Mountain Yellow-Legged Frog (Rana Muscosa and Rana Sierrae) As Endangered Under the California Endangered Species Act

Total Page:16

File Type:pdf, Size:1020Kb

Mountain Yellow-Legged Frog (Rana Muscosa and Rana Sierrae) As Endangered Under the California Endangered Species Act BEFORE THE CALIFORNIA FISH AND GAME COMMISSION A Petition to List All Populations of the Mountain Yellow-Legged Frog (Rana muscosa and Rana sierrae) as Endangered under the California Endangered Species Act Photo © Todd Vogel CENTER FOR BIOLOGICAL DIVERSITY, PETITIONER January 25, 2010 Petition to California Fish & Game Commission to List the Mountain Yellow-Legged Frog as Endangered Center for Biological Diversity January 25, 2010 Notice of Petition For action pursuant to Section 670.1, Title 14, California Code of Regulations (CCR) and Sections 2072 and 2073 of the Fish and Game Code relating to listing and delisting endangered and threatened species of plants and animals. I. SPECIES BEING PETITIONED: Common Name: mountain yellow-legged frog (southern mountain yellow-legged frog and Sierra Nevada mountain yellow-legged frog) Scientific Name: Rana muscosa and Rana sierrae II. RECOMMENDED ACTION: List as Endangered The Center for Biological Diversity submits this petition to list all populations of the mountain yellow-legged frog in California the as endangered throughout their range in California, under the California Endangered Species Act (California Fish and Game Code §§ 2050 et seq., “CESA”). This petition demonstrates that the both the southern mountain yellow-legged frog (Rana muscosa) and the Sierra Nevada mountain yellow-legged frog (Rana sierrae) clearly warrant listing under CESA based on the factors specified in the statute. III. AUTHOR OF PETITION: Name: Lisa Belenky, Senior Attorney, Center For Biological Diversity (with the assistance of Ellen Howard, B.A. EPO Biology, University of Colorado) Address: 351 California Street, Suite 600, San Francisco, CA 94104 Phone: 415-436-9682 x 307 Fax: 415-436-9683 Email: [email protected] I hereby certify that, to the best of my knowledge, all statements made in this petition are true and complete. Signature: Date: January 25, 2010 i Petition to California Fish & Game Commission to List the Mountain Yellow-Legged Frog as Endangered Center for Biological Diversity January 25, 2010 TABLE OF CONTENTS EXECUTIVE SUMMARY .......................................................................................................... 1 PROCEDURAL HISTORY......................................................................................................... 2 The CESA Listing Process and Standard For Acceptance of a Petition ................................. 3 1. POPULATION STATUS AND TRENDS .......................................................................... 4 A. R. sierrae................................................................................................................................5 B. R. muscosa.............................................................................................................................. 6 2. RANGE and DISTRIBUTION ............................................................................................... 8 A. Range Map B. Current Distribution, Rate of Loss, Extinction Prediction, and Habitat Condition ............... 9 (1) Historic Distribution ......................................................................................................... 10 (2) Current Distribution.......................................................................................................... 11 3. ABUNDANCE – Population Estimates & Changes............................................................. 12 A. Historic Population Declines ......................................................................................... 12 4. NATURAL HISTORY—Species Description, Biology, and Ecology ............................... 13 A. Description........................................................................................................................ 13 B. Taxonomy ......................................................................................................................... 15 C. Reproduction and Growth................................................................................................. 16 D. Movement ......................................................................................................................... 17 (1) Sierra Nevada Mountain Yellow-Legged Frog - R. sierrae ................................... 18 (2) Southern Mountain Yellow-Legged Frog - R. muscosa ......................................... 19 E. Feeding.............................................................................................................................. 20 F. Ecological Niche............................................................................................................... 20 G. Mortality ........................................................................................................................... 21 5. HABITAT REQUIREMENTS .............................................................................................. 21 6. FACTORS AFFECTING ABILITY TO SURVIVE AND REPRODUCE (species subspecies, and/or population)................................................................................................... 24 A. Present or Threatened Modification or Destruction of Habitat ........................................ 24 (1) Spread of Disease: Amphibian Chytrid Fungus ......................................................... 25 a. Chytrid and Mountain Yellow-Legged Frogs......................................................... 26 (2) Predation by Introduced Species: Trout Stocking ...................................................... 28 a. Studies of Trout Related Mountain Yellow-Legged Frog Declines ............................. 29 b. Impacts of Trout Stocking on Sierran Ecosystems....................................................... 30 c. Trout Removal Studies ................................................................................................. 31 (3) Pesticides and Other Contaminants ............................................................................ 32 a. Pesticide Drift............................................................................................................... 32 b. Impacts of Pesticides on Amphibians........................................................................... 33 ii Petition to California Fish & Game Commission to List the Mountain Yellow-Legged Frog as Endangered Center for Biological Diversity January 25, 2010 c. Impacts of Pesticides on Mountain Yellow-Legged Frogs........................................... 34 (4) Synergistic Effects from Multiple Threats..................................................................... 35 a. Combined Effects of Pesticides and Other Threats ................................................ 35 b. Introduced Trout and Disease ................................................................................. 36 (5) UV Radiation.................................................................................................................. 37 (6) Land Use Planning Impacts............................................................................................ 37 a. Fire and Fire Management...................................................................................... 37 b. Livestock Grazing................................................................................................... 38 c. Recreation ............................................................................................................... 40 d. Overexploitation ..................................................................................................... 41 (7) Water Pollution .............................................................................................................. 42 (8) Climate Change .......................................................................................................... 42 a. Hydrological Changes in the Sierra Nevada Mountains......................................... 42 b. Observed Effects on Amphibians .......................................................................... 43 c. Projected Changes in the Mountain Yellow-Legged Frog Range & Their Effects 43 B. Other Factors that may lead to extinction of the Mountain Yellow-Legged Frog............ 44 7. NATURE, DEGREE, AND IMMEDIACY OF THREAT.................................................. 45 8. IMPACT OF EXISTING MANAGEMENT EFFORTS..................................................... 46 A. Federal Management Provides Insufficient Protection....................................................... 46 (1) Current Management Practices.................................................................................. 46 a. General Plans ...............................................................................................................46 b. National Forest Land Management Plans.................................................................... 47 B. State and Local Management Provides Insufficient Protection .......................................... 52 (1) California Department of Fish and Game Fish Stocking Programs............................... 52 C. Current Research on the Species....................................................................................... 54 (1) Sierra Nevada Monitoring Programs and Studies.......................................................... 54 a. California’s High Mountain Lakes Project .................................................................. 54 b. Sierra Nevada Amphibian Monitoring Program.........................................................
Recommended publications
  • State of Sierra Frogs
    State of Sierra Frogs A report on the status of frogs & toads in the Sierra Nevada & California Cascade Mountains State of Sierra Frogs A report on the status of frogs & toads in the Sierra Nevada & California Cascade Mountains By Marion Gee, Sara Stansfield, & Joan Clayburgh July 2008 www.sierranevadaalliance.org State of Sierra Frogs 1 Acknowledgements The impetus for this report was the invaluable research on pesticides by Carlos Davidson, professor at San Francisco State University. Davidson, along with Amy Lind (US Forest Service), Curtis Milliron (California Department of Fish and Game), David Bradford (United States Environmental Protection Agency) and Kim Vincent (Graduate Student, San Francisco State University), generously donated their time and expertise to speak at two public workshops on the topics of Sierra frogs and toads as well as to provide comments for this document. Our thanks to the other reviewers of this manuscripts including Bob Stack (Jumping Frog Research Institute), Katie Buelterman, Dan Keenan, and Genevieve Jessop Marsh. This project was fortunate to receive contributions of photography and artwork from John Muir Laws, Elena DeLacy, Bob Stack, Ralph & Lisa Cutter and Vance Vredenburg. Photo credits are found with each caption. This work was made possible by generous grants from the Rose Foundation for Communities and the Environment and the State Water Resources Control Board. Funding for this project has been provided in part through an Agreement with the State Water Resources Control Board (SWRCB) pursuant to the Costa-Machado Water Act of 2000 (Proposition 13) and any amendments thereto for the implementation of California’s Non-point Source Pollution Control Program.
    [Show full text]
  • Amphibiaweb's Illustrated Amphibians of the Earth
    AmphibiaWeb's Illustrated Amphibians of the Earth Created and Illustrated by the 2020-2021 AmphibiaWeb URAP Team: Alice Drozd, Arjun Mehta, Ash Reining, Kira Wiesinger, and Ann T. Chang This introduction to amphibians was written by University of California, Berkeley AmphibiaWeb Undergraduate Research Apprentices for people who love amphibians. Thank you to the many AmphibiaWeb apprentices over the last 21 years for their efforts. Edited by members of the AmphibiaWeb Steering Committee CC BY-NC-SA 2 Dedicated in loving memory of David B. Wake Founding Director of AmphibiaWeb (8 June 1936 - 29 April 2021) Dave Wake was a dedicated amphibian biologist who mentored and educated countless people. With the launch of AmphibiaWeb in 2000, Dave sought to bring the conservation science and basic fact-based biology of all amphibians to a single place where everyone could access the information freely. Until his last day, David remained a tirelessly dedicated scientist and ally of the amphibians of the world. 3 Table of Contents What are Amphibians? Their Characteristics ...................................................................................... 7 Orders of Amphibians.................................................................................... 7 Where are Amphibians? Where are Amphibians? ............................................................................... 9 What are Bioregions? ..................................................................................10 Conservation of Amphibians Why Save Amphibians? .............................................................................
    [Show full text]
  • Species List for Sierra Nevada Lakes ( Compiled by Roland Knapp - Version 01 November 2018
    Species List for Sierra Nevada Lakes (http://mountainlakesresearch.com/lake-fauna/) Compiled by Roland Knapp - version 01 November 2018 VERTEBRATES Phylum Class Order Family Genus & Species Comments Chordata Amphibia Anura Bufonidae Bufo (Anaxyrus) boreas halophilus California Toad Chordata Amphibia Anura Bufonidae Bufo (Anaxyrus) canorus Yosemite Toad Chordata Amphibia Anura Hylidae Pseudacris (Hyliola) regilla Pacific Treefrog Chordata Amphibia Anura Ranidae Rana muscosa Southern Mountain Yellow-legged Frog Chordata Amphibia Anura Ranidae Rana sierrae Sierra Nevada Yellow-legged Frog Chordata Amphibia Caudata Salamandridae Hydromantes platycephalus Mount Lyell Salamander Chordata Amphibia Caudata Salamandridae Taricha sierrae Sierra Newt Chordata Amphibia Caudata Salamandridae Taricha torosa California Newt Chordata Mammalia Carnivora Mustelidae Lontra canadensis Northern River Otter Chordata Mammalia Soricomorpha Soricidae Sorex palustris Northern Water Shrew Chordata Reptilia Squamata Colubridae Thamnophis couchi Sierra Garter Snake Chordata Reptilia Squamata Colubridae Thamnophis elegans elegans Mountain Garter Snake Chordata Reptilia Squamata Colubridae Thamnophis sirtalis fitchi Valley Garter Snake Chordata Reptilia Testudines Emydidae Actinemys marmorata Pacific Pond Turtle BENTHIC MACROINVERTEBRATES Phylum Class Order Family Genus & Species Comments Annelida Clitellata Arhynchobdellida Erpobdellidae Erpobdella punctata Annelida Clitellata Arhynchobdellida Erpobdellidae Mooreobdella microstoma Annelida Clitellata Arhynchobdellida
    [Show full text]
  • BULLETIN Chicago Herpetological Society
    BULLETIN of the Chicago Herpetological Society Volume 54, Number 5 May 2019 BULLETIN OF THE CHICAGO HERPETOLOGICAL SOCIETY Volume 54, Number 5 May 2019 A New Record of the Nile Soft-shelled Turtle, Trionyx triunguis, in Lebanon . Piero Carlino, Nahed Msayleb, Hasan Hamza and Olivier S. G. Pauwels 101 The Rantoul–Paxton Railroad Corridor: Relictual Herpetofauna and Noteworthy Records . Tristan D. Schramer 104 Toad Stools: Part Four . Dennis A. Meritt Jr. 108 Possible Parthenogenesis in the Two-striped Garter Snake, Thamnophis hammondii . Jeremy Fontaine and Thomas Owens 109 Some Natural History Observations and Photos of the Nesting Behavior of Desert Tortoises in Arizona . Roger A. Repp 110 What You Missed at the April Meeting: Chris Lechowicz . .John Archer 114 Advertisements . 116 New CHS Members This Month . 116 Cover: Red-eyed treefrog, Agalychnis callidryas. Drawing by Jessica Wadleigh. STAFF Membership in the CHS includes a subscription to the monthly Bulletin. Annual dues are: Individual Membership, $25.00; Editor: Michael A. Dloogatch --- [email protected] Family Membership, $28.00; Sustaining Membership, $50.00; Copy editor: Joan Moore Contributing Membership, $100.00; Institutional Membership, Photo editor: Steve Barten $38.00. Remittance must be made in U.S. funds. Subscribers outside the U.S. must add $12.00 for postage. Send membership 2019 CHS Board of Directors dues or address changes to: Chicago Herpetological Society, Membership Secretary, 2430 N. Cannon Drive, Chicago, IL 60614. President: Rich Crowley Vice-president: Jessica Wadleigh Manuscripts published in the Bulletin of the Chicago Herpeto- Treasurer: John Archer logical Society are not peer reviewed. Manuscripts and letters Recording Secretary: Gail Oomens concerning editorial business should be e-mailed to the editor, Media Secretary: Kim Klisiak [email protected].
    [Show full text]
  • A Co-Evolutionary Arms Race: Sierra Garter Snake Vs. Sierra Newt by Denise De Carion
    FLOG A Co-Evolutionary Arms Race: Sierra garter snake vs. Sierra newt By Denise De Carion In the Tuolumne River watershed, there is a co-evolutionary arms race occurring between the Sierra garter snake (Thamnophis couchii) and the Sierra newt (Taricha sierrae) and it has become apparent that the Sierra garter snake is winning. The Sierra newt is an amphibious species whose conspicuous orange coloration provides a warning signal to predators (Petranka, 1998). This animal produces a potent neurotoxin called tetrodotoxin, which if ingested, binds to sodium ion channels in nerves and muscles, causing imminent mortality (Brodie, 2005). It is this molecular mechanism that allows the newt, which is slow-moving and often found out in exposed, shallow pool habitat, to avoid predation by almost all animals occupying higher trophic levels ―except for one. The Sierra garter snake has evolved an elevated resistance to tetrodotoxin, which prevents the toxin from binding to its pores. The deadly toxin is considered to be the phenotypic interface of interactions between these two species that has allowed them to co-evolve via natural selection. In other words, this example of a parallel “arms race” between predator and prey demonstrates that co-evolution of two species surrounding a toxin has been a result of each species having the genetic ability to respond and reciprocate to selection (Brodie et al., 2005). If you are planning to go ‘herping,’ or searching for reptiles and amphibians, on the Tuolumne River, the following words of advice should be followed. Sierra newts can be found in abundance during their breeding season, January through May, in a small tributary that is located on the other side of the river from the frequently visited campsite Indian Creek.
    [Show full text]
  • Phenotypic, Physiological, and Genetic Patterns of TTX Resistance in the Sierra Garter Snake Thamnophis Couchii
    University of Nevada, Reno Evolution of an Adaptive Trait: Phenotypic, Physiological, and Genetic Patterns of TTX Resistance in the Sierra Garter Snake Thamnophis couchii A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Ecology, Evolution, and Conservation Biology by Jessica Summer Reimche Dr. Chris Feldman/Dissertation Advisor Dr. Karen Schlauch/Dissertation Advisor December 2020 Copyright © by Jessica Summer Reimche 2020 All Rights Reserved THE GRADUATE SCHOOL We recommend that the dissertation prepared under our supervision by Jessica Summer Reimche entitled Evolution of an Adaptive Trait: Phenotypic, Physiological, and Genetic Patterns of TTX Resistance in the Sierra Garter Snake Thamnophis couchii be accepted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chris R. Feldman, Ph.D., Advisor Karen Schlauch, Ph.D., Co-advisor Thomas L. Parchman, Ph.D., Committee Member Julie M. Allen Ph.D., Committee Member Normand Leblanc, Ph.D., Graduate School Representative David W. Zeh, Ph.D., Dean, Graduate School December 2020 i ABSTRACT Understanding the molecular evolution of adaptive traits is central to advancing evolutionary biology. Thus, describing the genetic architecture of such traits is necessary to understand how adaptations arise, spread, and fix across populations. Where exactly these adaptive traits originate in the underlying genetic architecture remains a topic of controversy, with some evolutionary biologists arguing that origination of adaptive phenotypes occurs from changes in regulatory non-protein coding regions of the genome, while others claim they stem from structural mutations in protein coding regions. Complex phenotypes such as adaptations are inherently difficult to study, typically involving multiple, potentially independent, genetic mechanisms that can be challenging to recognize.
    [Show full text]
  • QUICK KEY to REPTILES and AMPHIBIANS NEVADA CITY AREA Randy & Eric Oliver
    QUICK KEY TO REPTILES AND AMPHIBIANS NEVADA CITY AREA Randy & Eric Oliver We made this key to help novices with field identifications. Only those species likely to be found in the area are included, with the more common species listed first. Some species we have yet to personally see here. Please report sightings of noted species, or any not in this key, to us at 277-4440. Your comments and suggestions are welcome. Some of these species are suf- fering from habitat loss and over collecting, and a few are protected by law [protected]. Please treat any animals you capture gently and with respect; replace any logs or stones you overturn as you found them. It is against California law to break apart logs or rocks to collect reptiles. To learn more about the diet, range, and natural history of particular species, refer to the references at the end of the key. A. TURTLES Western Pond Turtle: shell to 6”; brown or olive with pattern of fine yellow lines on shell. Common in ponds and slow streams. Look for head above water surface, or basking on rocks or logs. Males wander far from water. (You may also find non-native released pet turtles, such as red-eared sliders or box turtles.) [PROTECTED] B. LIZARDS a. Lizard is a “bluebelly” lizard, with tail about same length as body; up to 8” long. See b. aa. Lizard is otherwise: slender with very long tail, or flat with very short tail. See c. b. Scales of back pointed; rough when stroked backwards. All zones, most common lizard Northwestern Fence Lizard: 6-8”; coloration greatly variable (and can darken or lighten skin color at will); usually patterned with bars of gray and brown, but may be unpatterned, black, or have turquoise flecks.
    [Show full text]
  • Federal Register/Vol. 79, No. 82/Tuesday, April 29, 2014/Rules
    24256 Federal Register / Vol. 79, No. 82 / Tuesday, April 29, 2014 / Rules and Regulations DEPARTMENT OF THE INTERIOR Executive Summary management activities, notably livestock Why we need to publish a rule. Under grazing, and also the anticipated Fish and Wildlife Service the Endangered Species Act, a species hydrologic effects upon habitat from may warrant protection through listing climate change. We also find that the 50 CFR Part 17 if it is endangered or threatened Yosemite toad is likely to become [Docket No. FWS–R8–ES–2012–0100; throughout all or a significant portion of endangered through the direct effects of 4500030113] its range. Listing a species as an climate change impacting small remnant populations, likely compounded with RIN 1018–AZ21 endangered or threatened species can be only completed by issuing a rule. the cumulative effect of other threat Endangered and Threatened Wildlife This rule will finalize the listing of the factors (such as disease). and Plants; Endangered Species Sierra Nevada yellow-legged frog (Rana Peer review and public comment. We Status for Sierra Nevada Yellow- sierrae) as an endangered species, the sought comments from independent Legged Frog and Northern Distinct northern DPS of the mountain yellow- specialists to ensure that our Population Segment of the Mountain legged frog (Rana muscosa) as an designations are based on scientifically Yellow-Legged Frog, and Threatened endangered species, and the Yosemite sound data, assumptions, and analyses. Species Status for Yosemite Toad toad (Anaxyrus canorus) as a threatened We invited these peer reviewers to species. comment on our listing proposal. We AGENCY: Fish and Wildlife Service, The basis for our action.
    [Show full text]
  • Northern Leopard Frog (Rana Pipiens): a Technical Conservation Assessment
    Northern Leopard Frog (Rana pipiens): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project January 16, 2007 Brian E. Smith, Ph.D.1 and Douglas A. Keinath2 1Dept. of Biology, Black Hills State University, 1200 University Street Unit 9044, Spearfish, SD 57799-9044 2Wyoming Natural Diversity Database, University of Wyoming, 1000 East University Ave., Dept. 3381, Laramie, WY 82071 Peer Review Administered by Society for Conservation Biology Smith, B.E. and D.A. Keinath. (2007, January 16). Northern Leopard Frog (Rana pipiens): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/ projects/scp/assessments/northernleopardfrog.pdf [date of access]. ACKNOWLEDGMENTS The authors would like to acknowledge the anonymous reviewers and Charles Painter of the New Mexico Department of Game and Fish for reviews that markedly improved this manuscript. AUTHORS’ BIOGRAPHIES Dr. Brian Smith is an associate professor in biology at Black Hills State University. His areas of research expertise include herpetology, biostatistics, and landscape ecology. He has conducted herpetological research in the Philippines, Peru, Guam, Costa Rica, Guatemala, and the Caribbean. He has also worked on the herpetofauna of Louisiana, Texas, New Mexico, and Arizona, and he spent four years working in the Department of Herpetology at the Dallas Zoo. For the last 10 years, he has been working on reptiles and amphibians in the Badlands and Black Hills of western South Dakota and in the Bear Lodge Mountains in northeastern Wyoming. Dr. Smith received his B.S. from Washington State University in 1980, his M.S.
    [Show full text]
  • Sampling Methods for Terrestrial Amphibians and Reptiles Paul Stephen Corn Zoologist U.S
    1 , +?+a- United States 5 Department of 1:/1 .- 5 Agriculture 5w 4 Skmpling Methods .fo.r IL **. Forest Service Pacific Northwest Research Station Terrestrial A.mphibians General Technical Report PNW-GTR-256 and R.eptiles July 1990 / Paul Stephen Corn and R. Bruce Bury Wildlife-Habitat Relationships: Sampling Procedures for Pacific Northwest Vertebrates Andrew B. Carey and Leonard F. Ruggiero, Technical Editors Sampling Methods for Terrestrial Amphibians and Reptiles Paul Stephen Corn Zoologist U.S. Department of the Interior Fish and Wildlife Service National Ecology Research Center 4512 McMurray Avenue Fort Collins, Colorado 80525-3400 R. Bruce Bury Research Zoologist U.S. Department of the Interior Fish and Wildlife Service National Ecology Research Center 4512 McMurray Avenue Fort Collins, Colorado 80525-3400 USDA Forest Service Pacific Northwest Research Station Portland, Oregon General ‘Technical Report PNW-GTR-256 1990 Preface Concern about the value of old-growth Douglas-fir forests to wildlife in the Pacific Northwest began escalating in the late 1970s. The available information on wildlife- habitat relationships suggested that as many as 75 species including amphibians, birds, and mammals, could be dependent on old-growth forests. The USDA Forest Service chartered the Old-Growth Forest Wildlife Habitat Program to investigate the role old growth plays in maintaining viable populations of wildlife. It was apparent that broad surveys of vertebrate communities would be necessary to determine which species were truly closely associated with old-growth forests. Insufficient guidance on techniques, procedures, and sample sizes was available in the existing literature. We assembled a team of researchers from universities and Federal agencies to conduct pilot studies to develop sampling protocols and to test the basic experimental design for contrasting the wildlife values of young, mature, and old-growth forests.
    [Show full text]
  • ABSTRACTS 29 Reptile Ecology I, Highland A, Sunday 15 July 2018
    THE JOINT MEETING OF ASIH SSAR HL lcHTHYOLOGISTS & HERPETOLOGISTS ROCHESTER, NEW YORK 2018 ABSTRACTS 29 Reptile Ecology I, Highland A, Sunday 15 July 2018 Curtis Abney, Glenn Tattersall and Anne Yagi Brock University, St. Catharines, Ontario, Canada Thermal Preference and Habitat Selection of Thamnophis sirtalis sirtalis in a Southern Ontario Peatland Gartersnakes represent the most widespread reptile in North America. Despite occupying vastly different biogeoclimatic zones across their range, evidence suggests that the thermal preferenda (Tset) of gartersnakes has not diverged significantly between populations or different Thamnophis species. The reason behind gartersnake success could lie in their flexible thermoregulatory behaviours and habitat selection. We aimed to investigate this relationship by first identifying the Tset of a common gartersnake species (Thamnophis sirtalis sirtalis) via a thermal gradient. We then used this Tset parameter as a baseline for calculating the thermal quality of an open, mixed, and forested habitat all used by the species. We measured the thermal profiles of these habitats by installing a series of temperature-recording analogues that mimicked the reflectance and morphology of living gartersnakes and recorded environmental temperatures as living snakes experience them. Lastly, we used coverboards to survey the current habitat usage of T. s. sirtalis. Of the three habitats, we found that the open habitat offered the highest thermal quality throughout the snake’s active season. In contrast, we recorded the greatest number of snakes using the mixed habitat which had considerably lower thermal quality. Although the open habitat offered the greatest thermal quality, we regularly recorded temperatures exceeding the upper range of the animals’ thermal preference.
    [Show full text]
  • Supporting Information
    Supporting Information Feldman et al. 10.1073/pnas.1113468109 Serpentes Colubroidea Dipsadinae Colubridae Colubrinae Natricinae Fig. S1. Phylogenetic distribution of snake lineages that prey on tetrodotoxin (TTX)-bearing amphibians (colored branches and taxa) and also posses derived amino acid replacements at sites critical to TTX ligation in the pore-forming loops (P-loops) of the skeletal muscle sodium channel (Nav1.4). The New World Legend continued on following page Feldman et al. www.pnas.org/cgi/content/short/1113468109 1of5 natricines Thamnophis sirtalis (red), Thamnophis atratus (light blue), and Thamnophis couchii (green) prey on Taricha newts (1–4); the Old World natricines Rhabdophis tigrinus (bright blue) preys on the tree frog Polypedates leucomystax (5) and Amphiesma pryeri (purple) preys on the newt Cynops ensicauda (6, 7); the neotropical dipsadine Liophis epinephelus (orange) consumes several Atelopus toads (8, 9). Phylogeny of colubroid snakes and relatives is based on re- lationships presented in refs. 10–18. Snakes that prey on TTX-laden frogs or salamanders show derived variation in the P-loops domains DIII and DIV (colored circles); P-loops in other domains (and other taxa) lack adaptive variation (black circles). In a few cases we were unable to obtain P-loop sequences (white circles). Numbers of individuals sequenced (GE) and assayed for TTX resistance (PE) alongside measures of TTX resistance [50% mass-adjusted mouse units MAMU)]. Direct measures of whole-animal resistance for this study were augmented with some of our previous data (19–21). We inferred elevated levels of TTX resistance (↑)forA. pryeri, R. tigrinus, and L. epinephelus based on measures of TTX recorded in their respective prey: 60−7,000 mouse units (MU) of TTX for C.
    [Show full text]