Moodle Interface
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Zoology Diversity of Invertebrates Structure
ZOOLOGY DIVERSITY OF INVERTEBRATES STRUCTURE OF OBELIA --------------------------------------------------------------------------- Introduction: Obelia is worldwide in distribution in the form of plant and is observed in white or light brown in colour in the form of fur in the seas and oceans. It is usually known as Sea-fur. Its name is derived from the Greek word called ‘obelias’,means loaf baked on a spit. • Phylum: Colenterata • Class: Hydrozoa • Order: Hydroida • Sub-order: Leptomedusae • Genus: Obelia • Species: geniculata As it is having three forms like polyp, medusa and blasto style, it is described as trimorphic hydrozoan. Among many species like O. geniculate, O. longissimi, O. bidentata, O. dichotoma. O. geniculate is the most common example studied. Habit and Habitat of Obelia: It is sedentary, marine colonial form present throughout the world on the surfaces of sea weeds, rocks, wooden piles, molluscan shells etc., in the shallow water up to 80-100 meters depth. It is observed in both sexual forms as hydroid colony and asexual form as medusa. Structure of Hydroid Colony: Hydroid colony of obelia is sensitive, transparent consists of horizontal hydrorhiza and vertical hydrocaulus. Hydrorhiza: Hydrorhiza is horizontal thread like root attached to the substratum. It is hollow tube like and gives of vertical branches called hydrocaulus. The tubular part of hydrorhiza are also called stolons. Hydrocaulus: Hydrocaulus are vertical branches arising from hydrorhiza for a length of 2-3 cms. These are also hollow with short lateral branches alternatively in cymose manner. Each alternate branch bears terminal polyp zooids. OBELIA COLONY Each ultimate branch terminates in nutritive zooids called hydranth and axils of the older polyps consists of reproductive zooids called blastostyles or gonangia, thus obelia colony is dimorphic and when gonangia produces saucer shaped buds as a result of asexual reproduction and develops into sexual zooids called medusae, obelia colony becomes trimorphic colony. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Cnidaria: Hydrozoa) Associated to a Subtropical Sargassum Cymosum (Phaeophyta: Fucales) Bed
ZOOLOGIA 27 (6): 945–955, December, 2010 doi: 10.1590/S1984-46702010000600016 Seasonal variation of epiphytic hydroids (Cnidaria: Hydrozoa) associated to a subtropical Sargassum cymosum (Phaeophyta: Fucales) bed Amanda Ferreira Cunha1 & Giuliano Buzá Jacobucci2 1 Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Travessa 14, 101, Cidade Universitária, 05508-900 São Paulo, SP, Brazil. E-mail: [email protected] 2 Instituto de Biologia, Universidade Federal de Uberlândia. Rua Ceará, Campus Umuarama, 38402-400 Uberlândia, MG, Brazil. E-mail: [email protected] ABSTRACT. Hydroids are broadly reported in epiphytic associations from different localities showing marked seasonal cycles. Studies have shown that the factors behind these seasonal differences in hydroid richness and abundance may vary significantly according to the area of study. Seasonal differences in epiphytic hydroid cover and richness were evaluated in a Sargassum cymosum C. Agardh bed from Lázaro beach, at Ubatuba, Brazil. Significant seasonal differences were found in total hydroid cover, but not in species richness. Hydroid cover increased from March (early fall) to February (summer). Most of this pattern was caused by two of the most abundant species: Aglaophenia latecarinata Allman, 1877 and Orthopyxis sargassicola (Nutting, 1915). Hydroid richness seems to be related to S. cymosum size but not directly to its biomass. The seasonal differences in hydroid richness and algal cover are shown to be similar to other works in the study region and in the Mediterranean. Seasonal recruitment of hydroid species larvae may be responsible for their seasonal differences in algal cover, although other factors such as grazing activity of gammarid amphipods on S. -
SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017. -
CNIDARIA Corals, Medusae, Hydroids, Myxozoans
FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell. -
Special Bulletin
A^^;^^ ifm^, %^D*^(^i»i(*t^'^: !;u>^*«*»?.j^g^«^ ^^^' ^f^r&^l ^ Qihuh^"^ f <^i*^M*i ;^p>'*,^' #*^»» S^sik^^M^"^ cemi \% ccc r?< CC C<^<^ C/<" < ( c cc € t €L< C Ccf Vfi c^rcrc ^^crx c r*f rf^ '1-'^ if tf ^' 4<3s ^ * fc< jrt ii% 4 C c?r fr c c ^ Jl "4r' t CC^iL tccr €f((C4fii cTiC .y cv< 5rpiii4 fed «i5*C t?^C <?C< ' tC^^( C(K.:Cfe CfCr € f CWC e <r 41:^ iT V rA € • i ^<* 4»iC<a 41 ^' ^«rTer .'• «^^ 4ii/ r4f jaK4i 11. ^^^< V <«45i:4HlM 'fer^ '. -#' ''< 1 <_^K r 43^y 41 ^ CCVVV r ±f-S «.^/ Yin 4 SMITHSONIAN INSTITUTION. UNITED STATES NATIONAL MUSEUM. SPECIAL BULLETIN. AMEEICAN HTDROIDS FA-RT III. THE CAMPANULAKID^ AND THE BONNEVIELLIDJE, WITH TWENTY-SEVEN PLATES. CHARLES CLEVELAND NUTTING, PROFESSOR OF ZOOLOaY, STATE UNIVERSITY OF IOWA. WASHINGTON: GOVERNMENT PRINTING OPPICE. 1915 BULLETIN OF THE UNITED STATES NATIONAL MUSEUM. Issued April 10, 1915. INTRODUCTORY NOTE. During the 10 years which have elapsed since the publication of Part II of this work, in 1904, a number of new workers have arisen in the field of marine zoology and not a few of these have produced valuable works on the H5^droida and described many new species of Cam- panularidse. It remains true, however, that no one has attempted to give a comprehensive account of American forms, although the west coast of North America has been the recipient of special attention by several able writers, such as Harry Beal Torrey and Charles McLean Fraser. -
Hydroids and Hydromedusae of Southern Chesapeake Bay
W&M ScholarWorks Reports 1971 Hydroids and hydromedusae of southern Chesapeake Bay Dale Calder Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, Oceanography Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Recommended Citation Calder, D. (1971) Hydroids and hydromedusae of southern Chesapeake Bay. Special papers in marine science; No. 1.. Virginia Institute of Marine Science, William & Mary. http://doi.org/10.21220/V5MS31 This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. LIST OF TABLES Table Page Data on Moerisia lyonsi medusae ginia ...................... 21 rugosa medusae 37 Comparison of hydroids from Virginia, with colonies from Passamaquoddy Bay, New Brunswick.. .................. Hydroids reported from the Virginia Institute of Marine Science (Virginia Fisheries Laboratory) collection up to 1959 ................................................ Zoogeographical comparisons of the hydroid fauna along the eastern United States ............................... List of hydroids from Chesapeake Bay, with their east coast distribution ...me..................................O 8. List of hydromedusae known from ~hesa~eakeBay and their east coast distribution .................................. LIST OF FIGURES Figure Page 1. Southern Chesapeake Bay and adjacent water^.............^^^^^^^^^^^^^^^^^^^^^^^^ 2. Oral view of Maeotias inexpectata ........e~~~~~e~~~~~~a~~~~~~~~~~~o~~~~~~e 3. rature at Gloucester Point, 1966-1967..........a~e.ee~e~~~~~~~aeaeeeeee~e 4. Salinity at Gloucester Point, 1966-1967..........se0me~BIBIeBIBI.e.BIBIBI.BIBIBIs~e~eeemeea~ LIST OF PLATES Plate Hydroids, Moerisia lyonsi to Cordylophora caspia a a e..a a * a 111 ................... -
Phylum Cnidaria-Radiate Animals
Phylum Cnidaria-Radiate Animals • Tissue level of organization • 2 Germ layers • Hydrostatic Skeleton • Gastrovascular Cavity- for digestion • Polymorphism • Polyp (sessile) and Medusa (free-living) stages Class Hydrozoa 1. Lifestyle- Both polyp and medusa stages dominant 2. Reproduction- asexual by budding or sexual 3. 10 tentacles 4. Ex: Obelia, Obelia medusae, Hydra, Hydra reproductive stages Class Scyphozoa- True Jellyfish 1. Lifestyle- Solitary- Medusa-stage dominant 2. Ex: Aurelia, Aurelia lifecycle Class Anthozoa 1. Lifestyle- Polyp stage dominant 2. Gastrovascular cavity divided into mesenteries 3. Ex: Mertidium, Metridium dissection Return to original outline Return to phyla outline Class Hydrozoa Hydra C.S L.S 100X W.M Male Female Return to original outline Return to phyla outline Hydra 40X W.M Return to original outline Return to phyla outline Budding 40X Spermary Ovary 40X Return to original outline Return to phyla outline Obelia Obelia Colony 40X Return to original outline Return to phyla outline Medusae 100x Return to original outline Return to phyla outline Class Scyphozoa Aurelia Lifecycle Planula 100x Schyphistoma 100x Strobila 100x Ephrya 40x Return to original outline Return to phyla outline Aurelia Return to original outline Return to phyla outline Class Anthozoa Metridium LS CS Dissection scope Return to original outline Return to phyla outline Metridium Return to original outline Return to phyla outline Phylum Porifera-The Sponges • Multicellular • Cellular level of organization • No division of labor among cells • No body systems, no organs, no mouth/digestive tract • No germ layers • Pores and canal systems Class Calcarea 1. Spicule type- calcium carbonate 2. Canal system- asconoid, leuconoid and syconoid 3. -
Hydrozoa, Cnidaria) in the Collection of the Zoological Museum, University of Tel-Aviv, Israel
Report on hydroids (Hydrozoa, Cnidaria) in the collection of the Zoological Museum, University of Tel-Aviv, Israel W. Vervoort Vervoort, W. Report on hydroids (Hydrozoa, Cnidaria) in the collection of the Zoological Museum, University of Tel-Aviv, Israel. Zool. Med. Leiden 67 (40), 24.xii.1993:537-565.— ISSN 0024-0672. Key words: Cnidaria; Hydrozoa; Hydroida; eastern Mediterranean fauna; Red Sea hydroid fauna. Twenty-eight hydroid species are recorded from the eastern Mediterranean and the northern part of the Red Sea, all material originating from the collections of the Museum of the Zoological Institute, Tel-Aviv University. The collection also included four species that could only be identified to generic level. Though the majority had previously been recorded from either the Mediterranean or the Red Sea, some constitute the first definite record from Israeli coastal waters. All material has been re- deposited in the Tel-Aviv collection; slides and some duplicate samples are in the collections of the National Museum of Natural History (Nationaal Natuurhistorisch Museum, now also incorporating the Rijksmuseum van Natuurlijke Historie), Leiden, the Netherlands. W. Vervoort, Nationaal Natuurhistorisch Museum, RO. Box 9517, 2300 RA, Leiden, The Netherlands. Introduction The collection of Hydroida reported upon below was sent to me for identification several years ago by Dr Y. Benayahu, Zoological Museum, University of Tel-Aviv; additional specimens have intermittently been received. The collection is of interest because it contains a number of samples from Mediterranean waters off Israel, a region poor in hydroid records, though a report on a smaller collection from the same area and also belonging to the Zoological Museum, Tel-Aviv, was previously published by Picard (1950). -
Phylum? Class? Common Name? Cnidaria Anthozoa Sea Pansy
Renilla is related to corals but differs from them in that it is a collection of polyps having different forms and functions. Phylum? Cnidaria Class? Anthozoa Common name? Sea pansy Phylum? Cnidaria Class? Hydrozoa Body form? Polyp Obelia colony Feeding polyp Phylum? Cnidaria Class? Hydrozoa Reproductive polyp Medusa bud – produced asexually Phylum? Cnidaria What is this? This is an Obelia medusa as seen under a compound microscope Class? Hydrozoa How does this reproduce? Sexually by producing eggs or sperm Phylum? Cnidaria Class? Hydrozoa What is the significance of the velum in the taxonomy of this organism? The velum is a characteristic of hydrozoan jellies. Thus Gonionemus is in Class Hydrozoa A B C D A: Exumbrella B: Subumbrella Goniomenus C: Manubrium D: Velum A: Tentacles C: Gonad A B B: Oral arm C Phylum? Cnidaria Identify Cells Class? Hydrozoa Physalia Tentacle Cnidocytes with nematocysts Phylum Cnidaria Class Hydrozoa 2. Identify structure within cell PhysaliaPhylum Tentacle Cnidaria Class Hydrozoa Nematocyst Physalia1. Identify Tentacle cell Cnidocytes with nematocysts Cnidocyte Phylum Cnidaria Class Hydrozoa Physalia Tentacle Cnidocytes with undischarged? Nematocysts Tentacle: Note Cnidocytes Bud (Asexual Reproduction) Phylum? Cnidaria Class Hydrozoa Hydra -Polyp Phylum Cnidaria Class Hydrozoa Obelia What stage of the lifecycle does this represent? Medusa stage (Sexually Reproduces) Phylum Cnidaria Class Hydrozoa Polpys Obelia Colony – A Colony of? Reproductive Polyp Asexual Stage Medusa Bud Feeding Polyp Phylum? Class? Common Name? Cnidaria Hydrozoa Portuguese Man-of-War Common Name? By-the-wind sailor or Velella Common name? Phylum? Class? A B Phylum? Cnidaria Class? Scyphozoa Common Name? Moon Jellly Phylum? Class? Common Name? Cnidaria Anthozoa Sea Anemone Kingdom? Animalia Phylum? Ctenophora Common name? Comb Jelly How does this animal move? Via cilia. -
Introduced Marine Biota in Western Australian Waters
DOI: 10.18195/issn.0312-3162.25(1).2008.001-044 Records of the Western Australian ;\Iuseum 25: 1 44 (2008), Introduced marine biota in Western Australian waters 2 2 John M. Huisman', Diana S. Jones , Fred E. Wells" and Timothy Burton I Western Australian Ilcrbarium, l)epartnwnt of Fnvironnwnt and Conservation, Locked Bag 11).1, Bentley Delivery Centre, Western Australia 6983, Australia, and School of Biological Sciences and Biotl'chnology, Murdoch University, Murdoch, Western Australia 6150, Australia, Department of Aquatic Zoology, vVestern Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 69R6, Australia, ' Western Australian Department of Fisheries, Level 3,I6R St Georges Terrace, Perth, Western Australia 6000, Australia, Abstract - An annotated compendium is presented of 102 species of marine algae and animals that have been reported as introduced into Western Australian marine and estuarine waters, four of which arc on the Australian national list of targeted marine pest species, For each species the authority, distribution (both in Western Australia and elsewhere), voucher specimen(s) and remarks are given, Sixty species are considered to have been introduced through human activity, including three on the list of Australian declared marine pests, The most invasive groups are: bryozoans (15 species), crustaceans (13 species) and molluscs (9 species), Seven of these introduced species, including four natural introductions, have not been found recently and are not presently considered to be living in Western Australia, -
Polymorphism Lecture No:17 B.Sc Part 1 Zoology(Hons.)
TOPIC: POLYMORPHISM LECTURE NO:17 B.SC PART 1 ZOOLOGY(HONS.)-PAPER I-GROUP A CHAPTER 5 DATE: 15TH MAY 2020 AUTHOR-DR.NIRMAL KUMARI Polymorphism:- Meaning of polymorphism: Occurrence in the same species of more than one type of individuals, which differ in form and function, is known as polymorphism (Gr., Polyps- many or several + Morphe- form). This ensures an efficient division of labor between the several individuals. Two basic forms: In hydrozoa (or coelenterates), which may be single or colonial, there occur two main types of individuals or zooids-polyps and medusa. Fig. Obelia :V.S of Polyp Fig. Medusa in Oral View Patterns of polymorphism: Degree of polymorphism varies greatly in different groups of Hydrozoa. Dimorphic- simplest and commonest pattern of polymorphism is exhibited by many hydrozoan colonies like obelia, tubularia, etc. They have only one type of zooids (individuals). Gastrozooids or hydranths are concerned with feeding, while gonozooids or blastostyles with asexual budding forming sexual medusa or gonophores. Such colonies, bearing only two types of individuals are called dimorphic, and the phenomenon is termed dimorphism. Trimorphic- some forms, like plumularia, are trimorphic. Besides gastrozooids and gonozooids, they also possess a third type of individuals, the dactylozooids.These are functionally non-feeding and defensive polyps bearing batteries of nematocysts. Polymorphic- coelenterates having more than three types of individuals are called polymorphic. Polymorphism is found in the incrusting colony of Hydractinia (Fig.27) and Calycophoran or Siphonophora (Fig.23) with five types of polyps, each performing a specialized function. These are (i) Gastrozooids for feeding, (ii) Spiral dactylozooids for protection, (iii) Long sensory tentaculozooids with sensory cells, (iv) Skeletozooids as spiny projections of chitin, and (v) Gonozooids or reproductive individuals, bearing male or female gonophores (sporosacs) or medusa for sexual reproduction.