Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WO 2013/102674 A2 11 July 2013 (11.07.2013) W P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/102674 A2 11 July 2013 (11.07.2013) W P O P C T (51) International Patent Classification: (74) Agent: CABINET PLASSERAUD; 235 cours Lafayette, C12N 1/15 (2006.01) F-69006 Lyon (FR). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/EP20 13/050 126 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) Date: International Filing BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 4 January 2013 (04.01 .2013) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (30) Priority Data: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, 61/583,559 5 January 2012 (05.01 .2012) US RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (71) Applicants: NOVARTIS INTERNATIONAL PHAR¬ ZM, ZW. MACEUTICAL LTD.; 13 1 Front Street, Hamilton (BM). GLYKOS FINLAND OY [FI/FI]; Viikinkaari 6, FI- (84) Designated States (unless otherwise indicated, for every 00790 Helsinki (FI). -
Molecular Modelling for Enzyme-Inhibition: a Search for a New Treatment for Cataract and New Antimicrobials and Herbicides
Molecular Modelling for Enzyme-Inhibition: A Search for a New Treatment for Cataract and New Antimicrobials and Herbicides A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Biochemistry at the University of Canterbury Christchurch New Zealand Blair Gibb Stuart March 2010 Contents CONTENTS ACKNOWLEDGEMENTS 1 ABSTRACT AND PUBLISHED WORK 2 1 INTRODUCTION 6 1.1 Calpain and the cataract hypothesis 6 1.2 Proteases 7 1.3 Calpains 10 1.4 Structure of the eye, cataract and the importance of an anti-cataract drug 14 1.5 The β-strand: important for protease recognition 15 1.6 Computer modelling programs 17 1.7 References 20 2 DEVELOPMENT OF A CALPAIN MODEL FOR DOCKING STUDIES 27 2.1 Introduction 27 2.1.1 Overview of calpain model development 27 2.2 Calpain X-ray crystal structures 28 2.2.1 The first published structures 28 2.2.2 Calpain constructs 1KXR and 1MDW 30 2.3 Exploring the calpain construct 1KXR to develop a viable model for Glide docking experiments 33 2.4 The InducedFit docking model 37 Contents 2.5 Conclusion 37 2.6 References 39 3 MOLECULAR MODELING OF ACYCLIC INHIBITORS 43 3.1 Introduction 43 3.1.1 Natural inhibitors 43 3.1.2 Modified natural inhibitors 45 3.1.3 Lead compound: SJA-6017 46 3.2 Docking studies of known inhibitors 46 3.2.1 Compounds of Inoue et al 46 3.2.2 Docking results for the Inoue et al compounds 50 3.3 Docking Studies of SJA-6017 analogues 58 3.3.1 N-Heterocyclic dipeptides 58 3.3.2 Docking results of N-heterocyclic dipeptides 60 3.4 Docking studies of diazo and -
Downloading the Nucleotide Sequences and Scanning Them Against the Database
An in silico analysis, purification and partial kinetic characterisation of a serine protease from Gelidium pristoides A dissertation submitted in fulfilment of the requirement for the degree of Master of Science (MSc) Biochemistry by Zolani Ntsata Supervisor: Prof. Graeme Bradley 2020 Department of Biochemistry and Microbiology Declaration I, Zolani Ntsata (201106067), declare that this dissertation, entitled ‘An in silico analysis and kinetic characterisation of proteases from red algae’ submitted to the University of Fort Hare for the Master’s degree (Biochemistry) award, is my original work and has NOT been submitted to any other university. Signature: __________________ I, Zolani Ntsata (201106067), declare that I am highly cognisant of the University of Fort Hare policy on plagiarism and I have been careful to comply with these regulations. Furthermore, all the sources of information have been cited as indicated in the bibliography. Signature: __________________ I, Zolani Ntsata (201106067), declare that I am fully aware of the University of Fort Hare’s policy on research ethics, and I have taken every precaution to comply with these regulations. There was no need for ethical clearance. Signature: _________________ i Dedication I dedicate this work to my grandmother, Nyameka Mabi. ii Acknowledgements Above all things, I would like to give thanks to God for the opportunity to do this project and for the extraordinary strength to persevere in spite of the challenges that came along. I am thankful to my family, especially my grandmother, for her endless support. I would also like to acknowledge Prof Graeme Bradley for his supervision and guidance. Thanks to my friends and colleagues, especially Yanga Gogela and Ntombekhaya Nqumla, and the plant stress group for their help and support. -
Schneider-Dissertation-2019
Biosynthetic Investigation, Synthesis, and Bioactivity Evaluation of Putative Peptide Aldehyde Natural Products From the Human Gut Microbiota The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Schneider, Benjamin Aaron. 2019. Biosynthetic Investigation, Synthesis, and Bioactivity Evaluation of Putative Peptide Aldehyde Natural Products From the Human Gut Microbiota. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029686 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA !"#$%&'()'"*+,&-)$'"./'"#&0+1%&'()$"$0+/&2+!"#/*'"-"'%+3-/45/'"#&+#6+75'/'"-)+7)8'"2)+ 942)(%2)+:/'5;/4+7;#25*'$+6;#<+'()+=5</&+>5'+?"*;#@"#'/+ ! "!#$%%&'()($*+!,'&%&+(&#!! -.! /&+0)1$+!")'*+!234+&$#&'! (*! 54&!6&,)'(1&+(!*7!84&1$%('.!)+#!84&1$3)9!/$*9*:.! ! ! $+!,)'($)9!7;97$991&+(!*7!(4&!'&<;$'&1&+(%! 7*'!(4&!#&:'&&!*7! 6*3(*'!*7!=4$9*%*,4.! $+!(4&!%;-0&3(!*7! 84&1$%('.! ! ! >)'?)'#!@+$?&'%$(.! 8)1-'$#:&A!B"! ! ! ",'$9!CDEF! ! ! G!CDEF!/&+0)1$+!")'*+!234+&$#&'! "99!'$:4(%!'&%&'?&#H! ! ! 6$%%&'()($*+!"#?$%*'I!='*7&%%*'!J1$9.!=H!/)9%K;%!! /&+0)1$+!")'*+!234+&$#&'+ ! !"#$%&'()'"*+,&-)$'"./'"#&0+1%&'()$"$0+/&2+!"#/*'"-"'%+3-/45/'"#&+#6+75'/'"-)+7)8'"2)+ 942)(%2)+:/'5;/4+7;#25*'$+6;#<+'()+=5</&+>5'+?"*;#@"#'/+ -
Identification and Characterization of a Bacterial Glutamic Peptidase
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Copenhagen University Research Information System Identification and characterization of a bacterial glutamic peptidase Jensen, Kenneth; Østergaard, Peter R.; Wilting, Reinhard ; Lassen, Søren F. Published in: BMC Biochemistry DOI: 10.1186/1471-2091-11-47 Publication date: 2010 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Jensen, K., Østergaard, P. R., Wilting, R., & Lassen, S. F. (2010). Identification and characterization of a bacterial glutamic peptidase. BMC Biochemistry, 11(47). https://doi.org/10.1186/1471-2091-11-47 Download date: 07. Apr. 2020 Jensen et al. BMC Biochemistry 2010, 11:47 http://www.biomedcentral.com/1471-2091/11/47 RESEARCH ARTICLE Open Access Identification and characterization of a bacterial glutamic peptidase Kenneth Jensen1,2*, Peter R Østergaard1, Reinhard Wilting1, Søren F Lassen1 Abstract Background: Glutamic peptidases, from the MEROPS family G1, are a distinct group of peptidases characterized by a catalytic dyad consisting of a glutamate and a glutamine residue, optimal activity at acidic pH and insensitivity towards the microbial derived protease inhibitor, pepstatin. Previously, only glutamic peptidases derived from filamentous fungi have been characterized. Results: We report the first characterization of a bacterial glutamic peptidase (pepG1), derived from the thermoacidophilic bacteria Alicyclobacillus sp. DSM 15716. The amino acid sequence identity between pepG1 and known fungal glutamic peptidases is only 24-30% but homology modeling, the presence of the glutamate/ glutamine catalytic dyad and a number of highly conserved motifs strongly support the inclusion of pepG1 as a glutamic peptidase. -
Biotechnology Effect of Protease Enzyme Produced from Lactobacillus Species on the Milk
International Journal of Engineering Research And Management (IJERM) ISSN: 2349- 2058, Volume-05, Issue-10, October 2018 Biotechnology Effect of Protease Enzyme Produced From Lactobacillus Species on the Milk Fekadu Mersha, Dr. Archana Pandita pharmaceutical (Brandelli, A. et. al., 2010). Conventional Abstract— In the world like developing countries there is rapid optimization is the simplest method that helps as a selection growth of human population and urbanization. This growing factors to enhance protease production (Neurath, H., 1984). population uses numerous amounts of milk and milk products in Thus Increasing cheese production and consumption with the day to day life. It demands to improve yield and quality of milk increment of calf rennet price in the world, led to replace calf and milk products through biotechnological techniques like application of enzymes. This paper reviews the protease enzyme rennet to proteases with coagulant properties in the producing Lactobacillus species, production of protease enzyme manufacture of dairy products (Mazorra-Manzano, M. A. et. and the effect of protease enzyme on milk and milk products. al., 2013). An application of proteases enzyme is important in Lactobacillus species are the major part of the lactic acid the food and dairy industry with its ability to coagulate milk bacterial groups. Lactobacillus species have function of protein in cheese manufacturing (Mandujano-Gonzalez, V. et. pathogen control, probiotic, food producer (fermenter) and al., 2013). The aim of this paper is to review the effect of enzyme producer. Protease enzymes are hydrolyzed or protease enzyme that produced from lactobacillus species on breakdown peptide bonds of proteins and can break specific the milk. -
Trichoderma Reesei
RESEARCH ARTICLE Enabling Low Cost Biopharmaceuticals: A Systematic Approach to Delete Proteases from a Well-Known Protein Production Host Trichoderma reesei Christopher P. Landowski1*, Anne Huuskonen1, Ramon Wahl2, Ann Westerholm- Parvinen1, Anne Kanerva3, Anna-Liisa Hänninen3, Noora Salovuori3, Merja Penttilä1, Jari Natunen3, Christian Ostermeier2, Bernhard Helk2, Juhani Saarinen3, Markku Saloheimo1 1 VTT Technical Research Centre of Finland, Espoo, Finland, 2 Novartis Pharma AG, Basel, Switzerland, 3 Glykos Finland Oy, Helsinki, Finland * [email protected] OPEN ACCESS Abstract Citation: Landowski CP, Huuskonen A, Wahl R, Westerholm-Parvinen A, Kanerva A, Hänninen A-L, The filamentous fungus Trichoderma reesei has tremendous capability to secrete proteins. et al. (2015) Enabling Low Cost Biopharmaceuticals: Therefore, it would be an excellent host for producing high levels of therapeutic proteins at A Systematic Approach to Delete Proteases from a Well-Known Protein Production Host Trichoderma low cost. Developing a filamentous fungus to produce sensitive therapeutic proteins reesei. PLoS ONE 10(8): e0134723. doi:10.1371/ requires that protease secretion is drastically reduced. We have identified 13 major journal.pone.0134723 secreted proteases that are related to degradation of therapeutic antibodies, interferon Editor: Monika Schmoll, AIT Austrian Institute of alpha 2b, and insulin like growth factor. The major proteases observed were aspartic, glu- Technology GmbH, AUSTRIA tamic, subtilisin-like, and trypsin-like proteases. The seven most problematic proteases Received: March 27, 2015 were sequentially removed from a strain to develop it for producing therapeutic proteins. Accepted: July 13, 2015 After this the protease activity in the supernatant was dramatically reduced down to 4% of the original level based upon a casein substrate. -
12) United States Patent (10
US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S. -
(12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel Et Al
USOO8561811 B2 (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel et al. (45) Date of Patent: Oct. 22, 2013 (54) SUBSTRATE FOR IMMOBILIZING (56) References Cited FUNCTIONAL SUBSTANCES AND METHOD FOR PREPARING THE SAME U.S. PATENT DOCUMENTS 3,952,053 A 4, 1976 Brown, Jr. et al. (71) Applicants: Christian Gert Bluchel, Singapore 4.415,663 A 1 1/1983 Symon et al. (SG); Yanmei Wang, Singapore (SG) 4,576,928 A 3, 1986 Tani et al. 4.915,839 A 4, 1990 Marinaccio et al. (72) Inventors: Christian Gert Bluchel, Singapore 6,946,527 B2 9, 2005 Lemke et al. (SG); Yanmei Wang, Singapore (SG) FOREIGN PATENT DOCUMENTS (73) Assignee: Temasek Polytechnic, Singapore (SG) CN 101596422 A 12/2009 JP 2253813 A 10, 1990 (*) Notice: Subject to any disclaimer, the term of this JP 2258006 A 10, 1990 patent is extended or adjusted under 35 WO O2O2585 A2 1, 2002 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 13/837,254 Inaternational Search Report for PCT/SG2011/000069 mailing date (22) Filed: Mar 15, 2013 of Apr. 12, 2011. Suen, Shing-Yi, et al. “Comparison of Ligand Density and Protein (65) Prior Publication Data Adsorption on Dye Affinity Membranes Using Difference Spacer Arms'. Separation Science and Technology, 35:1 (2000), pp. 69-87. US 2013/0210111A1 Aug. 15, 2013 Related U.S. Application Data Primary Examiner — Chester Barry (62) Division of application No. 13/580,055, filed as (74) Attorney, Agent, or Firm — Cantor Colburn LLP application No. -
Exploring the Catalytic Significant Residues of Serine Protease Using Substrate-Enriched Residues and a Peptidase Inhibitor
Microbiol. Biotechnol. Lett. (2021), 49(1), 65–74 http://dx.doi.org/10.48022/mbl.2009.09012 pISSN 1598-642X eISSN 2234-7305 Microbiology and Biotechnology Letters Exploring the Catalytic Significant Residues of Serine Protease Using Substrate-Enriched Residues and a Peptidase Inhibitor Zahoor Khan1,2, Maryam Shafique2*, Amir Zeb3,4, Nusrat Jabeen1, Sehar Afshan Naz2, and Arif Zubair5 1Department of Microbiology, University of Karachi 75270, Pakistan 2Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Karachi 75300, Pakistan 3Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea 4College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea 5Department of Environmental Sciences, Federal Urdu University of Arts, Science and Technology, Karachi 75300, Pakistan Received: September 28, 2020 / Revised: November 4, 2020 / Accepted: November 30, 2020 Serine proteases are the most versatile proteolytic enzymes with tremendous applications in various industrial processes. This study was designed to investigate the biochemical properties, critical residues, and the catalytic potential of alkaline serine protease using in-silico approaches. The primary sequence was analyzed using ProtParam, SignalP, and Phyre2 tools to investigate biochemical properties, signal peptide, and secondary structure, respectively. The three-dimensional structure of the enzyme was modeled using the MODELLER program present in Discovery Studio followed by Molecular Dynamics simulation using GROMACS 5.0.7 package with CHARMM36m force field. The proteolytic potential was measured by performing docking with casein- and keratin-enriched residues, while the effect of the inhibitor was studied using phenylmethylsulfonyl fluoride, (PMSF) applying GOLDv5.2.2. Molecular weight, instability index, ali- phatic index, and isoelectric point for serine protease were 39.53 kDa, 27.79, 82.20 and 8.91, respectively. -
Characterisation of the Potential of Probiotics Or Their Extracts As Therapy for Skin
Characterisation of the potential of probiotics or their extracts as therapy for skin A thesis submitted to the University of Manchester for the Degree of Doctor of Philosophy in the Faculty of Medical and Human Sciences 2014 Walaa Mohammedsaeed, Master of Science (MSc) School of Medicine Table of Contents Contents Table of Contents .............................................................................................................. 2 Table of Figures ................................................................................................................ 5 List of Tables .................................................................................................................... 8 List of Abbreviations ........................................................................................................ 9 1 Abstract ....................................................................................................................... 11 2 Declaration .................................................................................................................. 12 3 Copyright Statement .................................................................................................... 13 4 Acknowledgements ...................................................................................................... 14 5 The author ................................................................................................................... 15 6 Publications arising from this Thesis ........................................................................... -
Antioxidant Peptides Encrypted in Flaxseed Proteome: an in Silico
Food Science and Human Wellness 8 (2019) 306–314 Contents lists available at ScienceDirect Food Science and Human Wellness jo urnal homepage: www.elsevier.com/locate/fshw Antioxidant peptides encrypted in flaxseed proteome: An in silico assessment a b,c a,∗ Dawei Ji , Chibuike C. Udenigwe , Dominic Agyei a Department of Food Science, University of Otago, Dunedin 9054, New Zealand b School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada c Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada a r t i c l e i n f o a b s t r a c t Article history: Flaxseed proteins and antioxidant peptides (AP) encrypted in their sequences were analysed in silico with Received 16 June 2019 a range of bioinformatics tools to study their physicochemical properties, allergenicity, and toxicity. Nine Received in revised form 8 August 2019 proteases (digestive, plant and microbial sources) were assessed for their ability to release known APs Accepted 12 August 2019 from 23 mature flaxseed storage proteins using the BIOPEP database. The families of proteins identified Available online 13 August 2019 were predominantly globulins, oleosins, and small amount of conlinin. Overall, 253 APs were identified from these proteins. More peptides were released by enzymatic hydrolysis from the globulins than those Keywords: from oleosins and conlinin. Compared with other enzymes studied, the plant proteases (papain, ficin, and Bioactive peptides bromelain) were found to be superior to releasing APs from the flaxseed proteins. Analysis of toxicity Antioxidant peptides by ToxinPred showed that none of the peptides released was toxic.