( 12 ) United States Patent

Total Page:16

File Type:pdf, Size:1020Kb

( 12 ) United States Patent US010731168B2 (12 ) United States Patent ( 10 ) Patent No.: US 10,731,168 B2 Landowski et al. (45 ) Date of Patent: * Aug. 4 , 2020 ( 54 ) PROTEASE DEFICIENT FILAMENTOUS ( 2013.01) ; CO7K 2317/622 (2013.01 ) ; COOK FUNGAL CELLS AND METHODS OF USE 2317/94 (2013.01 ) ; YO2P 20/52 (2015.11 ) THEREOF (58 ) Field of Classification Search ( 71) Applicant: GLYKOS FINLAND OY , Helsinki None (FI ) See application file for complete search history . ( 72 ) Inventors : Christopher Landowski, Helsinki (FI ) ; Anne Huuskonen , Helsinki (FI ) ; ( 56 ) References Cited Juhani Saarinen , Helsinki (FI ) ; Ann U.S. PATENT DOCUMENTS Westerholm - Parvinen , Kirkkonummi (FI ) ; Anne Kanerva , Helsinki (FI ) ; 4,758,512 A 7/1988 Goldberg et al. 5,674,728 A 10/1997 Buxton et al . Jari Natunen , Vantaa (FI ) ; Anna - Liisa 5,693,520 A 12/1997 Branner et al. Hänninen , Helsinki (FI ) ; Noora 5,756,338 A 5/1998 Buxton et al. Salovuori, Helsinki ( FI) ; Merja 5,776,730 A 7/1998 Stuart Penttilä , Helsinki (FI ) ; Markku 5,821,104 A 10/1998 Holm et al . Saloheimo, Helsinki (FI ) 5,840,570 A 11/1998 Berka et al . 5,846,802 A 12/1998 Buxton et al . 5,968,774 A 10/1999 Lehmbeck ( 73 ) Assignee : GLYKOS FINLAND OY , Helsinki 5,989,889 A 11/1999 Rey et al . (FI ) 6,013,452 A 1/2000 Christensen et al. 6,013,489 A 1/2000 Musters et al . ( * ) Notice : Subject to any disclaimer , the term of this 6,025,185 A 2/2000 Christensen et al. patent is extended or adjusted under 35 6,291,209 B1 9/2001 Lehmbeck 6,352,841 B1 3/2002 Lehmbeck U.S.C. 154 (b ) by 6 days . 6,509,171 B1 1/2003 Berka et al . This patent is subject to a terminal dis 6,806,062 B1 10/2004 Hjort et al. claimer . 7,122,330 B2 10/2006 Emalfarb et al. 7,163,804 B1 1/2007 Royer et al. 7,198,938 B2 4/2007 Shuster et al . ( 21) Appl. No .: 16 /251,194 7,303,877 B2 12/2007 Connelly et al. 7,323,327 B2 1/2008 Edens et al. ( 22 ) Filed : Jan. 18 , 2019 7,691,621 B2 4/2010 Wang 7,771,971 B2 8/2010 Connelly et al. (65 ) Prior Publication Data 7,794,974 B2 9/2010 Peij et al. 7,858,360 B2 12/2010 Hansen et al . US 2019/0233831 A1 Aug. 1 , 2019 (Continued ) Related U.S. Application Data FOREIGN PATENT DOCUMENTS (63 ) Continuation of application No. 15/ 375,635 , filed on Dec. 12 , 2016 , now Pat. No. 10,240,159 , which is a EP 1 266 011 B1 5/2010 continuation of application No. 14 /370,255 , filed as WO 1997/012045 A1 4/1997 application No. PCT/ EP2013 / 050126 on Jan. 4 , 2013 , (Continued ) now Pat . No. 9,567,596 . OTHER PUBLICATIONS (60 ) Provisional application No. 61/ 583,559, filed on Jan. 5 , 2012 . Mäntylä et al . Cloning of the aspartic protease gene of Trichoderma reesei . Proc. Second Eur. Conf. on Fungal Genetics, Apr. 29 -May 1 , (51 ) Int. Cl. 1994 , Book of Abstracts ( 1994 ) . C12N 15/80 ( 2006.01 ) CO7K 16/28 (2006.01 ) (Continued ) COZK 16/00 ( 2006.01) COZK 14/65 ( 2006.01 ) Primary Examiner Suzanne M Noakes CO7K 14/61 ( 2006.01 ) CO7K 14/56 ( 2006.01 ) Assistant Examiner Jae W Lee C12N 9/58 (2006.01 ) ( 74 ) Attorney , Agent, or Firm — Patrick J. Halloran C12P 21/02 ( 2006.01 ) C12P 21/00 ( 2006.01 ) (52 ) U.S. CI. (57 ) ABSTRACT CPC C12N 15/80 (2013.01 ) ; C07K 14/56 ( 2013.01 ) ; CO7K 14/61 (2013.01 ) ; CO7K 14/65 The present disclosure relates to compositions and methods (2013.01 ) ; COOK 16/00 (2013.01 ) ; CO7K useful for the production of heterologous proteins in fila 16/2887 ( 2013.01 ) ; C12N 9/58 ( 2013.01) ; mentous fungal cells . C12P 21/005 (2013.01 ) ; C12P 21/02 (2013.01 ) ; CO7K 2317/14 ( 2013.01) ; CO7K 2317/24 (2013.01 ) ; CO7K 2317/41 (2013.01 ) ; 16 Claims, 46 Drawing Sheets CO7K 2317/55 (2013.01 ) ; CO7K 2317/569 Specification includes a Sequence Listing . US 10,731,168 B2 Page 2 ( 56 ) References Cited Kubicek , et al . UniProt G9P169 ( 2012 ) . Kubicek , et al. UniProt G9N7YO ( 2012 ) . U.S. PATENT DOCUMENTS Kubicek , et al . UniProt G9MY25 ( 2012 ) . Kubicek , et al. UniProt G9NLJ5 (2012 ) . 7,968,312 B2 6/2011 Sagt et al. LONG , et al . UniProt 12EC22 (2012 ) . 7,977,067 B2 7/2011 Power et al. 8,017,341 B2 9/2011 Nikolaev et al . Suarez , et al. UniProt A4V8W6 ( 2007 ) . 8,119,171 B2 2/2012 Lopez et al . Viterbo , et al. UniProt Q64HWO ( 2004 ) . 8,288,517 B2 10/2012 Clarkson et al. Roberts et al. , “ Heterologous Gene Expression in Aspergillus Niger: 8,389,269 B2 3/2013 Sagt et al. a Glucoamylase - Porcine Pancreatic Prophospholipase A2 Fusion 8,426,164 B2 4/2013 Hjort et al . Protein is Secreted and Processed to Yield Mature Enzyme” , Gene. , 8,450,098 B2 5/2013 Kim et al . 122 , 1992 , pp . 155-161 . 8,633,010 B2 1/2014 Lehmbeck et al. Sharma et al. , “ Approaches for Refining Heterologous Protein 8,647,856 B2 2/2014 Shasky et al . Production in Filamentous Fungi” , World J Microbiol Biotechnol, 8,680,252 B2 3/2014 Emalfarb et al. 25 , 2009 , pp . 2083-2094 . 8,716,004 B2 5/2014 Wang Sharon et al ., “ Transcription Factor PrtT Controls Expression of 8,741,654 B2 6/2014 Bodie et al . Multiple Secreted Proteases in the Human Pathogenic Mold Aspergil 8,812,247 B2 8/2014 Roubos et al. lus Fumigatus” , Infection and Immunity , vol. 77, No. 9 , Sep. 2009 , 8,916,363 B2 12/2014 Gusakov et al. 9,175,296 B2 11/2015 Punt et al. pp . 4051-4060 . 9,862,956 B2 * 1/2018 Emalfarb C12N 15/80 Simkovic et al. , “ Induction of Secretion of Extracellular Proteases 2004/0018573 Al 1/2004 Power et al . from Trichoderma Viride ” , Acta Chimica Slovaca , vol. 1 , No. 1 , 2008/0206816 A1 8/2008 Idiris et al. 2008 , pp . 250-264 . 2009/0176219 Al 7/2009 Parenicova et al . Sims et al. , “ Glutamic Protease Distribution is Limited to Filamen 2009/0221030 A1 9/2009 Bao et al . tous Fungi ” , FEMS Microbiology Letters , 239 , 2004 , pp . 95-101. 2009/0253173 A1 10/2009 Wang Sriranganadane et al. , “ Secreted Glutamic Protease Rescues Aspartic 2009/0275079 Al 11/2009 Edens et al. Protease Pep Deficiency in Aspergillus Fumigatus During Growth 2011/0111977 Al 5/2011 Retallack in Acidic Protein Medium ” , Microbiology, 157 , 2011, pp . 1541 2011/0283422 A1 11/2011 Nelson et al. 1550 . 2011/0294191 A1 12/2011 Wang 2012/0030839 A1 2/2012 Emalfarb et al . Suárez et al. , “ Characterization of Genes Encoding Novel Peptidases 2012/0107856 A1 5/2012 Punt et al. in the Biocontrol Fungus Trichoderma Harzianum CECT 2413 2012/0149064 Al 6/2012 Wang et al. Using the TrichoEST FunctionalGenomics Approach ” , Curr Genet , 2012/0213728 A1 8/2012 Meehl et al . 51, 2007 , pp . 331-342 . 2012/0231502 A1 9/2012 Hamilton et al. Uusitalo et al. , Enzyme Production by Recombinant Trichoderma 2012/0232007 A1 9/2012 Bobrowicz et al. Reesei Strains. Journal of Biotechnology, 17 , 1991 , pp . 35-50 . 2012/0276075 A1 11/2012 Monod et al. Van Den Hombergh et al. , “New Protease Mutants in Aspergillus 2012/0288892 Al 11/2012 Maiyuran et al . Niger Result in Strongly Reduced in Vitro Degradation of Target 2012/0328626 A1 12/2012 Sethuraman et al. Proteins ; Genetical and Biochemical Characterization of Seven 2013/0011875 Al 1/2013 Meehl et al. Complementation Groups” , Curr Genet, 28 , 1995 , pp . 299-308 . 2013/0084608 Al 4/2013 Szabo et al . Van Den Hombergh et al. , “ Improve the Efficiency of Protein 2014/0212977 Al 7/2014 Yaver et al. Expression in Fungi ” , Cherntech 26 , Feb. 1996 , pp . 30-37 . 2015/0337279 Al 11/2015 Zhang et al. Van Den Hombergh et al ., “ Aspergillus as a Host for Heterologous Protein Production : The Problem of Proteases ” , Tibtech , vol. 15 , FOREIGN PATENT DOCUMENTS Jul . 1997 , pp . 256-263 . Van Den Hombergh et al ., “ Production of the Homologous Pectin WO 1997/046689 A1 12/1997 WO 2000/046375 A2 8/2000 Lyase B Protein in Six Genetically Defined Protease -Deficient WO 2004/067709 A2 8/2004 Aspergillus Niger Mutant Stains” , Curr Genet , vol. 32 , Jul. 1997 , WO 2005/087922 A1 9/2005 pp . 73-81 . WO 2011075677 A2 6/2011 Van Kuyk et al ., " Analysis of Two Aspergillus Nidulans Genes WO 2012021883 A2 2/2012 Encoding Extracellular Proteases ” , Fungal Genetics and Biology , WO 2012024662 A2 2/2012 vol . 29 , Apr. 2000 , pp . 201-210 . WO 2012048334 A2 4/2012 Vázquez -Laslop et al. , " Characterization of a Vacuolar Protease in WO 2012061382 A2 5/2012 Neurospora Crassa and the Use ofGene Riping to Generate Protease WO 2013048661 A2 4/2013 Deficient Strains” , The Journal of Biological Chemistry , vol. 271, No. 36 , Sep. 1996 , pp . 21944-21949 . Vinterová et al . , “ Evidence for the Presence of Proteolytically OTHER PUBLICATIONS Active Secreted Aspartic Proteinase of Candida Parapsilosis in the Cell Wall ” , Protein Science , vol. 20 , Dec. 2011 , pp . 2004-2012 . Berka et al. Comparative genomic analysis of the thermophilic Wang et al. , “ Bioprocessing Strategies to Improve Heterologous biomass- degrading fungi Myceliophthora thermophila and Thielavia Protein Production in Filamentous Fungal Fermentations” , Biotech terrestris . Nat Biotechnol. Oct. 2 , 2011 ; 29 ( 10 ) : 922-7 . nology Advances , vol . 23, Mar. 2005 , pp . 115-129 . Berka et al . ( 2011) UniProt G2Q4X9 . Wang et al. , “ Isolation of Four Pepsin - Like Protease Genes from Berka et al .
Recommended publications
  • WO 2013/102674 A2 11 July 2013 (11.07.2013) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/102674 A2 11 July 2013 (11.07.2013) W P O P C T (51) International Patent Classification: (74) Agent: CABINET PLASSERAUD; 235 cours Lafayette, C12N 1/15 (2006.01) F-69006 Lyon (FR). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/EP20 13/050 126 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) Date: International Filing BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 4 January 2013 (04.01 .2013) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (30) Priority Data: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, 61/583,559 5 January 2012 (05.01 .2012) US RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (71) Applicants: NOVARTIS INTERNATIONAL PHAR¬ ZM, ZW. MACEUTICAL LTD.; 13 1 Front Street, Hamilton (BM). GLYKOS FINLAND OY [FI/FI]; Viikinkaari 6, FI- (84) Designated States (unless otherwise indicated, for every 00790 Helsinki (FI).
    [Show full text]
  • Molecular Modelling for Enzyme-Inhibition: a Search for a New Treatment for Cataract and New Antimicrobials and Herbicides
    Molecular Modelling for Enzyme-Inhibition: A Search for a New Treatment for Cataract and New Antimicrobials and Herbicides A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Biochemistry at the University of Canterbury Christchurch New Zealand Blair Gibb Stuart March 2010 Contents CONTENTS ACKNOWLEDGEMENTS 1 ABSTRACT AND PUBLISHED WORK 2 1 INTRODUCTION 6 1.1 Calpain and the cataract hypothesis 6 1.2 Proteases 7 1.3 Calpains 10 1.4 Structure of the eye, cataract and the importance of an anti-cataract drug 14 1.5 The β-strand: important for protease recognition 15 1.6 Computer modelling programs 17 1.7 References 20 2 DEVELOPMENT OF A CALPAIN MODEL FOR DOCKING STUDIES 27 2.1 Introduction 27 2.1.1 Overview of calpain model development 27 2.2 Calpain X-ray crystal structures 28 2.2.1 The first published structures 28 2.2.2 Calpain constructs 1KXR and 1MDW 30 2.3 Exploring the calpain construct 1KXR to develop a viable model for Glide docking experiments 33 2.4 The InducedFit docking model 37 Contents 2.5 Conclusion 37 2.6 References 39 3 MOLECULAR MODELING OF ACYCLIC INHIBITORS 43 3.1 Introduction 43 3.1.1 Natural inhibitors 43 3.1.2 Modified natural inhibitors 45 3.1.3 Lead compound: SJA-6017 46 3.2 Docking studies of known inhibitors 46 3.2.1 Compounds of Inoue et al 46 3.2.2 Docking results for the Inoue et al compounds 50 3.3 Docking Studies of SJA-6017 analogues 58 3.3.1 N-Heterocyclic dipeptides 58 3.3.2 Docking results of N-heterocyclic dipeptides 60 3.4 Docking studies of diazo and
    [Show full text]
  • Downloading the Nucleotide Sequences and Scanning Them Against the Database
    An in silico analysis, purification and partial kinetic characterisation of a serine protease from Gelidium pristoides A dissertation submitted in fulfilment of the requirement for the degree of Master of Science (MSc) Biochemistry by Zolani Ntsata Supervisor: Prof. Graeme Bradley 2020 Department of Biochemistry and Microbiology Declaration I, Zolani Ntsata (201106067), declare that this dissertation, entitled ‘An in silico analysis and kinetic characterisation of proteases from red algae’ submitted to the University of Fort Hare for the Master’s degree (Biochemistry) award, is my original work and has NOT been submitted to any other university. Signature: __________________ I, Zolani Ntsata (201106067), declare that I am highly cognisant of the University of Fort Hare policy on plagiarism and I have been careful to comply with these regulations. Furthermore, all the sources of information have been cited as indicated in the bibliography. Signature: __________________ I, Zolani Ntsata (201106067), declare that I am fully aware of the University of Fort Hare’s policy on research ethics, and I have taken every precaution to comply with these regulations. There was no need for ethical clearance. Signature: _________________ i Dedication I dedicate this work to my grandmother, Nyameka Mabi. ii Acknowledgements Above all things, I would like to give thanks to God for the opportunity to do this project and for the extraordinary strength to persevere in spite of the challenges that came along. I am thankful to my family, especially my grandmother, for her endless support. I would also like to acknowledge Prof Graeme Bradley for his supervision and guidance. Thanks to my friends and colleagues, especially Yanga Gogela and Ntombekhaya Nqumla, and the plant stress group for their help and support.
    [Show full text]
  • Identification and Characterization of a Bacterial Glutamic Peptidase
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Copenhagen University Research Information System Identification and characterization of a bacterial glutamic peptidase Jensen, Kenneth; Østergaard, Peter R.; Wilting, Reinhard ; Lassen, Søren F. Published in: BMC Biochemistry DOI: 10.1186/1471-2091-11-47 Publication date: 2010 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Jensen, K., Østergaard, P. R., Wilting, R., & Lassen, S. F. (2010). Identification and characterization of a bacterial glutamic peptidase. BMC Biochemistry, 11(47). https://doi.org/10.1186/1471-2091-11-47 Download date: 07. Apr. 2020 Jensen et al. BMC Biochemistry 2010, 11:47 http://www.biomedcentral.com/1471-2091/11/47 RESEARCH ARTICLE Open Access Identification and characterization of a bacterial glutamic peptidase Kenneth Jensen1,2*, Peter R Østergaard1, Reinhard Wilting1, Søren F Lassen1 Abstract Background: Glutamic peptidases, from the MEROPS family G1, are a distinct group of peptidases characterized by a catalytic dyad consisting of a glutamate and a glutamine residue, optimal activity at acidic pH and insensitivity towards the microbial derived protease inhibitor, pepstatin. Previously, only glutamic peptidases derived from filamentous fungi have been characterized. Results: We report the first characterization of a bacterial glutamic peptidase (pepG1), derived from the thermoacidophilic bacteria Alicyclobacillus sp. DSM 15716. The amino acid sequence identity between pepG1 and known fungal glutamic peptidases is only 24-30% but homology modeling, the presence of the glutamate/ glutamine catalytic dyad and a number of highly conserved motifs strongly support the inclusion of pepG1 as a glutamic peptidase.
    [Show full text]
  • Biotechnology Effect of Protease Enzyme Produced from Lactobacillus Species on the Milk
    International Journal of Engineering Research And Management (IJERM) ISSN: 2349- 2058, Volume-05, Issue-10, October 2018 Biotechnology Effect of Protease Enzyme Produced From Lactobacillus Species on the Milk Fekadu Mersha, Dr. Archana Pandita pharmaceutical (Brandelli, A. et. al., 2010). Conventional Abstract— In the world like developing countries there is rapid optimization is the simplest method that helps as a selection growth of human population and urbanization. This growing factors to enhance protease production (Neurath, H., 1984). population uses numerous amounts of milk and milk products in Thus Increasing cheese production and consumption with the day to day life. It demands to improve yield and quality of milk increment of calf rennet price in the world, led to replace calf and milk products through biotechnological techniques like application of enzymes. This paper reviews the protease enzyme rennet to proteases with coagulant properties in the producing Lactobacillus species, production of protease enzyme manufacture of dairy products (Mazorra-Manzano, M. A. et. and the effect of protease enzyme on milk and milk products. al., 2013). An application of proteases enzyme is important in Lactobacillus species are the major part of the lactic acid the food and dairy industry with its ability to coagulate milk bacterial groups. Lactobacillus species have function of protein in cheese manufacturing (Mandujano-Gonzalez, V. et. pathogen control, probiotic, food producer (fermenter) and al., 2013). The aim of this paper is to review the effect of enzyme producer. Protease enzymes are hydrolyzed or protease enzyme that produced from lactobacillus species on breakdown peptide bonds of proteins and can break specific the milk.
    [Show full text]
  • Trichoderma Reesei
    RESEARCH ARTICLE Enabling Low Cost Biopharmaceuticals: A Systematic Approach to Delete Proteases from a Well-Known Protein Production Host Trichoderma reesei Christopher P. Landowski1*, Anne Huuskonen1, Ramon Wahl2, Ann Westerholm- Parvinen1, Anne Kanerva3, Anna-Liisa Hänninen3, Noora Salovuori3, Merja Penttilä1, Jari Natunen3, Christian Ostermeier2, Bernhard Helk2, Juhani Saarinen3, Markku Saloheimo1 1 VTT Technical Research Centre of Finland, Espoo, Finland, 2 Novartis Pharma AG, Basel, Switzerland, 3 Glykos Finland Oy, Helsinki, Finland * [email protected] OPEN ACCESS Abstract Citation: Landowski CP, Huuskonen A, Wahl R, Westerholm-Parvinen A, Kanerva A, Hänninen A-L, The filamentous fungus Trichoderma reesei has tremendous capability to secrete proteins. et al. (2015) Enabling Low Cost Biopharmaceuticals: Therefore, it would be an excellent host for producing high levels of therapeutic proteins at A Systematic Approach to Delete Proteases from a Well-Known Protein Production Host Trichoderma low cost. Developing a filamentous fungus to produce sensitive therapeutic proteins reesei. PLoS ONE 10(8): e0134723. doi:10.1371/ requires that protease secretion is drastically reduced. We have identified 13 major journal.pone.0134723 secreted proteases that are related to degradation of therapeutic antibodies, interferon Editor: Monika Schmoll, AIT Austrian Institute of alpha 2b, and insulin like growth factor. The major proteases observed were aspartic, glu- Technology GmbH, AUSTRIA tamic, subtilisin-like, and trypsin-like proteases. The seven most problematic proteases Received: March 27, 2015 were sequentially removed from a strain to develop it for producing therapeutic proteins. Accepted: July 13, 2015 After this the protease activity in the supernatant was dramatically reduced down to 4% of the original level based upon a casein substrate.
    [Show full text]
  • Exploring the Catalytic Significant Residues of Serine Protease Using Substrate-Enriched Residues and a Peptidase Inhibitor
    Microbiol. Biotechnol. Lett. (2021), 49(1), 65–74 http://dx.doi.org/10.48022/mbl.2009.09012 pISSN 1598-642X eISSN 2234-7305 Microbiology and Biotechnology Letters Exploring the Catalytic Significant Residues of Serine Protease Using Substrate-Enriched Residues and a Peptidase Inhibitor Zahoor Khan1,2, Maryam Shafique2*, Amir Zeb3,4, Nusrat Jabeen1, Sehar Afshan Naz2, and Arif Zubair5 1Department of Microbiology, University of Karachi 75270, Pakistan 2Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Karachi 75300, Pakistan 3Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea 4College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea 5Department of Environmental Sciences, Federal Urdu University of Arts, Science and Technology, Karachi 75300, Pakistan Received: September 28, 2020 / Revised: November 4, 2020 / Accepted: November 30, 2020 Serine proteases are the most versatile proteolytic enzymes with tremendous applications in various industrial processes. This study was designed to investigate the biochemical properties, critical residues, and the catalytic potential of alkaline serine protease using in-silico approaches. The primary sequence was analyzed using ProtParam, SignalP, and Phyre2 tools to investigate biochemical properties, signal peptide, and secondary structure, respectively. The three-dimensional structure of the enzyme was modeled using the MODELLER program present in Discovery Studio followed by Molecular Dynamics simulation using GROMACS 5.0.7 package with CHARMM36m force field. The proteolytic potential was measured by performing docking with casein- and keratin-enriched residues, while the effect of the inhibitor was studied using phenylmethylsulfonyl fluoride, (PMSF) applying GOLDv5.2.2. Molecular weight, instability index, ali- phatic index, and isoelectric point for serine protease were 39.53 kDa, 27.79, 82.20 and 8.91, respectively.
    [Show full text]
  • Commercial Potential of Fungal Protease: Past, Present and Future Prospects J
    218 Journal of Pharmaceutical, Chemical and Biological Sciences ISSN: 2348-7658 Impact Factor (SJIF): 2.092 December 2014-February 2015; 2(4):218-234 Available online at http://www.jpcbs.info Online published on December 27, 2014 Review Article Commercial Potential of Fungal Protease: Past, Present and Future Prospects J. Srilakshmi, J. Madhavi, Lavanya S, Ammani K* Departments of Biotechnology, Acharya Nagarjuna University, Guntur-522510, A.P., India * Corresponding Author Received: 30 November 2014 Revised: 14 December 2014 Accepted: 14 December 2014 ABSTRACT Proteases are one of the most important classes of proteolytic enzymes widely distributed in the animal kingdom, plant and as well as microbes. These enzymes possess the enormous commercial potential and have been used in several industrial processes, including food industry, leather processing, silk processing, detergent industry and therapeutic applications. The major source of commercial enzymes including protease in microbial world not only yields high quality of enzyme but also enzyme with diverse substrate specificity. Bacterial and fungal enzymes including proteases are widely accepted for different industrial process in last few decades. However, fungal protease are more promising for commercial application as these microorganism are more resistant to harsh climatic conditions and produces proteins/enzymes in their habitats. Fungal species are competent in expression of enzymes in psychrophilic, mesophilic and thermophilic conditions. In last few decades, psychrophilic
    [Show full text]
  • Chapter 1 Aspergillus As a Cell Factory for Protein Production
    A functional genomics study of extracellular protease production by Aspergillus niger Braaksma, M. Citation Braaksma, M. (2010, December 15). A functional genomics study of extracellular protease production by Aspergillus niger. Retrieved from https://hdl.handle.net/1887/16246 Version: Corrected Publisher’s Version Licence agreement concerning inclusion of doctoral License: thesis in the Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/16246 Note: To cite this publication please use the final published version (if applicable). CHAPTER 1 ASPERGILLUS AS A CELL FACTORY FOR PROTEIN PRODUCTION: CONTROLLING PROTEASE ACTIVITY IN FUNGAL PRODUCTION Machtelt Braaksma and Peter J. Punt This chapter has been published with minor modifications in: The Aspergilli: Genomics, Medical Aspects, Biotechnology, and Research Methods (2008), pp. 441-455. Edited by G. H. Goldman & S. A. Osmani. Boca Raton, FL: CRC Press Chapter 1 INTRODUCTION Since ancient times micro-organisms have been used in a variety of traditional food processes (e.g., the production of alcoholic beverages, cheese, and bread). Fungi are applied in cheese-making and in traditionally oriental food such as soy-sauce, tempeh, and sake. However, the presence and role of these micro-organisms was for most processes only identified in recent times. Fungi, like Aspergillus oryzae in the production of sake, were discovered to play a key role in food production by the excretion of enzymes. In 1894, the first microbial enzyme that was commercial produced appeared on the market, called “takadiastase”; it was in fact fungal amylase produced by A. oryzae (Gwynne & Devchand, 1992). Nowadays, a large number of fungal enzymes are commercially available and their application extends well beyond their traditional use in food processes.
    [Show full text]
  • Univerzita Karlova V Praze Přírodovědecká Fakulta Marina
    Univerzita Karlova v Praze Přírodovědecká fakulta Studijní program: Speciální chemicko-biologické obory Studijní obor: Molekulární biologie a biochemie organismů Marina Bakardjieva Proteolytický systém krevniček rodu Schistosoma Proteolytic system of blood flukes of the genus Schistosoma Bakalářská práce Školitel: RNDr. Michael Mareš, CSc. Konzultant: RNDr. Libor Mikeš, Ph.D. Praha, 2015 Poděkování: Chtěla bych velmi poděkovat svému školiteli RNDr. Michaeli Marešovi, CSc. za cenné rady, vstřícnost a čas věnovaný při vypracovávání této práce. Děkuji RNDr. Liboru Mikešovi, Ph.D. za posouzení práce a jeho připomínky. Dále bych ráda poděkovala skupině laboratoře RNDr. Mareše, CSc. za pomoc a odborné rady, které přispěly k realizaci této práce. Děkuji své rodině za podporu a trpělivost během celého studia. Prohlášení: Prohlašuji, že jsem závěrečnou práci zpracoval/a samostatně a že jsem uvedl/a všechny použité informační zdroje a literaturu. Tato práce ani její podstatná část nebyla předložena k získání jiného nebo stejného akademického titulu. V Praze, 28.4.2015 Podpis Abstrakt Krevničky rodu Schistosoma jsou parazitické motolice způsobující onemocnění zvané schistosomóza, které postihuje přes 200 milionů lidí v tropech a subtropech. Dospělé krevničky žijí v cévách člověka a živí se krví. Pro růst, vývoj a rozmnožování krevniček jsou zásadní živiny získané degradací hlavního krevního proteinu hemoglobinu. Za jeho trávení zodpovídá proteolytická výbava trávicího traktu kevniček, která je tvořena sadou enzymů z tříd cysteinových a aspartátových proteáz a metaloproteáz, které mají komplementární specifitu. Proteolytické enzymy hrají důležitou roli i při dalších procesech jako je průnik krevniček do hostitele, migrace tkáněmi, překonání imunitního systému a modulace zánětu. Mezi významné proteázy, které se účastní těchto procesů patří enzymy ze třídy serinových a cysteinových proteáz.
    [Show full text]
  • Inauguraldissertation
    Charakterisierung plasmamembrangebundener Proteasen von Nicotiana tabacum und Hordeum vulgare Inauguraldissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Manuela Eick geboren am 05. August 1979 in Königs Wusterhausen Greifswald, 21. August 2012 Dekan: Prof. Dr. Klaus Fesser 1. Gutachter: Prof. Dr. Christine Stöhr 2. Gutachter: Prof. Dr. Doris Rentsch Tag der Promotion: 23. November 2012 Inhaltsverzeichnis 1. Einleitung _____________________________________________________________ 1 1.1 Proteasen _______________________________________________________________ 1 1.1.1 Allgemeine Funktionen proteolytischer Enzyme in Pflanzen _______________________________ 1 1.1.2 Klassifizierung von Proteasen _______________________________________________________ 2 1.1.3 Regulationsmechanismen der pflanzlichen Proteaseaktivität _______________________________ 6 1.2 Membrangebundene Proteasen in Pflanzen ______________________________________ 8 1.3 Die pflanzliche Plasmamembran _______________________________________________ 9 1.4 Fragestellungen der Arbeit ___________________________________________________ 11 2. Material und Methoden _________________________________________________ 13 2.1 Material ___________________________________________________________________ 13 2.1.1 Pflanzen ______________________________________________________________________ 13 2.1.2 Sand _________________________________________________________________________
    [Show full text]
  • Identification and Characterization of a Bacterial Glutamic Peptidase Kenneth Jensen1,2*, Peter R Østergaard1, Reinhard Wilting1, Søren F Lassen1
    Jensen et al. BMC Biochemistry 2010, 11:47 http://www.biomedcentral.com/1471-2091/11/47 RESEARCH ARTICLE Open Access Identification and characterization of a bacterial glutamic peptidase Kenneth Jensen1,2*, Peter R Østergaard1, Reinhard Wilting1, Søren F Lassen1 Abstract Background: Glutamic peptidases, from the MEROPS family G1, are a distinct group of peptidases characterized by a catalytic dyad consisting of a glutamate and a glutamine residue, optimal activity at acidic pH and insensitivity towards the microbial derived protease inhibitor, pepstatin. Previously, only glutamic peptidases derived from filamentous fungi have been characterized. Results: We report the first characterization of a bacterial glutamic peptidase (pepG1), derived from the thermoacidophilic bacteria Alicyclobacillus sp. DSM 15716. The amino acid sequence identity between pepG1 and known fungal glutamic peptidases is only 24-30% but homology modeling, the presence of the glutamate/ glutamine catalytic dyad and a number of highly conserved motifs strongly support the inclusion of pepG1 as a glutamic peptidase. Phylogenetic analysis places pepG1 and other putative bacterial and archaeal glutamic peptidases in a cluster separate from the fungal glutamic peptidases, indicating a divergent and independent evolution of bacterial and fungal glutamic peptidases. Purification of pepG1, heterologously expressed in Bacillus subtilis, was performed using hydrophobic interaction chromatography and ion exchange chromatography. The purified peptidase was characterized with respect to its physical properties. Temperature and pH optimums were found to be 60°C and pH 3-4, in agreement with the values observed for the fungal members of family G1. In addition, pepG1 was found to be pepstatin-insensitive, a characteristic signature of glutamic peptidases.
    [Show full text]