Not in Our Backyard

Total Page:16

File Type:pdf, Size:1020Kb

Not in Our Backyard NOT IN OUR BACKYARD Rural America is fighting back against large-scale renewable energy projects ROBERT BRYCE • AUTHOR A REPORT FOR CENTER OF THE AMERICAN EXPERIMENT Robert Bryce has been writing about energy, power, innovation, and politics for three decades. He’s the host of the Power Hungry Podcast and the author of six books including his latest, A Question of Power: Electricity and the Wealth of Nations. Bryce is a visiting fellow at the Foundation for Research on Equal Opportunity. He is also an executive producer and co-writer of a new feature-length documentary: Juice: How Electricity Explains the World. The film has received rave reviews and is now available on streaming platforms including iTunes, Amazon Prime, and many others. Bryce lives in Austin, Tex., with his wife, Lorin, who is a photographer, art teacher and master potter. Center of the American Experiment’s mission is to build a culture of prosperity for Minnesota and the nation. Our daily pursuit is a free and thriving Minnesota whose cultural and intellectual center of gravity is grounded in free enterprise, limited government, individual freedom, and other time-tested American virtues. As a 501(c)(3) educational organization, contributions to American Experiment are tax deductible. Bulk orders of this publication are available by contacting Peter Zeller at [email protected] or 612-338-3605. 8421 Wayzata Boulevard Suite 110 Golden Valley, MN 55426 APRIL 2021 Not In Our Backyard Rural America is fighting back against large-scale renewable energy projects CONTENTS Executive Summary .............................................................. 1 Policy recommendations ..................................................4 Introduction .............................................................................. 5 Section I: Why are landowners objecting? ............. 7 Section II: The vacant land myth and the power density problem ....................................................15 Section III: The backlash: From Maine to Hawaii (with Minnesota and Iowa in between) .................. 19 Section IV: How rural communities are fighting back ......................................................................... 24 Section V: High-voltage transmission: You can’t get there from here .............................................. 26 Section VI: Follow the money .................................... 29 Conclusion .............................................................................. 34 Endnotes ..................................................................................35 Executive Summary enewable energy is politically popular. will be required to meet domestic energy needs. As Polling data show that about 70 percent of longtime consulting electric engineer Lee Cordner R Americans want more wind energy and 80 summed it up, “Where are you going to put it? How percent want more solar.1 Regulators at the local, are you going to connect it? And how are you going state, and federal levels have responded to this to pay for it?” This paper addresses those issues. popularity by passing a myriad of goals, mandates, With regard to how all of those renewables will and subsidies to encourage the development and be paid for, it is clear that mandates and subsidies consumption of wind and solar energy. The Sierra are driving their deployment. A key finding of this Club claims that “over 170 cities, more than ten report is that between 2010 and 2029, federal tax counties, and eight states across the U.S. have goals incentives for the wind and solar sectors will total to power their communities with $140.3 billion. 100% clean, renewable energy.”2 Federal officials have intro- In addition to their political In addition to the duced a spate of energy plans that popularity, a spate of academic conflicts over new could require dramatic increases in studies released over the past few renewable energy use and untold years have claimed that the U.S. wind and solar billions more in federal spending. can run most or, all, of its economy projects, attempting Among the most famous is the solely on renewables. No oil, coal, to convert the Green New Deal. Introduced in natural gas, or nuclear required. domestic electric grid 2019, the plan aims to “mobilize Although renewables are popular every aspect of American soci- among voters and professors at will require roughly ety to 100% clean and renewable elite universities, they also have doubling the amount energy by 2030.”4 In July 2020, several problems, including their of high-voltage the Biden-Sanders Unity Task intermittency, need for high-voltage transmission capacity Force announced a plan that com- transmission lines, and resource in the United States. mits Democrats to eliminate “car- intensity. Several analyses, includ- bon pollution from power plants ing one done in 2019 by the Natural by 2035.” It continues, “Within five History Museum in London, have years, we will install 500 million documented the enormous amounts of metals and solar panels, including eight million solar roofs rare-earth elements that will have to be mined in and community solar energy systems, and 60,000 order to manufacture the vast amounts of solar made-in-America wind turbines.”5 panels and wind turbines needed for such a large President Joe Biden’s “Energy Efficiency and effort.3 Clean Energy Standard” calls for the deployment of But the most important — and the most obvi- “millions of solar panels — including utility-scale, ous — challenge in converting to a renewables-only rooftop and community solar systems — and tens economy is commandeering the enormous amounts of thousands of wind turbines.”6 of land needed to accommodate the staggering In December 2020, academics at the Andlinger amounts of solar and wind generation capacity that Center for Energy and the Environment at Princeton CENTER OF THE AMERICAN EXPERIMENT • 1 AmericanExperiment.org FIGURE 1 Rejections or Restrictions of U.S. Wind Projects, 2015-2021 From Maine and Vermont to California and Hawaii, local governments are restricting or rejecting the expansion of wind energy. 70 60 65 66 60 50 40 40 30 29 31 20 10 7 0 2015 2016 2017 2018 2019 2020 2021 SOURCE: MEDIA REPORTS University released a study that says the U.S. can to add hundreds of gigawatts to the grid over the “reach net-zero emissions of greenhouse gases by next four years. It’s a huge amount. And there’s so 2050 using existing technology and at costs aligned little time.”10 with historical spending on energy.” The 300-page Regardless of which academic, political or eco- report includes several scenarios, all of which nomic scenario is considered, it’s clear any attempt require huge increases in wind and solar energy, as to convert the entire domestic electric grid — not to well as a massive expansion of high-voltage trans- mention the entire economy — to run solely on re- mission capacity.7 One scenario necessitates cover- newables will require covering vast territories with ing about 228,000 square miles with renewables. oceans of solar panels and forests of giant wind That’s an area roughly equal to the size of the state turbines. Further, that effort will have to occur at of California and Washington combined.8 the same time that rural politicians and landowners Despite the obvious difficulty in acquiring such across the U.S. are fighting against the encroach- vast swaths of land, the Princeton study got signifi- ment of large-scale renewable energy projects. cant media attention, including a favorable piece in These land-use conflicts are the binding con- the New York Times, which called it “at once opti- straint on wind and solar energy expansion and mistic and sobering,” adding that the report’s con- they are slowing or stopping these developments clusions seem “technically feasible and affordable.”9 all over the country. Since 2015, according to Top officials in the Biden administration are also published media stories, about 300 government forecasting huge increases in renewables. In March, entities have moved to reject or restrict wind ener- Energy Secretary Jennifer Granholm said, “We have gy projects (See Figure 1). 2 • NOT IN OUR BACKYARD AmericanExperiment.org Among the recent examples of the backlash enough high-voltage transmission lines to circle the against wind energy: On April 7, the planning board Earth about 10 times.13 in the town of Foster, R.I., voted 5-1 to ban wind tur- This report provides a review of the many stud- bines. The board took action after hearing from res- ies that found the noise from wind energy projects idents of the nearby town of Portsmouth who had can cause health issues. It includes the summary of turbines built near their homes. According to an a 2009 study done by the Minnesota Department April 14 article by Jaquelyn Moorehead, a reporter of Health, which documented the health com- for The Valley Breeze newspaper, the Portsmouth plaints lodged against wind projects and recom- residents warned the board “about their experienc- mended further analysis of the turbine-noise issue. es, complaining about constant noise disturbances, This analysis also marks the launch of the vibrations, and loss in home values from turbines in National Renewable Energy Rejection Database. It their neighborhood.” provides the names of towns and government en- The ban in Foster reflects the broader backlash tities that have rejected or restricted wind projects against Big Wind. Objections to large-scale re- since 2015. The database will be regularly updated newable energy
Recommended publications
  • WASHINGTON – the Energy Department Released Two New
    Wind Scalability and Performance in the real World: A performance analysis of recently deployed US Wind Farms G. Bothun and B. Bekker, Dept. of Physics, University of Oregon. Abstract We are engaged in researching the real world performance, costs, and supply chain issues regarding the construction of wind turbines in the United States for the purpose of quantitatively determining various aspects of scalability in the wind industry as they relate to the continued build out of wind energy in the US. Our analysis sample consists of ~600 individual wind farms that have come into operation as of January 2011. Individual unit turbine capacity in these farms ranges from 1-5 to 3 MW, although the bulk of the installations are ≤ 2.0 MW. Starting in late 2012, however, and continuing with current projects, turbines of size 2.5 – 3.0 MW are being installed. As of July 1, 2014 the Horse Hollow development in Texas has the largest individual wind farm nameplate capacity of 736 MW and 10 other locations have aggregate capacity that exceeds 500 MW. Hence, large scale wind farm operations are now here. Based on our analysis our overall findings are the following: 1) at the end of 2014, cumulative wind nameplate capacity in the US will be at ~ 70 GW or ~ 5% of total US electrical infrastructure 2) over the period of 2006—2012, cumulative wind capacity growth was sustained at a rate of 23.7% per annum, 3) production in 2013 was dramatically lower than in 2012 and was just starting to pick up in 2014 due to lingering uncertainty about the future of the
    [Show full text]
  • Renewable Tracking Progress Appendix
    California Energy Commission – Tracking Progress Renewable Energy Advancing the use and availability of renewable energy is critical to achieving California’s ambitious climate goals. With this in mind, California has pursued a suite of policies and programs aimed at advancing renewable energy and ensuring all Californians, including low- income and disadvantaged communities, benefit from this transition. This report presents the state’s progress in meeting its renewable energy goals and provides an updated analysis through 2018 of renewable energy generation, installed renewable capacity, and a discussion of the trends, opportunities, and challenges associated with the renewable energy transition. More detailed figures and tables are included in the appendix.1 Renewable Energy Serving California Consumers Annual Renewable Percentage: Renewables Portfolio Standard Progress An increasing percentage of energy consumed by Californians comes from renewable sources. A key mandate advancing the use of renewable energy has been the Renewables Portfolio Standard (RPS), which requires California load-serving entities2 (LSEs) to increase their procurement of eligible renewable energy resources (solar, wind, geothermal, biomass, and small hydroelectric) to 33 percent of retail sales by 2020 and 60 percent of retail sales by 2030. Based on reported electric generation from RPS-eligible sources divided by forecasted electricity retail sales for 2019, the California Energy Commission (CEC) estimates that 36 percent of California’s 2019 retail electricity sales was served by RPS-eligible renewable resources as shown in Figure 1. Although this number is not a final RPS determination, it is an important indicator of progress in achieving California’s RPS goals. Figure 1: Estimated Current Renewables Portfolio Standard Progress Source: CEC staff analysis, December 2019 The annual renewable percentage estimated by the CEC has continued to increase in recent years, often ahead of the timelines envisioned by prior legislation.
    [Show full text]
  • Boulder Solar Power JUN 3 2016 MBR App.Pdf
    20160603-5296 FERC PDF (Unofficial) 6/3/2016 12:51:20 PM UNITED STATES OF AMERICA BEFORE THE FEDERAL ENERGY REGULATORY COMMISSION Boulder Solar Power, LLC ) Docket No. ER16-_____-000 APPLICATION FOR MARKET-BASED RATE AUTHORIZATION, REQUEST FOR DETERMINATION OF CATEGORY 1 SELLER STATUS, REQUEST FOR WAIVERS AND BLANKET AUTHORIZATIONS, AND REQUEST FOR WAIVER OF PRIOR NOTICE REQUIREMENT Pursuant to Section 205 of the Federal Power Act (“FPA”),1 Section 35.12 of the regulations of the Federal Energy Regulatory Commission (“FERC” or the “Commission”),2 Rules 204 and 205 of the Commission’s Rules of Practice and Procedure,3 and FERC Order Nos. 697, et al.4 and Order No. 816,5 Boulder Solar Power, LLC (“Applicant”) hereby requests that the Commission: (1) accept Applicant’s proposed baseline market-based rate tariff (“MBR Tariff”) for filing; (2) authorize Applicant to sell electric energy, capacity, and certain ancillary services at market-based rates; (3) designate Applicant as a Category 1 Seller in all regions; and (4) grant Applicant such waivers and blanket authorizations as the Commission has granted to other sellers with market-based rate authorization. Applicant requests that the Commission waive its 60-day prior notice requirement6 to allow Applicant’s MBR Tariff to become effective as of July 1, 2016. In support of this Application, Applicant states as follows: 1 16 U.S.C. § 824d (2012). 2 18 C.F.R. § 35.12 (2016). 3 Id. §§ 385.204 and 385.205. 4 Mkt.-Based Rates for Wholesale Sales of Elec. Energy, Capacity & Ancillary Servs. by Pub. Utils., Order No.
    [Show full text]
  • Comparative Review of a Dozen National Energy Plans: Focus on Renewable and Efficient Energy
    Technical Report A Comparative Review of a Dozen NREL/TP-6A2-45046 National Energy Plans: Focus on March 2009 Renewable and Efficient Energy Jeffrey Logan and Ted L. James Technical Report A Comparative Review of a Dozen NREL/TP-6A2-45046 National Energy Plans: Focus on March 2009 Renewable and Efficient Energy Jeffrey Logan and Ted L. James Prepared under Task No. SAO7.9C50 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S.
    [Show full text]
  • Barriers, Opportunities, and Research Needs Draft Report
    Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT TASK 5. Biomass Energy in California’s Future: Barriers, Opportunities, and Research Needs_ Draft Report Prepared for: California Energy Commission Prepared by: UC Davis California Geothermal Energy Collaborative DECEMBER 2013 CEC‐500‐01‐016 Prepared by: Primary Author(s): Stephen Kaffka, University of California, Davis Robert Williams, University of California, Davis Douglas Wickizer, University of California, Davis UC Davis California Geothermal Energy Collaborative 1715 Tilia St. Davis, CA 95616 www.cgec.ucdavis.edu Contract Number: 500‐01‐016 Prepared for: California Energy Commission Michael Sokol Contract Manager Reynaldo Gonzalez Office Manager Energy Generation Research Office Laurie ten Hope Deputy Director Energy Research & Development Division Robert P. Oglesby Executive Director DISCLAIMER This report was prepared as the result of work sponsored by the California Energy Commission. It does not necessarily represent the views of the Energy Commission, its employees or the State of California. The Energy Commission, the State of California, its employees, contractors and subcontractors make no warrant, express or implied, and assume no legal liability for the information in this report; nor does any party represent that the uses of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the California Energy Commission nor has the California Energy Commission passed upon the accuracy or adequacy of the information in this report. ACKNOWLEDGEMENTS The California Goethermal Energy Collaborative would like to thank the California Energy Commission and its Public Interest Energy Research Program (PIER) for sponsoring this important work as well as the Geothermal Energy Association for assisting in tracking down the most up to date data both within the United States and abroad.
    [Show full text]
  • Microgrid Market Analysis: Alaskan Expertise, Global Demand
    Microgrid Market Analysis: Alaskan Expertise, Global Demand A study for the Alaska Center for Microgrid Technology Commercialization Prepared by the University of Alaska Center for Economic Development 2 3 Contents Introduction .................................................................................................................................................. 4 Market Trends ............................................................................................................................................... 5 Major Microgrid Segments ....................................................................................................................... 5 Global demand of microgrids ................................................................................................................... 5 Where does Alaska fit into the picture? Which segments are relevant? ................................................. 7 Remote/Wind-Diesel Microgrids .......................................................................................................... 8 Military Microgrid ................................................................................................................................. 8 Microgrid Resources with Examples in Alaska .............................................................................................. 8 Wind .......................................................................................................................................................... 8 Kotzebue ............................................................................................................................................
    [Show full text]
  • Fire Fighter Safety and Emergency Response for Solar Power Systems
    Fire Fighter Safety and Emergency Response for Solar Power Systems Final Report A DHS/Assistance to Firefighter Grants (AFG) Funded Study Prepared by: Casey C. Grant, P.E. Fire Protection Research Foundation The Fire Protection Research Foundation One Batterymarch Park Quincy, MA, USA 02169-7471 Email: [email protected] http://www.nfpa.org/foundation © Copyright Fire Protection Research Foundation May 2010 Revised: October, 2013 (This page left intentionally blank) FOREWORD Today's emergency responders face unexpected challenges as new uses of alternative energy increase. These renewable power sources save on the use of conventional fuels such as petroleum and other fossil fuels, but they also introduce unfamiliar hazards that require new fire fighting strategies and procedures. Among these alternative energy uses are buildings equipped with solar power systems, which can present a variety of significant hazards should a fire occur. This study focuses on structural fire fighting in buildings and structures involving solar power systems utilizing solar panels that generate thermal and/or electrical energy, with a particular focus on solar photovoltaic panels used for electric power generation. The safety of fire fighters and other emergency first responder personnel depends on understanding and properly handling these hazards through adequate training and preparation. The goal of this project has been to assemble and widely disseminate core principle and best practice information for fire fighters, fire ground incident commanders, and other emergency first responders to assist in their decision making process at emergencies involving solar power systems on buildings. Methods used include collecting information and data from a wide range of credible sources, along with a one-day workshop of applicable subject matter experts that have provided their review and evaluation on the topic.
    [Show full text]
  • ALASKA ENERGY a First Step Toward Energy Independence
    ALASKA ENERGY A first step toward energy independence. A Guide for Alaskan Communities to Utilize Local Energy Resources January 2009 Prepared by: Alaska Energy Authority Alaska Center for Energy and Power PB 1 Copyright Information: This publication for a Statewide Energy Plan was produced by the Alaska Energy Authority per legislative appropriation. The report was printed at a cost of $12.00 per copy 2 in black and white, and $58.00 per 3 copy in color in Anchorage, Alaska by Standard Register. Table of Contents 6 Sustainable Energy for Alaskans 8 How this Document Should be Used 17 Railbelt Region 22 Energy in Alaska 33 History of Energy Policy in Alaska 38 Current Energy Policy and Planning in Alaska 44 Policies with Energy Implications 55 Permitting 57 Technology Chapters 58 Diesel Efficiency and Heat Recovery 74 Efficiency (End-Use) 84 Hydroelectric 101 Wind 120 Biomass 135 Geothermal 150 Heat Pumps 156 Solar 161 Coal 168 Natural Gas 175 Delivery 179 Energy Storage 190 Hydrokinetic/Tidal 204 Wave 211 Nuclear 217 Coal Bed Methane 223 Fuel Cells 224 Alternative Fuels 232 Explanation of Database Methodology Copyright Information: 240 Glossary This publication for a Statewide 242 Units of Measure Energy Plan was produced by the Alaska Energy Authority per legislative 243 Acronyms - List of Organizations appropriation. The report was printed at a cost of $12.00 per copy 244 Acknowledgements 2 in black and white, and $58.00 per 3 copy in color in Anchorage, Alaska by Standard Register. The narrative and model in this report are designed to provide information to engage Alaskans who have a passion to provide energy solutions, stimulate the Alaskan economy and provide leadership for the benefit of all Alaskans.
    [Show full text]
  • Appendix D Avian Fatality Studies in the Western Ecosystems Technology, Inc
    Appendix D Avian Fatality Studies in the Western Ecosystems Technology, Inc. (WEST) Database This page intentionally left blank. Avian Fatality Studies in the Western Ecosystems Technology, Inc (West) Database Appendix D APPENDIX D. AVIAN FATALITY STUDIES IN THE WESTERN ECOSYSTEMS TECHNOLOGY, INC. (WEST) DATABASE Alite, CA (09-10) Chatfield et al. 2010 Alta Wind I, CA (11-12) Chatfield et al. 2012 Alta Wind I-V, CA (13-14) Chatfield et al. 2014 Alta Wind II-V, CA (11-12) Chatfield et al. 2012 Alta VIII, CA (12-13) Chatfield and Bay 2014 Barton I & II, IA (10-11) Derby et al. 2011a Barton Chapel, TX (09-10) WEST 2011 Beech Ridge, WV (12) Tidhar et al. 2013 Beech Ridge, WV (13) Young et al. 2014a Big Blue, MN (13) Fagen Engineering 2014 Big Blue, MN (14) Fagen Engineering 2015 Big Horn, WA (06-07) Kronner et al. 2008 Big Smile, OK (12-13) Derby et al. 2013b Biglow Canyon, OR (Phase I; 08) Jeffrey et al. 2009a Biglow Canyon, OR (Phase I; 09) Enk et al. 2010 Biglow Canyon, OR (Phase II; 09-10) Enk et al. 2011a Biglow Canyon, OR (Phase II; 10-11) Enk et al. 2012b Biglow Canyon, OR (Phase III; 10-11) Enk et al. 2012a Blue Sky Green Field, WI (08; 09) Gruver et al. 2009 Buffalo Gap I, TX (06) Tierney 2007 Buffalo Gap II, TX (07-08) Tierney 2009 Buffalo Mountain, TN (00-03) Nicholson et al. 2005 Buffalo Mountain, TN (05) Fiedler et al. 2007 Buffalo Ridge, MN (Phase I; 96) Johnson et al.
    [Show full text]
  • Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives
    Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 1 2 Environmental and Economic Benefits of Building Solar in California: Quality Careers—Cleaner Lives Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 3 About the Author Peter Philips (B.A. Pomona College, M.A., Ph.D. Stanford University) is a Professor of Economics and former Chair of the Economics Department at the University of Utah. Philips is a leading economic expert on the U.S. construction labor market. He has published widely on the topic and has testified as an expert in the U.S. Court of Federal Claims, served as an expert for the U.S. Justice Department in litigation concerning the Davis-Bacon Act (the federal prevailing wage law), and presented testimony to state legislative committees in Ohio, Indiana, Kansas, Oklahoma, New Mexico, Utah, Kentucky, Connecticut, and California regarding the regulations of construction labor markets.
    [Show full text]
  • State Attorneys General: Empowering the Clean Energy Future
    Copyright © 2019 by the State Energy and Environmental Impact Center. All rights reserved. State Energy and Environmental Impact Center NYU School of Law https://www.law.nyu.edu/centers/state-impact The primary authors of this report are Jessica R. Bell, Clean Energy Attorney at the State Energy and Environmental Impact Center, and Hampden Macbeth, Staff Attorney at the State Energy and Environmental Impact Center. The authors and the Center are grateful for the research contributions of Ryan Levandowski, a student at the Georgetown University Law Center, and Maggie St. Jean, a student at the Elisabeth Haub School of Law at Pace University. This report does not necessarily reflect the views of NYU School of Law, if any. Executive Summary ........................................................................................................ 1 Section I. Overview of the Role of Attorney General Activities in Energy Matters ............................................................ 5 Protecting States’ Energy Rights ................................................................................... 5 Background .................................................................................................................... 5 Mutual Accommodation of Federal and State Energy Rights .............................. 6 Defending States’ Rights Against Preemption and Dormant Commerce Clause Claims .......................................................................................... 7 Defending States’ Rights Against Discriminatory Federal
    [Show full text]
  • Incorporating Renewables Into the Electric Grid: Expanding Opportunities for Smart Markets and Energy Storage
    INCORPORATING RENEWABLES INTO THE ELECTRIC GRID: EXPANDING OPPORTUNITIES FOR SMART MARKETS AND ENERGY STORAGE June 2016 Contents Executive Summary ....................................................................................................................................... 2 Introduction .................................................................................................................................................. 5 I. Technical and Economic Considerations in Renewable Integration .......................................................... 7 Characteristics of a Grid with High Levels of Variable Energy Resources ................................................. 7 Technical Feasibility and Cost of Integration .......................................................................................... 12 II. Evidence on the Cost of Integrating Variable Renewable Generation ................................................... 15 Current and Historical Ancillary Service Costs ........................................................................................ 15 Model Estimates of the Cost of Renewable Integration ......................................................................... 17 Evidence from Ancillary Service Markets................................................................................................ 18 Effect of variable generation on expected day-ahead regulation mileage......................................... 19 Effect of variable generation on actual regulation mileage ..............................................................
    [Show full text]