Monolithic 3D Integrated Circuits: Recent Trends and Future Prospects Krithika Dhananjay∗, Student Member, IEEE, Prachi Shukla†, Student Member, IEEE, Vasilis F
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analog/Mixed-Signal Design in Finfet Technologies A.L.S
Analog/Mixed-Signal Design in FinFET Technologies A.L.S. Loke, E. Terzioglu, A.A. Kumar, T.T. Wee, K. Rim, D. Yang, B. Yu, L. Ge, L. Sun, J.L. Holland, C. Lee, S. Yang, J. Zhu, J. Choi, H. Lakdawala, Z. Chen, W.J. Chen, S. Dundigal, S.R. Knol, C.-G. Tan, S.S.C. Song, H. Dang, P.G. Drennan, J. Yuan, P.R. Chidambaram, R. Jalilizeinali, S.J. Dillen, X. Kong, and B.M. Leary [email protected] Qualcomm Technologies, Inc. September 4, 2017 CERN ESE Seminar (Based on AACD 2017) Mobile SoC Migration to FinFET Mobile SoC is now main driver for CMOS scaling • Power, Performance, Area, Cost (PPAC) considerations, cost = f(volume) • Snapdragon™ 820 - Qualcomm Technologies’ first 14nm product • Snapdragon™ 835 – World’s first 10nm product Not drawn to scale Plenty of analog/mixed-signal content Display • PLLs & DLLs Camera • Wireline I/Os Memory • Data converters BT & WLAN • Bandgap references DSP GPU • Thermal sensors • Regulators • ESD protection CPU Audio Modem SoC technology driven by logic & SRAM scaling needs due to cost Terzioglu, Qualcomm [1] Loke et al., Analog/Mixed-Signal Design in FinFET Technologies Slide 1 Outline • Fully-Depleted FinFET Basics • Technology Considerations • Design Considerations • Conclusion Loke et al., Analog/Mixed-Signal Design in FinFET Technologies Slide 2 Towards Stronger Gate Control log (I ) gate D VGS IDsat Cox I VDS S Dlin drain I source ϕs T I CB CD off lower supply lower power DIBL body VBS VGS VTsat VTlin VDD • Capacitor divider dictates source-barrier ϕs & ID • Fully-depleted finFET weakens CB, CD steeper -
A Review Paper on Enhancement of Radio Frequency Microelectro Mechanical Systems
International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 3 Issue 10, October- 2014 A Review Paper on Enhancement of Radio Frequency MicroElectro Mechanical Systems Shilpa G. Kulkarni Electronics And Telecommunication Engineering V.I.T.Wadala Mumbai - India Abstract—Radio Frequency Micro Electro Mechanical Systems (RF MEMS) refers to the design and fabrication of committed II. NEED FOR RF MEMS MEMS for RF circuits. RF MEMS is a multi-disciplinary area MEMS switches combine the advantageous properties of in which the components operate Micromechanical And / Or mechanical and semiconductor switches.RF MEMS have components are fabricated using micromachining and these advantages such as, Low insertion loss, High isolation, Lower components are used in RF systems. The regular microwave switches currently employed in the microwave industry are power consumption, Excellent signal linearity, Better mechanical switches and semiconductor switches. Mechanical impedance match, Less dispersion , Miniaturization, Simple coaxial and waveguide switches offer benefits such as, low control circuits, High volume production possible, Very large insertion loss, large off-state isolation and high power handling bandwidth , Resistant to external environment. Table Iand Fig capabilities. Yet, they are bulky, heavy and slow. Semiconductor 1provide a comparison of RF MEMS Switches with the switches provide switching at a much faster speed and are conventional switches. smaller in size and weight, but are inferior in insertion loss, DC power consumption, isolation and power handling capabilities TABLE I. COMPARISON OF VARIOUS PARAMETERS[2] than their mechanical counterparts. MEMS switches promise to RF combine the advantageous properties of mechanical and Parameter PIN FET semiconductor switches. There are nevertheless few issues in RF MEMS MEMS Switch like, Actuation Speed, Power handling capacity, Voltage(V) 20-80 ±3-5 3-5 Stiction and Actuation voltage etc. -
Design of Finfet Based 1-Bit Full Adder
ISSN (Print) : 2320 – 3765 ISSN (Online): 2278 – 8875 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (A High Impact Factor, Monthly, Peer Reviewed Journal) Website: www.ijareeie.com Vol. 8, Issue 6, June 2019 Design of Finfet Based 1-Bit Full Adder Priti Sahu1, Ravi Tiwari2 M.Tech Scholar, Department of Electronics and Tele-Communication Engineering, Shri Shankaracharya Group of Institutions Engineering (SSGI), CSVTU, Bhilai, Chattisgarh, India Department of Electronics and Tele-Communication Engineering, Shri Shankaracharya Group of Institutions Engineering (SSGI), CSVTU, Bhilai, Chattisgarh, India ABSTRACT: This paper proposes a 1-bit Full adder using Fin type Field Effect Transistor (FinFETs) at 250nm CMOS technology. The paper is intended to reduce leakage current and leakage power, chip area, and to increase the switching speed of 1-bit Full Adder while maintaining the competitive performance with few transistors are used. In this paper, we are designed a double-gate (DG) FinFETs and extracting their transfer characteristics by using Synopsys TANNER- EDA simulation tool. We investigate the use of Double Gate FinFET technology which provides low leakage and high- performance operation by utilizing high speed and low threshold voltage transistors for logic cells. Which show that it is particularly effective in sub threshold circuits and can eliminate performance variations with Low power. A 22ns access time and frequency 0.045GHz provide 250nm CMOS process technology with 5V power supply is employed to carry out 1-bit Full Adder of speed, power and reliability compared to Metal Oxide Semiconductor Field Effect Transistor (MOSFET) based full adder designs. Hence FinFET is a promising candidate and is a better replacement for MOSFET. -
Microchip Manufacturing
Si3N4 Deposition & the Virtual Chemical Vapor Deposition Lab Making a transistor, the general process A closer look at chemical vapor deposition and the virtual lab Images courtesy Silicon Run Educational Video, VCVD Lab Screenshot Why Si3N4 Deposition…Making Microprocessors http://www.sonyericsson.com/cws/products/mobilephones /overview/x1?cc=us&lc=en http://vista.pca.org/yos/Porsche-911-Turbo.jpg On a wafer, billions of transistors are housed on a single square chip. One malfunctioning transistor could cause a chip to short-circuit, ruining the chip. Thus, the process of creating each microscopic transistor must be very precise. Wafer image: http://upload.wikimedia.org/wikipedia/fr/thumb/2/2b/PICT0214.JPG/300px-PICT0214.JPG What size do you think an individual transistor being made today is? Size of Transistors One chip is made of millions or billions of transistors packed into a length and width of less than half an inch. Channel lengths in MOSFET transistors are less than a tenth of a micrometer. Human hair is approximately 100 micrometers in diameter. Scaling of successive generations of MOSFETs into the nanoscale regime (from Intel). Transistor: MOS We will illustrate the process sequence of creating a transistor with a Metal Oxide Semiconductor(MOS) transistor. Wafers – 12” Diameter ½” to ¾” Source Gate Drain conductor Insulator n-Si n-Si p-Si Image courtesy: Pro. Milo Koretsky Chemical Engineering Department at OSU IC Manufacturing Process IC Processing consists of selectively adding material (Conductor, insulator, semiconductor) to, removing it from or modifying it Wafers Deposition / Photo/ Ion Implant / Pattern Etching / CMP Oxidation Anneal Clean Clean Transfer Loop (Note that these steps are not all the steps to create a transistor. -
Hybrid Memristor–CMOS Implementation of Combinational Logic Based on X-MRL †
electronics Article Hybrid Memristor–CMOS Implementation of Combinational Logic Based on X-MRL † Khaled Alhaj Ali 1,* , Mostafa Rizk 1,2,3 , Amer Baghdadi 1 , Jean-Philippe Diguet 4 and Jalal Jomaah 3 1 IMT Atlantique, Lab-STICC CNRS, UMR, 29238 Brest, France; [email protected] (M.R.); [email protected] (A.B.) 2 Lebanese International University, School of Engineering, Block F 146404 Mazraa, Beirut 146404, Lebanon 3 Faculty of Sciences, Lebanese University, Beirut 6573, Lebanon; [email protected] 4 IRL CROSSING CNRS, Adelaide 5005, Australia; [email protected] * Correspondence: [email protected] † This paper is an extended version of our paper published in IEEE International Conference on Electronics, Circuits and Systems (ICECS) , 27–29 November 2019, as Ali, K.A.; Rizk, M.; Baghdadi, A.; Diguet, J.P.; Jomaah, J. “MRL Crossbar-Based Full Adder Design”. Abstract: A great deal of effort has recently been devoted to extending the usage of memristor technology from memory to computing. Memristor-based logic design is an emerging concept that targets efficient computing systems. Several logic families have evolved, each with different attributes. Memristor Ratioed Logic (MRL) has been recently introduced as a hybrid memristor–CMOS logic family. MRL requires an efficient design strategy that takes into consideration the implementation phase. This paper presents a novel MRL-based crossbar design: X-MRL. The proposed structure combines the density and scalability attributes of memristive crossbar arrays and the opportunity of their implementation at the top of CMOS layer. The evaluation of the proposed approach is performed through the design of an X-MRL-based full adder. -
Three-Dimensional Integrated Circuit Design: EDA, Design And
Integrated Circuits and Systems Series Editor Anantha Chandrakasan, Massachusetts Institute of Technology Cambridge, Massachusetts For other titles published in this series, go to http://www.springer.com/series/7236 Yuan Xie · Jason Cong · Sachin Sapatnekar Editors Three-Dimensional Integrated Circuit Design EDA, Design and Microarchitectures 123 Editors Yuan Xie Jason Cong Department of Computer Science and Department of Computer Science Engineering University of California, Los Angeles Pennsylvania State University [email protected] [email protected] Sachin Sapatnekar Department of Electrical and Computer Engineering University of Minnesota [email protected] ISBN 978-1-4419-0783-7 e-ISBN 978-1-4419-0784-4 DOI 10.1007/978-1-4419-0784-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2009939282 © Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword We live in a time of great change. -
Memristive-Finfet Circuits for FFT & Vedic Multiplication
Special Issue - 2016 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 NCETET - 2016 Conference Proceedings Threshold Logic Computing: Memristive-FinFET Circuits for FFT & Vedic Multiplication Nasria A Divya R PG Scholar Assistant Professor Applied Electronics and instrumentation Electronics and Communication Younus College of Engineering and Technology Younus College of Engineering and Technology Kollam, India Kollam, India Abstract—Threshold logic computing is the simplest kind of expensive because of their area, power, and delay overhead. computing units used to build artificial neural networks. Brain In the beginning stage, threshold gates have been mimic circuits can be developed electronically in different ways. implemented using CMOS devices, Single Electron But using Memristive Threshold Logic (MTL) cells have various Transistors and Monostable-Bistable Logic Elements and advantages than Logic gates. MTL cell is used for designing FFT resonant tunnelling diodes. Capacitor-based Threshold Logic computing useful for signal processing applications and Vedic addition and multiplications for efficient Arithmetic Logic unit gates (CTL) are implemented using capacitors as weights design. MTL cell is the basic cell which consist of two parts: along with CMOS-based comparator circuits. In CMOS CTL Memristor based input voltage averaging circuits and an output gates, sum of weighted input voltage is compared with a threshold circuit. The threshold circuit is the combination of fixed reference voltage, and based on this comparison, a Op-amp and FinFET circuit. FinFET circuits indicate much logical output is produced. CTL gates are used for 2D image lower power consumption, lower chip area and operates at filtering in. These CTL gates have many advantages such as lower voltages. -
Recommendation to Handle Bare Dies
Recommendation to handle bare dies Rev. 1.3 General description This application note gives recommendations on how to handle bare dies* in Chip On Board (COB), Chip On Glass (COG) and flip chip technologies. Bare dies should not be handled as chips in a package. This document highlights some specific effects which could harm the quality and yield of the production. *separated piece(s) of semiconductor wafer that constitute(s) a discrete semiconductor or whole integrated circuit. International Electrotechnical Commission, IEC 62258-1, ed. 1.0 (2005-08). A dedicated vacuum pick up tool is used to manually move the die. Figure 1: Vacuum pick up tool and wrist-strap for ESD protection Delivery Forms Bare dies are delivered in the following forms: Figure 2: Unsawn wafer Application Note – Ref : APN001HBD1.3 FBC-0002-01 1 Recommendation to handle bare dies Rev. 1.3 Figure 3: Unsawn wafer in open wafer box for multi-wafer or single wafer The wafer is sawn. So please refer to the E-mapping file from wafer test (format: SINF, eg4k …) for good dies information, especially when it is picked from metal Film Frame Carrier (FFC). Figure 4: Wafer on Film Frame Carrier (FFC) Figure 5: Die on tape reel Figure 6: Waffle pack for bare die Application Note – Ref : APN001HBD1.3 FBC-0002-01 2 Recommendation to handle bare dies Rev. 1.3 Die Handling Bare die must be handled always in a class 1000 (ISO 6) clean room environment: unpacking and inspection, die bonding, wire bonding, molding, sealing. Handling must be reduced to the absolute minimum, un-necessary inspections or repacking tasks have to be avoided (assembled devices do not need to be handled in a clean room environment since the product is already well packed) Use of complete packing units (waffle pack, FFC, tape and reel) is recommended and remaining quantities have to be repacked immediately after any process (e.g. -
From Sand to Circuits
From sand to circuits By continually advancing silicon technology and moving the industry forward, we help empower people to do more. To enhance their knowledge. To strengthen their connections. To change the world. How Intel makes integrated circuit chips www.intel.com www.intel.com/museum Copyright © 2005Intel Corporation. All rights reserved. Intel, the Intel logo, Celeron, i386, i486, Intel Xeon, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. 0605/TSM/LAI/HP/XK 308301-001US From sand to circuits Revolutionary They are small, about the size of a fingernail. Yet tiny silicon chips like the Intel® Pentium® 4 processor that you see here are changing the way people live, work, and play. This Intel® Pentium® 4 processor contains more than 50 million transistors. Today, silicon chips are everywhere — powering the Internet, enabling a revolution in mobile computing, automating factories, enhancing cell phones, and enriching home entertainment. Silicon is at the heart of an ever expanding, increasingly connected digital world. The task of making chips like these is no small feat. Intel’s manufacturing technology — the most advanced in the world — builds individual circuit lines 1,000 times thinner than a human hair on these slivers of silicon. The most sophisticated chip, a microprocessor, can contain hundreds of millions or even billions of transistors interconnected by fine wires made of copper. Each transistor acts as an on/off switch, controlling the flow of electricity through the chip to send, receive, and process information in a fraction of a second. -
LDMOS for Improved Performance
> Submitted to IEEE Transactions on Electron Devices < Final MS # 8011B 1 Extended-p+ Stepped Gate (ESG) LDMOS for Improved Performance M. Jagadesh Kumar, Senior Member, IEEE and Radhakrishnan Sithanandam Abstract—In this paper, we propose a new Extended-p+ Stepped Gate (ESG) thin film SOI LDMOS with an extended-p+ region beneath the source and a stepped gate structure in the drift region of the LDMOS. The hole current generated due to impact ionization is now collected from an n+p+ junction instead of an n+p junction thus delaying the parasitic BJT action. The stepped gate structure enhances RESURF in the drift region, and minimizes the gate-drain capacitance. Based on two- dimensional simulation results, we show that the ESG LDMOS exhibits approximately 63% improvement in breakdown voltage, 38% improvement in on-resistance, 11% improvement in peak transconductance, 18% improvement in switching speed and 63% reduction in gate-drain charge density compared with the conventional LDMOS with a field plate. Index Terms—LDMOS, silicon on insulator (SOI), breakdown voltage, transconductance, on- resistance, gate charge I. INTRODUCTION ATERALLY double diffused metal oxide semiconductor (LDMOS) on SOI substrate is a promising Ltechnology for RF power amplifiers and wireless applications [1-5]. In the recent past, developing high voltage thin film LDMOS has gained importance due to the possibility of its integration with low power CMOS devices and heterogeneous microsystems [6]. But realization of high voltage devices in thin film SOI is challenging because floating body effects affect the breakdown characteristics. Often, body contacts are included to remove the floating body effects in RF devices [7]. -
Design of a Microelectronic Manufacturing Laboratory
2006-1635: DESIGN OF A MICROELECTRONIC MANUFACTURING LABORATORY Stilson Applin, Montana State University Todd Kaiser, Montana State University Page 11.407.1 Page © American Society for Engineering Education, 2006 Design of a Microelectronic Manufacturing Laboratory Abstract The design of an undergraduate microelectronic manufacturing laboratory for teaching will be described in the following paper. This laboratory emphasizes learning the processes of semiconductor manufacturing and clean room protocol. The laboratory is housed in a 500 square foot, class 10,000 facility. In the laboratory the students, with a junior standing and a science based background, will use a pre-made six mask set to create P and N type transistors as well as inverters and diodes. The students will be conducting oxidization, RCA clean, photolithography, etching, diffusion, metallization and other processes. A brief description of these processes and the methods used to teach them will also be described. In addition to these processes students will also learn about clean room protocol, chemical safety, and testing devices. All of these skills will be marketable to future employers and graduate schools. These same skills and processes will be covered in a seminar course for educators, with the main purpose of inspiring the high school teachers to teach about semiconductor manufacturing. The cost effective design is what makes the laboratory unique. The expenditure control is important due to the size of the Electrical Engineering department. The department has only 250 undergraduates and 40 graduate students, thus internal funding is difficult to obtain. A user fee paid by the students will cover the funding. This fee will be small and manageable for any college student. -
Advanced MOSFET Structures and Processes for Sub-7 Nm CMOS Technologies
Advanced MOSFET Structures and Processes for Sub-7 nm CMOS Technologies By Peng Zheng A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Tsu-Jae King Liu, Chair Professor Laura Waller Professor Costas J. Spanos Professor Junqiao Wu Spring 2016 © Copyright 2016 Peng Zheng All rights reserved Abstract Advanced MOSFET Structures and Processes for Sub-7 nm CMOS Technologies by Peng Zheng Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences University of California, Berkeley Professor Tsu-Jae King Liu, Chair The remarkable proliferation of information and communication technology (ICT) – which has had dramatic economic and social impact in our society – has been enabled by the steady advancement of integrated circuit (IC) technology following Moore’s Law, which states that the number of components (transistors) on an IC “chip” doubles every two years. Increasing the number of transistors on a chip provides for lower manufacturing cost per component and improved system performance. The virtuous cycle of IC technology advancement (higher transistor density lower cost / better performance semiconductor market growth technology advancement higher transistor density etc.) has been sustained for 50 years. Semiconductor industry experts predict that the pace of increasing transistor density will slow down dramatically in the sub-20 nm (minimum half-pitch) regime. Innovations in transistor design and fabrication processes are needed to address this issue. The FinFET structure has been widely adopted at the 14/16 nm generation of CMOS technology.