Obelia Longissima Class: Hydrozoa, Hydroidolina Order: Leptothecata a Floating Dock Hydroid Family: Campanularidae

Total Page:16

File Type:pdf, Size:1020Kb

Obelia Longissima Class: Hydrozoa, Hydroidolina Order: Leptothecata a Floating Dock Hydroid Family: Campanularidae Phylum: Cnidaria Obelia longissima Class: Hydrozoa, Hydroidolina Order: Leptothecata A floating dock hydroid Family: Campanularidae Taxonomy: Obelia longissima was first green (Puget Sound) (Arai and Brinckmann- described by Pallas in 1766. Synonymous Voss 1980). include Campanularia flabellata, Gonothyraea Body: longissima, Laomeda flabellata, L. longissima, Bell: The bell is very thin and O. flabellata, Sertularia longissima (WoRMS flat, with a small stomach, no peduncle, and a 2015). O. lucifera may also be a synonym rudimentary velum (Fig. 3). It is eversible (Arai (especially of the medusa form), but further and Brinckmann-Voss 1980). research is necessary to be sure. There has Radial Canals: There are four been much debate over the species identities straight radial canals, each containing a within the genus Obelia (Cornelius 1975; Arai globular gonad (Fig. 3). and Brinckmann-Voss 1980). The taxonomy Ring Canal: The ring canal is above was taken from the World Register of narrow, with eight statocysts (balance Marine Species (WoRMS 2015). In addition to structures) (Arai and Brinckmann-Voss 1980) confusion in the lower taxonomy, the higher and no ocelli (Fig. 3). taxonomy has undergone revision. The order Mouth: The mouth has 4 Hydroida was determined to be synonymous small, simple lips (Arai and Brinckmann-Voss with subclass Hydroidolina in 2004 (Schuchert 1980); in mature specimens these contain 2015). nematocysts (Boero et al. 2007). Tentacles: Tentacles are Description numerous, solid (as opposed to hollow), and General Morphology: Obelia longissima has short. There are usually 16-26 in young two forms. The sexual form is a gelatinous medusae (Ricketts et al. 1985; Mills and hydromedusa. It has radial canals that run Strathmann 1987), and more develop as they from the top of the peduncle to the bell mature. margin, where they are connected by a ring Velum: Reduced (Arai and canal. Suspended from the inside of the bell Brinckmann-Voss 1980) by a peduncle is the manubrium, or mouth. A Gonads: There are 4 round gonads velum rings the inside of the bell margin (Fig. on the middle of each radial canal (Arai and 3). Its asexual morphology is a large polyp. Brinckmann-Voss 1980). Each polyp has a stem (hydrocaulus), and Polyp: most have a sheathed (thecate) hydranth with Size: Each colony can be up to 60 cm a mouth (manubrium), stomach, and long (Mills et al. 2007) (Fig. 1). Older side tentacles. Rather than having hydranths, branches are all about the same length some polyps have gonothecae (Fig. 2). (towards the base), but younger branches Medusa: gradually get shorter near the growing tip Size: Newly-released medusae are (Mills et al. 2007). about 0.5 mm in diameter; as they mature, Color: The polyp is transparent white they grow to 5 mm in diameter (Cornelius when young, while old, mature colonies look 1975; Kozloff 1983). dirty. Stems are brown to black (Mills el al. Color: Medusae are primarily clear. 2007). Their tentacle bases, mouths, gonads, and Body: Lacks nematophores (non- stomachs are sometimes yellow to brown, feeding defensive polyps) (Mills et al. 2007) while their gonads and mouths can be bright Pedicel: Stems are thread-like and often monosiphonic (consist of a single Piazzola, C.D. and T.C. Hiebert. 2015. Obelia longissima. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: http://hdl.handle.net/1794/12643 and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] tube or row of cells) except sometimes near (Fig. 4a). Colony size is also a difference; the the base. Internodes of the stem are straight maximum size of an O. geniculata colony is 2 or curve very slightly (Mills et al. 2007). Each cm (Cornelius 1975), much smaller than the stem has many branches, which are ringed at 60 cm maximum of O. longissima. This size the joints, alternate, and have short stalks also gives O. geniculata a delicate white and (Fig. 2). Stems hold many hydranths rather fuzzy appearance (Kozloff 1983). The species than just one (Mills et al. 2007). are similar in that they both have ringed Hydranth: The hydranth is branches and axillary gonothecae that are covered by a theca (hydrothecae), which is urn-shaped, with a raised center and a short campanulate (bell-shaped, hence family ringed stalk. Their hydromedusae are also name) and deep enough to contain the similar enough that they are often not hydranth when contracted. The margin is identified past the genus level (Arai and crenulate rather than cusped, and lacks an Brinckmann-Voss 1980). operculum (Mills et al. 2007). Each hydranth Obelia dichotoma is very similar to O. is on the end of a long, ringed pedicels (Fig. longissima. Both have slender and annulated 2d, f). stems, though O. dichotoma has curved Gonangium: The reproductive internodes and is irregularly branched while buds (gonotheca, gonangia) asexually O. longissima has a straight stem and is produce medusae (Fig. 2c) (Ricketts et al. alternately branched. These are essentially 1985). These buds are axillary (i.e., grow out the only differences. Both have hydrothecae of the angle between the stem and the that are broad, bell-shaped, with slightly hydrotheca). They are oval-shaped and sinuated margins; their gonothecae are smooth, with a raised central aperture (Parker axillar, slender, and smooth. They widen from et al. 1951) and a terminal collar (Mills et al. the base, and end in a “raised, somewhat 2007). conical aperture” (Russell 1953) (Fig. 4b). No Cnidae: one has yet been able to definitively identify differences in the hydromedusae forms. Possible Misidentifications Other hydroids, which have stalks, and The family Campanulariidae includes thecae within which their hydranths can be leptomedusae possessing four radial canals, retracted (Fig. 2b) include those of the and lacking excretory pores and marginal or families Campanulinidae and Phialellidae lateral cirri. The polyps in the family have a (Rees and Hand 1975), which are very small club or trumpet-shaped manubrium, and lack and have tubular thecae with a pointed operculum. The genus Obelia includes operculum. Other Campanularidae (bell- species that have a nearly flat and eversible shaped hydrothecae) include Phialidium sp. bell, a reduced velum, eight statocysts, and and Campanularia sp. both of which have solid (rather than hollow) tentacles (Arai and colonies of less than 2 cm in height, and are Brinckmann-Voss 1980). Within the genus, rarely branched. the species look so similar (especially in the The genus most closely related to hydromedusa stage) that it is common for Obelia is Gonothyraea, which does not researchers to identify only to the genus level release free medusae, but retains them within (Arai and Brinckmann-Voss 1980). the gonotheca (Kozloff 1983). There are two very closely related species of Obelia: (Fig. 4) Ecological Information Obelia geniculata has a central zig zag Range: The type locality is Belgium (Ralph stem, thickened at the joints, while O. 1957). The genus Obelia is found worldwide. longissima has a much straighter and Obelia longissima is found from Alaska to San narrower stem. Obelia geniculata has a rather Pedro, California (Ricketts et al. 1985). conical hydrothecae (as opposed to bell- Local Distribution: All three closely related shaped) that is only slightly longer than wide, species (O. longissima, O. geniculata, O. and has plain margins rather than cusped dictotoma) are found from northern California Piazzola, C.D. and T.C. Hiebert. 2015. Obelia longissima. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. to Puget Sound, Washington; other species al. 1985). Medusa blooms and subsequent may be present as well, some of them massive shoreline settlement are not common introduced (Rees and Hand 1975). but do occasionally occur (Genzano et al. Habitat: This is a frequent fouling organism, 2008). common in harbors (Mills et al. 2007), on docks, kelp, and floats in bays, and in Life-History Information eelgrass beds (Elkhorn Slough, CA) (Ricketts Reproduction: Like other hydroids, O. et al. 1985). Healthy colonies are found on longissima has both a sexual reproductive exposed pilings, particularly where water is cycle and an asexual one. In sexual clean and fast-moving. Medusae are found reproduction, the medusae produce either floating, probably not far from their hydroid eggs or sperm (dioecious). After the egg is parents. They probably are not light- fertilized, it develops into a planula larva, dependent for vertical distribution (Parker and which settles and becomes the polyp stage. Haswell 1951). Polyps usually do not grow in In asexual reproduction, the gonangia of the pollution or direct sunlight (Ricketts et al. polyp bud to form juvenile medusae. The 1985). production of medusae by the polyp may be Salinity: Collected at 30, though it can tied to lunar periodicity: specifically, to the tolerate some fresh water (Ricketts et al. third week of the moon (Elmhirst 1925, in 1985). An Atlantic species, O. bidentata was Russell 1953). The complete life cycle found to have a wide distribution across the (swimming larvae to hydroid colony estuarine gradient, down to 0.5. O. dichotoma discharging medusae) takes one month was found down to 12 (Cornelius 1975). (MacGinitie and MacGinitie 1968). Lab reared Temperature: Specimens have been found in medusae are sexually mature six days after cold and temperate waters; settling may occur emergence (Russell 1953). O. longissima are in cooler temperatures during the year present all year, but are most numerous in (Standing 1976).
Recommended publications
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Hydrozoa of the Eurasian Arctic Seas 397 S
    THE ARCTIC SEAS CI imatology, Oceanography, Geology, and Biology Edited by Yvonne Herman IOm51 VAN NOSTRAND REINHOLD COMPANY ~ -----New York This work relates to Department of the Navy Grant NOOOI4-85- G-0252 issued by the Office of Naval Research. The United States Government has a royalty-free license throughout the world in all copyrightable material contained herein. Copyright © 1989 by Van Nostrand Reinhold Softcover reprint of the hardcover 1st edition 1989 Library of Congress Catalog Card Number 88-33800 ISBN-13 :978-1-4612-8022-4 e-ISBN-13: 978-1-4613-0677-1 DOI: 10.1007/978-1-4613-0677-1 All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems-without written permission of the publisher. Designed by Beehive Production Services Van Nostrand Reinhold 115 Fifth Avenue New York, New York 10003 Van Nostrand Reinhold (International) Limited 11 New Fetter Lane London EC4P 4EE, England Van Nostrand Reinhold 480 La Trobe Street Melbourne, Victoria 3000, Australia Nelson Canada 1120 Birchmount Road Scarborough, Ontario MIK 5G4, Canada 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Library of Congress Cataloging in Publication Data The Arctic Seas. Includes index. 1. Oceanography-Arctic Ocean. 2. Geology-ArctiC Ocean. 1. Herman, Yvonne. GC401.A76 1989 551.46'8 88-33800 ISBN-13: 978-1-4612-8022-4 For Anyu Contents Preface / vii Contributors / ix 1.
    [Show full text]
  • Zoology Diversity of Invertebrates Structure
    ZOOLOGY DIVERSITY OF INVERTEBRATES STRUCTURE OF OBELIA --------------------------------------------------------------------------- Introduction: Obelia is worldwide in distribution in the form of plant and is observed in white or light brown in colour in the form of fur in the seas and oceans. It is usually known as Sea-fur. Its name is derived from the Greek word called ‘obelias’,means loaf baked on a spit. • Phylum: Colenterata • Class: Hydrozoa • Order: Hydroida • Sub-order: Leptomedusae • Genus: Obelia • Species: geniculata As it is having three forms like polyp, medusa and blasto style, it is described as trimorphic hydrozoan. Among many species like O. geniculate, O. longissimi, O. bidentata, O. dichotoma. O. geniculate is the most common example studied. Habit and Habitat of Obelia: It is sedentary, marine colonial form present throughout the world on the surfaces of sea weeds, rocks, wooden piles, molluscan shells etc., in the shallow water up to 80-100 meters depth. It is observed in both sexual forms as hydroid colony and asexual form as medusa. Structure of Hydroid Colony: Hydroid colony of obelia is sensitive, transparent consists of horizontal hydrorhiza and vertical hydrocaulus. Hydrorhiza: Hydrorhiza is horizontal thread like root attached to the substratum. It is hollow tube like and gives of vertical branches called hydrocaulus. The tubular part of hydrorhiza are also called stolons. Hydrocaulus: Hydrocaulus are vertical branches arising from hydrorhiza for a length of 2-3 cms. These are also hollow with short lateral branches alternatively in cymose manner. Each alternate branch bears terminal polyp zooids. OBELIA COLONY Each ultimate branch terminates in nutritive zooids called hydranth and axils of the older polyps consists of reproductive zooids called blastostyles or gonangia, thus obelia colony is dimorphic and when gonangia produces saucer shaped buds as a result of asexual reproduction and develops into sexual zooids called medusae, obelia colony becomes trimorphic colony.
    [Show full text]
  • Preliminary Checklist of Extant Endemic Species and Subspecies of the Windward Dutch Caribbean (St
    Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos, P.A.J. Bakker, R.J.H.G. Henkens, J. A. de Freitas, A.O. Debrot Wageningen University & Research rapport C067/18 Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos1, P.A.J. Bakker2, R.J.H.G. Henkens3, J. A. de Freitas4, A.O. Debrot1 1. Wageningen Marine Research 2. Naturalis Biodiversity Center 3. Wageningen Environmental Research 4. Carmabi Publication date: 18 October 2018 This research project was carried out by Wageningen Marine Research at the request of and with funding from the Ministry of Agriculture, Nature and Food Quality for the purposes of Policy Support Research Theme ‘Caribbean Netherlands' (project no. BO-43-021.04-012). Wageningen Marine Research Den Helder, October 2018 CONFIDENTIAL no Wageningen Marine Research report C067/18 Bos OG, Bakker PAJ, Henkens RJHG, De Freitas JA, Debrot AO (2018). Preliminary checklist of extant endemic species of St. Martin, St. Eustatius, Saba and Saba Bank. Wageningen, Wageningen Marine Research (University & Research centre), Wageningen Marine Research report C067/18 Keywords: endemic species, Caribbean, Saba, Saint Eustatius, Saint Marten, Saba Bank Cover photo: endemic Anolis schwartzi in de Quill crater, St Eustatius (photo: A.O. Debrot) Date: 18 th of October 2018 Client: Ministry of LNV Attn.: H. Haanstra PO Box 20401 2500 EK The Hague The Netherlands BAS code BO-43-021.04-012 (KD-2018-055) This report can be downloaded for free from https://doi.org/10.18174/460388 Wageningen Marine Research provides no printed copies of reports Wageningen Marine Research is ISO 9001:2008 certified.
    [Show full text]
  • List of Marine Alien and Invasive Species
    Table 1: The list of 96 marine alien and invasive species recorded along the coastline of South Africa. Phylum Class Taxon Status Common name Natural Range ANNELIDA Polychaeta Alitta succinea Invasive pile worm or clam worm Atlantic coast ANNELIDA Polychaeta Boccardia proboscidea Invasive Shell worm Northern Pacific ANNELIDA Polychaeta Dodecaceria fewkesi Alien Black coral worm Pacific Northern America ANNELIDA Polychaeta Ficopomatus enigmaticus Invasive Estuarine tubeworm Australia ANNELIDA Polychaeta Janua pagenstecheri Alien N/A Europe ANNELIDA Polychaeta Neodexiospira brasiliensis Invasive A tubeworm West Indies, Brazil ANNELIDA Polychaeta Polydora websteri Alien oyster mudworm N/A ANNELIDA Polychaeta Polydora hoplura Invasive Mud worm Europe, Mediterranean ANNELIDA Polychaeta Simplaria pseudomilitaris Alien N/A Europe BRACHIOPODA Lingulata Discinisca tenuis Invasive Disc lamp shell Namibian Coast BRYOZOA Gymnolaemata Virididentula dentata Invasive Blue dentate moss animal Indo-Pacific BRYOZOA Gymnolaemata Bugulina flabellata Invasive N/A N/A BRYOZOA Gymnolaemata Bugula neritina Invasive Purple dentate mos animal N/A BRYOZOA Gymnolaemata Conopeum seurati Invasive N/A Europe BRYOZOA Gymnolaemata Cryptosula pallasiana Invasive N/A Europe BRYOZOA Gymnolaemata Watersipora subtorquata Invasive Red-rust bryozoan Caribbean CHLOROPHYTA Ulvophyceae Cladophora prolifera Invasive N/A N/A CHLOROPHYTA Ulvophyceae Codium fragile Invasive green sea fingers Korea CHORDATA Actinopterygii Cyprinus carpio Invasive Common carp Asia CHORDATA Ascidiacea
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Cnidaria: Hydrozoa) Associated to a Subtropical Sargassum Cymosum (Phaeophyta: Fucales) Bed
    ZOOLOGIA 27 (6): 945–955, December, 2010 doi: 10.1590/S1984-46702010000600016 Seasonal variation of epiphytic hydroids (Cnidaria: Hydrozoa) associated to a subtropical Sargassum cymosum (Phaeophyta: Fucales) bed Amanda Ferreira Cunha1 & Giuliano Buzá Jacobucci2 1 Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Travessa 14, 101, Cidade Universitária, 05508-900 São Paulo, SP, Brazil. E-mail: [email protected] 2 Instituto de Biologia, Universidade Federal de Uberlândia. Rua Ceará, Campus Umuarama, 38402-400 Uberlândia, MG, Brazil. E-mail: [email protected] ABSTRACT. Hydroids are broadly reported in epiphytic associations from different localities showing marked seasonal cycles. Studies have shown that the factors behind these seasonal differences in hydroid richness and abundance may vary significantly according to the area of study. Seasonal differences in epiphytic hydroid cover and richness were evaluated in a Sargassum cymosum C. Agardh bed from Lázaro beach, at Ubatuba, Brazil. Significant seasonal differences were found in total hydroid cover, but not in species richness. Hydroid cover increased from March (early fall) to February (summer). Most of this pattern was caused by two of the most abundant species: Aglaophenia latecarinata Allman, 1877 and Orthopyxis sargassicola (Nutting, 1915). Hydroid richness seems to be related to S. cymosum size but not directly to its biomass. The seasonal differences in hydroid richness and algal cover are shown to be similar to other works in the study region and in the Mediterranean. Seasonal recruitment of hydroid species larvae may be responsible for their seasonal differences in algal cover, although other factors such as grazing activity of gammarid amphipods on S.
    [Show full text]
  • Hydrozoan Insights in Animal Development and Evolution Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston
    Hydrozoan insights in animal development and evolution Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston To cite this version: Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston. Hydrozoan insights in animal development and evolution. Current Opinion in Genetics and Development, Elsevier, 2016, Devel- opmental mechanisms, patterning and evolution, 39, pp.157-167. 10.1016/j.gde.2016.07.006. hal- 01470553 HAL Id: hal-01470553 https://hal.sorbonne-universite.fr/hal-01470553 Submitted on 17 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Current Opinion in Genetics and Development 2016, 39:157–167 http://dx.doi.org/10.1016/j.gde.2016.07.006 Hydrozoan insights in animal development and evolution Lucas Leclère, Richard R. Copley, Tsuyoshi Momose and Evelyn Houliston Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV), 181 chemin du Lazaret, 06230 Villefranche‐sur‐mer, France. Corresponding author: Leclère, Lucas (leclere@obs‐vlfr.fr). Abstract The fresh water polyp Hydra provides textbook experimental demonstration of positional information gradients and regeneration processes. Developmental biologists are thus familiar with Hydra, but may not appreciate that it is a relatively simple member of the Hydrozoa, a group of mostly marine cnidarians with complex and diverse life cycles, exhibiting extensive phenotypic plasticity and regenerative capabilities.
    [Show full text]
  • Midwater Data Sheet
    MIDWATER TRAWL DATA SHEET RESEARCH VESSEL__________________________________(1/20/2013Version*) CLASS__________________;DATE_____________;NAME:_________________________; DEVICE DETAILS___________ LOCATION (OVERBOARD): LAT_______________________; LONG___________________________ LOCATION (AT DEPTH): LAT_______________________; LONG______________________________ LOCATION (START UP): LAT_______________________; LONG______________________________ LOCATION (ONBOARD): LAT_______________________; LONG______________________________ BOTTOM DEPTH_________; DEPTH OF SAMPLE:____________; DURATION OF TRAWL___________; TIME: IN_________AT DEPTH________START UP__________SURFACE_________ SHIP SPEED__________; WEATHER__________________; SEA STATE_________________; AIR TEMP______________ SURFACE TEMP__________; PHYS. OCE. NOTES______________________; NOTES_____________________________ INVERTEBRATES Lensia hostile_______________________ PHYLUM RADIOLARIA Lensia havock______________________ Family Tuscaroridae “Round yellow ones”___ Family Hippopodiidae Vogtia sp.___________________________ PHYLUM CTENOPHORA Family Prayidae Subfamily Nectopyramidinae Class Nuda "Pointed siphonophores"________________ Order Beroida Nectadamas sp._______________________ Family Beroidae Nectopyramis sp.______________________ Beroe abyssicola_____________________ Family Prayidae Beroe forskalii________________________ Subfamily Prayinae Beroe cucumis _______________________ Craseoa lathetica_____________________ Class Tentaculata Desmophyes annectens_________________ Subclass
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Hydroids and Hydromedusae of Southern Chesapeake Bay
    W&M ScholarWorks Reports 1971 Hydroids and hydromedusae of southern Chesapeake Bay Dale Calder Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, Oceanography Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Recommended Citation Calder, D. (1971) Hydroids and hydromedusae of southern Chesapeake Bay. Special papers in marine science; No. 1.. Virginia Institute of Marine Science, William & Mary. http://doi.org/10.21220/V5MS31 This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. LIST OF TABLES Table Page Data on Moerisia lyonsi medusae ginia ...................... 21 rugosa medusae 37 Comparison of hydroids from Virginia, with colonies from Passamaquoddy Bay, New Brunswick.. .................. Hydroids reported from the Virginia Institute of Marine Science (Virginia Fisheries Laboratory) collection up to 1959 ................................................ Zoogeographical comparisons of the hydroid fauna along the eastern United States ............................... List of hydroids from Chesapeake Bay, with their east coast distribution ...me..................................O 8. List of hydromedusae known from ~hesa~eakeBay and their east coast distribution .................................. LIST OF FIGURES Figure Page 1. Southern Chesapeake Bay and adjacent water^.............^^^^^^^^^^^^^^^^^^^^^^^^ 2. Oral view of Maeotias inexpectata ........e~~~~~e~~~~~~a~~~~~~~~~~~o~~~~~~e 3. rature at Gloucester Point, 1966-1967..........a~e.ee~e~~~~~~~aeaeeeeee~e 4. Salinity at Gloucester Point, 1966-1967..........se0me~BIBIeBIBI.e.BIBIBI.BIBIBIs~e~eeemeea~ LIST OF PLATES Plate Hydroids, Moerisia lyonsi to Cordylophora caspia a a e..a a * a 111 ...................
    [Show full text]