract Biostatistical data obtained by Soviet research and commercial vessels from 1970 to 1991 have been used to determine tlne age-length composition of mackerel icefish (Chnnzpsoceplzalus g~~izllnrl)from different parts of the South Georgia area. An analysis of the spatial distribution of C. giirzrznri size and age groups over the eastern, northern, western and soutlnern parts of tlne shelf, and near Shag Rocks, revealed a similar age-leingtl~composition for young fish inhabiting areas to the west of the island and near Shag Rocks. Differences were observed between those t~7ogroups and the easterin group. The larger number of mature fish in the west is related to the migration of maturing individuals from the eastern and western parts of the area. It is implied that part of tlne western group migrates towards Shag Rocks at the age of 2-3 years. It has been found that, by number, recruits represent the largest part of tlne population, whether a fishery is operating or not. As a result of this, as well as the species' ability to live not only in off- bottom, but also in pelagic waters, an earlier age of sexual maturity compared to other nototheniids, and favourable oceanographic conditions, the C. g~lrliznrl stock could potentially recover quickly from declines in stock size and inay become abundant in the area, as has bee11 demonstrated on several occasions in the 1970s and 1980s.
    [Show full text]
  • ART/SMSG/SAERI Expedition Report: Hummock Island February 2021
    ART/SMSG/SAERI Expedition Report: Hummock Island February 2021 Significance of peat dust and terrestrial erosion for marine communities around Hummock Island Amy Guest, Dr Paul Brewin, Dr Paul Brickle, Dr Karen von Juterzenka, and Dr Klemens Pütz Cosmasterias lurida (beaded starfish) and Munida gregaria (lobster krill) on a peat covered sandy substrate, Hummock Island February 2021 ART/SMSG/SAERI expedition report: Hummock Island, February 2021 Logistics Expedition dates: 4 - 14th Feb 2021 (for Daily Log see Appendix 1; Dive log see Appendix 2) Vessels: SMSG Fram (5.8 m RHIB), launched from Roy Cove; Sailing Yacht Porvenir II. Accommodation: Roy Cove self-catering, ART House Hummock Island Participants: Dr Paul Brickle (Co-PI) Dr Paul Brewin (Co-PI) Steve Cartwright (Dive Officer / Coxswain) Joost Pompert (Scientist / Surveyor) Sacha Cleminson (Scientist / Surveyor) 4th – 8th February, N.B. flew out from Fox Bay. Amy Guest (PhD Student / Surveyor / Logistics) Sally Poncet (Antarctic Research Trust) Ken Passfield (Antarctic Research Trust) Background Hummock Island lies to the west of West Falkland (Figure 1). Like on other islands in the Falklands, Hummock Island´s rocky surface is covered by peat soil. Decades of grazing on the island has led to de- vegetation of about one third of the 303 ha and subsequent substantial erosion. Large areas were replaced by black ground indicating the extension and distribution of exposed peat soil. The Antarctic Research Trust (ART) is currently re-vegetating the island by tussac planting campaigns. Tussac roots and above ground blade structures will stabilise the peat soil and, moreover, will prove very efficient in storage of atmospheric carbon.
    [Show full text]
  • University of Groningen Frozen Desert Alive Flores, Hauke
    University of Groningen Frozen desert alive Flores, Hauke IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2009 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Flores, H. (2009). Frozen desert alive: The role of sea ice for pelagic macrofauna and its predators. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 26-09-2021 Sorting samples. In the foreground: Antarctic krill Euphausia superba. CHAPTER 2 Diet of two icefish species from the South Shetland Islands and Elephant Island, Champsocephalus gunnari and Chaenocephalus aceratus in 2001 ‐ 2003 Hauke Flores, Karl‐Herman Kock, Sunhild Wilhelms & Christopher D. Jones Abstract The summer diet of two species of icefishes (Channichthyidae) from the South Shetland Islands and Elephant Island, Champsocephalus gunnari and Chaenocephalus aceratus, was investigated from 2001 to 2003.
    [Show full text]
  • Connectivity and Molecular Ecology of Antarctic Fishes
    Chapter 5 Connectivity and Molecular Ecology of Antarctic Fishes Filip A. M. Volckaert, Jennifer Rock and Anton P. Van de Putte 5.1 Introduction The international program on Evolution and Biodiversity in the Antarctic (Anonymous 2005) focused on the influence of evolution and diversity of life on the properties and dynamics of the Southern Ocean (SO) biome. It also wanted to predict how communities and organisms respond to environmental change. A component of the program aimed at understanding micro-evolutionary processes and dynamics during the Pleistocene and Holocene. The past three million years have shaped the ‘‘shallow’’ evolution of genes, organisms and ecosystems through major climate changes and short period earth periodicities. Fish, a major source of ecosystem goods, play a key role in the ecosystem. However, it is only since relatively recently that the fish communities of the SO started to reveal their characteristics. Before summarizing the current understanding of their connec- tivity and molecular ecology, we introduce the reader to those aspects that have affected their recent evolution so much. F. A. M. Volckaert (&) Á A. P. Van de Putte Laboratory of Biodiversity and Evolutionary Genomics, Katholieke Universiteit Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium e-mail: fi[email protected] J. Rock Department of Zoology, University of Otago, Dunedin 9054, New Zealand e-mail: [email protected] A. P. Van de Putte Belgian Biodiversity Platform, Royal Belgian Institute for Natural Sciences, Vautierstraat 27, 1000 Brussels, Belgium e-mail: [email protected] G. di Prisco and C. Verde (eds.), Adaptation and Evolution in Marine Environments, 75 Volume 1, From Pole to Pole, DOI: 10.1007/978-3-642-27352-0_5, Ó Springer-Verlag Berlin Heidelberg 2012 76 F.
    [Show full text]
  • ORGANIC CHEMICAL TOXICOLOGY of FISHES This Is Volume 33 in The
    ORGANIC CHEMICAL TOXICOLOGY OF FISHES This is Volume 33 in the FISH PHYSIOLOGY series Edited by Anthony P. Farrell and Colin J. Brauner Honorary Editors: William S. Hoar and David J. Randall A complete list of books in this series appears at the end of the volume ORGANIC CHEMICAL TOXICOLOGY OF FISHES Edited by KEITH B. TIERNEY Department of Biological Sciences University of Alberta Edmonton, Alberta Canada ANTHONY P. FARRELL Department of Zoology, and Faculty of Land and Food Systems The University of British Columbia Vancouver, British Columbia Canada COLIN J. BRAUNER Department of Zoology The University of British Columbia Vancouver, British Columbia Canada AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK 225 Wyman Street, Waltham, MA 02451, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA Copyright r 2014 Elsevier Inc. All rights reserved The cover illustrates the diversity of effects an example synthetic organic water pollutant can have on fish. The chemical shown is 2,4-D, an herbicide that can be found in streams near urbanization and agriculture. The fish shown is one that can live in such streams: rainbow trout (Oncorhynchus mykiss). The effect shown on the left is the ability of 2,4-D (yellow line) to stimulate olfactory sensory neurons vs. control (black line) (measured as an electro- olfactogram; EOG). The effect shown on the right is the ability of 2,4-D to induce the expression of an egg yolk precursor protein (vitellogenin) in male fish.
    [Show full text]
  • Influence of Environmental Factors on Population Structure of Arrow Squid Nototodarus Gouldi: Implications for Stock Assessment
    INFLUENCE OF ENVIRONMENTAL FACTORS ON POPULATION STRUCTURE OF ARROW SQUID NOTOTODARUS GOULDI: IMPLICATIONS FOR STOCK ASSESSMENT COREY PAUL GREEN, BAPPSC (FISHERIES) SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF TASMANIA OCTOBER 2011 Arrow squid Nototodarus gouldi (McCoy, 1888) (Courtesy of Robert Ingpen, 1974) FRONTISPIECE DECLARATION STATEMENT OF ORIGINALITY This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of the my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. ………………………………………….…. 28th October 2011 Corey Paul Green Date AUTHORITY OF ACCESS This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. ………………………………………….…. 28th October 2011 Corey Paul Green Date I ACKNOWLEDGEMENTS This thesis assisted in fulfilling the objectives of the Fisheries Research and Development Corporation Project No. 2006/012 ―Arrow squid — stock variability, fishing techniques, trophic linkages — facing the challenges‖. Without such assistance this thesis would not have come to fruition. Research on statolith element composition was kindly funded by the Holsworth Wildlife Research Endowment (HWRE), and provided much information on arrow squid lifecycles. The University of Tasmania (UTAS), the Victorian Marine Science Consortium (VMSC) and the Department of Primary Industries — Fisheries Victoria, assisted in providing laboratories, desks and utilities, as well as offering a wonderful and inviting working environment.
    [Show full text]
  • Foraging Ecology and Diving Behaviour of Macaroni Penguins 27
    1998 Green et al.: Foraging ecology and diving behaviour of Macaroni Penguins 27 FORAGING ECOLOGY AND DIVING BEHAVIOUR OF MACARONI PENGUINS EUDYPTES CHRYSOLOPHUS AT HEARD ISLAND K. GREEN 1,2, R. WILLIAMS 1 & M.G. GREEN 2 1Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia 2Current address: National Parks and Wildlife Service, Snowy Mountains Region, PO Box 2228, Jindabyne, New South Wales 2627, Australia ([email protected]) Received 7 May 1997, accepted 6 June 1998 SUMMARY GREEN, K., WILLIAMS, R. & GREEN, M.G. 1998. Foraging ecology and diving behaviour of Macaroni Penguins Eudyptes chrysolophus at Heard Island. Marine Ornithology 26: 27–34. Over the chick-rearing period, Macaroni Penguins Eudyptes chrysolophus foraged to the north-east of Heard Island within an approximate 300-km radius, feeding mainly on euphausiids and fish. As the season progressed, the amount of euphausiids in the diet declined by 93% with the diet becoming almost totally composed of the myctophid fish Krefftichthys anderssoni. Penguins foraged mainly on the Heard Island shelf area (seas shallower than 1000 m). Penguin dive profiles were complex, unlike the simple ‘V’ shaped dives recorded elsewhere. Diving was mainly between dawn and dusk to depths of 10–60 m, and the deepest dives were undertaken during daylight hours. The connection between the observed diving patterns and the diet was difficult to elucidate because K. anderssoni only migrates vertically into surface waters at night and is believed to be out of the penguins’ diving range during the day. INTRODUCTION METHODS Macaroni Penguins Eudyptes chrysolophus on Heard and Diet McDonald Islands are thought to number about two million breeding pairs (Woehler 1991).
    [Show full text]
  • The Kerguelen Islands Fisheries and Their Resource Species
    Fisheries catch reconstructions: Islands, Part II. Harper and Zeller 15 A BRIEF HISTORY OF FISHING IN THE KERGUELEN ISLANDS, FRANCE1 M.L.D. Palomares and D. Pauly Sea Around Us Project, Fisheries Centre, University of British Columbia, 2204 Main Mall, Vancouver, V6T1Z4, Canada [email protected]; [email protected] ABSTRACT Catch statistics from around the (uninhabited) Kerguelen Islands, which are part of the French Antarctic and sub-Antarctic Territories, and where distant-water fisheries began in 1970, were obtained from the CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources) Statistical Bulletin (Area 58.5.1) and complemented by statistics reported through the French KERPECHE program. Catches originally expressed by fishing seasons were re-expressed as calendar years, which results in a slight between-season smoothing. These catches show a general decline over a 30 year-period and an expansion of the longline fishery to deeper waters in the last 10 years. INTRODUCTION The Kerguelen Islands The Kerguelen Islands (49°30‘S, 69°30‘E) are part of the French Antarctic and sub-Antarctic Territories, which also include the islands of Crozet, Amsterdam and St. Paul, and the Antarctic district of Terre Adélie (www.taaf.fr). They consist of a main island called ‗La Grande Terre‘ (6,700 km2) and a number of smaller surrounding islets. Kerguelen Island sits in the middle of the combined shelf of the Kerguelen and Heard Islands (Australia), known as the Kerguelen Plateau, which covers an area of 100,500 km2 above 500 m depth (Pruvost et al., 2005: see Figure 1).
    [Show full text]
  • Genome Composition Plasticity in Marine Organisms
    Genome Composition Plasticity in Marine Organisms A Thesis submitted to University of Naples “Federico II”, Naples, Italy for the degree of DOCTOR OF PHYLOSOPHY in “Applied Biology” XXVIII cycle by Andrea Tarallo March, 2016 1 University of Naples “Federico II”, Naples, Italy Research Doctorate in Applied Biology XXVIII cycle The research activities described in this Thesis were performed at the Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy and at the Fishery Research Laboratory, Kyushu University, Fukuoka, Japan from April 2013 to March 2016. Supervisor Dr. Giuseppe D’Onofrio Tutor Doctoral Coordinator Prof. Claudio Agnisola Prof. Ezio Ricca Candidate Andrea Tarallo Examination pannel Prof. Maria Moreno, Università del Sannio Prof. Roberto De Philippis, Università di Firenze Prof. Mariorosario Masullo, Università degli Studi Parthenope 2 LIST OF PUBLICATIONS 1. On the genome base composition of teleosts: the effect of environment and lifestyle A Tarallo, C Angelini, R Sanges, M Yagi, C Agnisola, G D’Onofrio BMC Genomics 17 (173) 2016 2. Length and GC Content Variability of Introns among Teleostean Genomes in the Light of the Metabolic Rate Hypothesis A Chaurasia, A Tarallo, L Bernà, M Yagi, C Agnisola, G D’Onofrio PloS one 9 (8), e103889 2014 3. The shifting and the transition mode of vertebrate genome evolution in the light of the metabolic rate hypothesis: a review L Bernà, A Chaurasia, A Tarallo, C Agnisola, G D'Onofrio Advances in Zoology Research 5, 65-93 2013 4. An evolutionary acquired functional domain confers neuronal fate specification properties to the Dbx1 transcription factor S Karaz, M Courgeon, H Lepetit, E Bruno, R Pannone, A Tarallo, F Thouzé, P Kerner, M Vervoort, F Causeret, A Pierani and G D’Onofrio EvoDevo, Submitted 5.
    [Show full text]
  • Age Determination in the Icefish Pseudochaenichthys Georgianus (Channichthyidae) Based on Multiple Methods Using Otoliths
    Vol. 30: 1–18, 2021 AQUATIC BIOLOGY Published January 14 https://doi.org/10.3354/ab00736 Aquat Biol OPEN ACCESS Age determination in the icefish Pseudochaenichthys georgianus (Channichthyidae) based on multiple methods using otoliths Ryszard Traczyk1, Victor Benno Meyer-Rochow2,3,*, Robert M. Hughes4,5 1University of Gdańsk, Department of Oceanography and Geography, 81-378 Gdynia, Poland 2Department of Ecology and Genetics, Oulu University, 90140 Oulu, Finland 3Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea 4Amnis Opes Institute, Corvallis, Oregon 97333, USA 5Department of Fisheries & Wildlife, Oregon State University, Corvallis, Oregon 97331, USA ABSTRACT: Aging Antarctic icefish is difficult because of their lack of scales and poorly calcified bones. Icefish ages must therefore be estimated from otoliths. We describe a method of reading daily micro-increments in connection with shape, size and mass analyses of the otoliths of the South Georgia icefish Pseudochaenichthys georgianus. Changes in otolith morphology and mass correlate with fish size and age group. The otolith micro-increment analysis is capable of estab- lishing the age of an icefish by relating the daily micro-increment count to the life history of the fish. Micro-increment measurements and analyses are relatively simple to do by light and scan- ning electron microscopy and by using micro-densitometer and digitizing equipment. Drastic changes in the life history of an individual are reflected by measurable changes in its otolith micro- increment data as seen in our analyses of age groups 0−VI. The initial drastic change in daily micro-increment shapes and periodicities occur in connection with the hatching period of the ice- fish.
    [Show full text]