Incorporating Renewables Into the Electric Grid: Expanding Opportunities for Smart Markets and Energy Storage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Teaching the "Duck"
Teaching the “Duck” to Fly Second Edition Author Jim Lazar How to Cite This Paper Lazar, J. (2016). Teaching the “Duck” to Fly, Second Edition. Montpelier, VT: The Regulatory Assistance Project. Available at: http://www.raponline.org/document/download/id/7956 Electronic copies of this paper and other RAP publications can be found on our website at www.raponline.org. To be added to our distribution list, please send relevant contact information to [email protected]. February 2016 Cover image by Tim Newcomb Teaching the “Duck” to Fly • Second Edition Teaching the “Duck” to Fly Second Edition Table of Contents Acronyms ...................................................................2 List of Figures ................................................................2 List of Tables ................................................................2 Foreword to the Second Edition ..................................................3 Introduction: Teaching the “Duck” to Fly ...........................................6 Strategy 1: Target Energy Efficiency to the Hours When Load Ramps Up Sharply ...........10 Strategy 2: Acquire and Deploy Peak-Oriented Renewable Resources ....................13 Strategy 3: Manage Water and Wastewater Pumping Loads ............................16 Strategy 4: Control Electric Water Heaters to Reduce Peak Demand and Increase Load at Strategic Hours ..............................................19 Strategy 5: Convert Commercial Air Conditioning to Ice Storage or Chilled-Water Storage ....24 Strategy 6: Rate Design: -
Net Zero by 2050 a Roadmap for the Global Energy Sector Net Zero by 2050
Net Zero by 2050 A Roadmap for the Global Energy Sector Net Zero by 2050 A Roadmap for the Global Energy Sector Net Zero by 2050 Interactive iea.li/nzeroadmap Net Zero by 2050 Data iea.li/nzedata INTERNATIONAL ENERGY AGENCY The IEA examines the IEA member IEA association full spectrum countries: countries: of energy issues including oil, gas and Australia Brazil coal supply and Austria China demand, renewable Belgium India energy technologies, Canada Indonesia electricity markets, Czech Republic Morocco energy efficiency, Denmark Singapore access to energy, Estonia South Africa demand side Finland Thailand management and France much more. Through Germany its work, the IEA Greece advocates policies Hungary that will enhance the Ireland reliability, affordability Italy and sustainability of Japan energy in its Korea 30 member Luxembourg countries, Mexico 8 association Netherlands countries and New Zealand beyond. Norway Poland Portugal Slovak Republic Spain Sweden Please note that this publication is subject to Switzerland specific restrictions that limit Turkey its use and distribution. The United Kingdom terms and conditions are available online at United States www.iea.org/t&c/ This publication and any The European map included herein are without prejudice to the Commission also status of or sovereignty over participates in the any territory, to the work of the IEA delimitation of international frontiers and boundaries and to the name of any territory, city or area. Source: IEA. All rights reserved. International Energy Agency Website: www.iea.org Foreword We are approaching a decisive moment for international efforts to tackle the climate crisis – a great challenge of our times. -
Renewable Tracking Progress Appendix
California Energy Commission – Tracking Progress Renewable Energy Advancing the use and availability of renewable energy is critical to achieving California’s ambitious climate goals. With this in mind, California has pursued a suite of policies and programs aimed at advancing renewable energy and ensuring all Californians, including low- income and disadvantaged communities, benefit from this transition. This report presents the state’s progress in meeting its renewable energy goals and provides an updated analysis through 2018 of renewable energy generation, installed renewable capacity, and a discussion of the trends, opportunities, and challenges associated with the renewable energy transition. More detailed figures and tables are included in the appendix.1 Renewable Energy Serving California Consumers Annual Renewable Percentage: Renewables Portfolio Standard Progress An increasing percentage of energy consumed by Californians comes from renewable sources. A key mandate advancing the use of renewable energy has been the Renewables Portfolio Standard (RPS), which requires California load-serving entities2 (LSEs) to increase their procurement of eligible renewable energy resources (solar, wind, geothermal, biomass, and small hydroelectric) to 33 percent of retail sales by 2020 and 60 percent of retail sales by 2030. Based on reported electric generation from RPS-eligible sources divided by forecasted electricity retail sales for 2019, the California Energy Commission (CEC) estimates that 36 percent of California’s 2019 retail electricity sales was served by RPS-eligible renewable resources as shown in Figure 1. Although this number is not a final RPS determination, it is an important indicator of progress in achieving California’s RPS goals. Figure 1: Estimated Current Renewables Portfolio Standard Progress Source: CEC staff analysis, December 2019 The annual renewable percentage estimated by the CEC has continued to increase in recent years, often ahead of the timelines envisioned by prior legislation. -
National Bulletin Bulletin 7 | 2021 President's Article
Electric Energy Society of Australia National Bulletin Bulletin 7 | 2021 President's Article Author: Jeff Allen, National President of the Electric Energy Society of Australia Date: July 2021 This month my article is all about EESA and some of our activities in the last 12 months. Firstly – our Executive Offcer – Penelope Lyons – returned to her role on Monday 5th July after approximately 8 months of maternity leave. Welcome back Penelope! Thanks to Heidi, Candice, and Vanessa (all from 2em) who provided great support to EESA during this period. Secondly – a summary of the key results for the 2020/21 fnancial year. As National President, each year I prepare an annual report which is published on our website (in August or September) and is presented at our Annual General meeting in November. This report also goes to Engineers Australia. In summary, 2020/21 was another year of change for the electric energy industry, for EESA, and for our members. Key activities included a National Council election in late Oct/early Nov 2020 for some positions for the new “2021” EESA National Council that commenced its term in late November 2020. The “2020” and “2021” National Councils met 14 times in 20/21 – all via Zoom. At each of the monthly meetings, the National Council reviewed our fnances and progress with key elements of our business plan as well as reviewing the success of our monthly events and progress with membership growth. A big thank you to all the members of the National Council for their contributions. The EESA remains healthy fnancially with approximately $600,000 in assets as of 30th June 2021. -
Barriers, Opportunities, and Research Needs Draft Report
Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT TASK 5. Biomass Energy in California’s Future: Barriers, Opportunities, and Research Needs_ Draft Report Prepared for: California Energy Commission Prepared by: UC Davis California Geothermal Energy Collaborative DECEMBER 2013 CEC‐500‐01‐016 Prepared by: Primary Author(s): Stephen Kaffka, University of California, Davis Robert Williams, University of California, Davis Douglas Wickizer, University of California, Davis UC Davis California Geothermal Energy Collaborative 1715 Tilia St. Davis, CA 95616 www.cgec.ucdavis.edu Contract Number: 500‐01‐016 Prepared for: California Energy Commission Michael Sokol Contract Manager Reynaldo Gonzalez Office Manager Energy Generation Research Office Laurie ten Hope Deputy Director Energy Research & Development Division Robert P. Oglesby Executive Director DISCLAIMER This report was prepared as the result of work sponsored by the California Energy Commission. It does not necessarily represent the views of the Energy Commission, its employees or the State of California. The Energy Commission, the State of California, its employees, contractors and subcontractors make no warrant, express or implied, and assume no legal liability for the information in this report; nor does any party represent that the uses of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the California Energy Commission nor has the California Energy Commission passed upon the accuracy or adequacy of the information in this report. ACKNOWLEDGEMENTS The California Goethermal Energy Collaborative would like to thank the California Energy Commission and its Public Interest Energy Research Program (PIER) for sponsoring this important work as well as the Geothermal Energy Association for assisting in tracking down the most up to date data both within the United States and abroad. -
Advantages of Applying Large-Scale Energy Storage for Load-Generation Balancing
energies Article Advantages of Applying Large-Scale Energy Storage for Load-Generation Balancing Dawid Chudy * and Adam Le´sniak Institute of Electrical Power Engineering, Lodz University of Technology, Stefanowskiego Str. 18/22, PL 90-924 Lodz, Poland; [email protected] * Correspondence: [email protected] Abstract: The continuous development of energy storage (ES) technologies and their wider utiliza- tion in modern power systems are becoming more and more visible. ES is used for a variety of applications ranging from price arbitrage, voltage and frequency regulation, reserves provision, black-starting and renewable energy sources (RESs), supporting load-generation balancing. The cost of ES technologies remains high; nevertheless, future decreases are expected. As the most profitable and technically effective solutions are continuously sought, this article presents the results of the analyses which through the created unit commitment and dispatch optimization model examines the use of ES as support for load-generation balancing. The performed simulations based on various scenarios show a possibility to reduce the number of starting-up centrally dispatched generating units (CDGUs) required to satisfy the electricity demand, which results in the facilitation of load-generation balancing for transmission system operators (TSOs). The barriers that should be encountered to improving the proposed use of ES were also identified. The presented solution may be suitable for further development of renewables and, in light of strict climate and energy policies, may lead to lower utilization of large-scale power generating units required to maintain proper operation of power systems. Citation: Chudy, D.; Le´sniak,A. Keywords: load-generation balancing; large-scale energy storage; power system services modeling; Advantages of Applying Large-Scale power system operation; power system optimization Energy Storage for Load-Generation Balancing. -
Chapter 3, CCST Long-Term Viability of Underground
DOCKETED Docket 17-IEPR-04 Number: Project Title: Natural Gas Outlook TN #: 222371-4 Document Chapter 3, CCST Long-Term Viability of Underground Natural Gas Storage in Title: California Description: Chapter 3, How will implementation of California's climate policies change the need for underground gas storage in the future? California Council on Science & Technology, an Independent Review of Scientific and Technical Information on the Long-Term Viability of Underground Natural Gas Storage in California. Filer: Lana Wong Organization: California Energy Commission Submitter Commission Staff Role: Submission 1/26/2018 10:34:02 AM Date: Docketed 1/26/2018 Date: Chapter 3 Chapter Three How will implementation of California’s climate policies change the need for underground gas storage in the future? Jeffery B. Greenblatt Lawrence Berkeley National Laboratory December 1, 2017 ABSTRACT California leads the nation in developing policies to address climate change, with a combination of economy-wide greenhouse gas (GHG) reduction goals policies (AB 32, SB 32, etc.) and complementary means policies that target specific sectors or activities, such as those that encourage energy efficiency, renewable electricity, electricity storage, etc. California also has a cap and trade program to provide an economically efficient framework for reaching emission targets. Chapter 3 is charged with examining how implementation of these policies will affect the need for underground gas storage (UGS), focusing on the years 2030 and 2050 as key policy milestones. The need for UGS derives from many different kinds of demands for natural gas, which can primarily be organized into two categories: building and industrial heat, and electricity generation. -
Solar Energy and Duck Curve
International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 Solar Energy and Duck Curve Heena Aijaz Shah1, Ameen Uddin Ahmad2 1M.Tech Scholar (Power System), Department of Electrical and Electronics Engineering, Al Falah University, Faridabad, Haryana, 121004, India 2Assistant Professor, Department of Electrical and Electronics Engineering, Al Falah University, Faridabad, Haryana, 121004, India Abstract: Solar photovoltaic (PV) technology is being deployed to reduce dependence on fossil fuels for electricity use and associated emissions of greenhouse gases and certain pollutants. High solar adoption creates a challenge for utilities to balance supply and demand on the grid. This is due to the increased need for electricity generators to quickly ramp up energy production when the sun sets and the contribution from PV falls. Another challenge with high solar adoption is the potential for PV to produce more energy than can be used at one time, called over-generation. In 2013, the California Independent System Operator published the “duck chart”, which shows a significant drop in mid-day net load on a spring day as solar photovoltaics (PV) are added to the system. The chart raises concerns that the conventional power system will be unable to accommodate the ramp rate and range needed to fully utilize solar energy, particularly on days characterized by the duck shape. This could result in over-generation and curtailed renewable energy, increasing its costs and reducing its environmental benefits. Keywords: Solar, Renewable Energy, Duck Chart, Demand Curve, Over-generation, Ramp up, CAISO 1. Introduction 1.1 Introduction to PV and Duck Curve Nowadays the installations of renewable energies have been increasing all over the world. -
Solar Thermal – Concentrated Solar Power
Potential for Renewable Energy in the San Diego Region August 2005 Appendix E: Solar Thermal – Concentrated Solar Power This appendix was prepared by the National Renewable Energy Laboratory and is included in this report with their permission. The figure and chart numbers have been changed to be consistent with the number system of this report. NREL Report - Concentrating Solar Power (CSP) Central Station Solar Concentrating Solar Power Southern California is potentially the best location in the world for the development of large- scale solar power plants. The Mojave Desert and Imperial Valley have some of the best solar resources in the world. The correlation between electric energy demand and solar output is strong during the summer months when peak power demand occurs. This region is unique for the proximity of such an excellent solar resource to a highly populated residential and commercial region. Furthermore, the extensive AC and DC transmission network running through the region enables solar electric generation to be distributed to major load centers throughout the state. As a result of these factors and state and utility policy, the world’s largest and most successful solar electric power facilities are sited in Southern California and sell power to Southern California Edison (SCE). Concentrating Solar Power Technologies Concentrating solar power (CSP) technologies, sometimes referred to as solar thermal electric technologies, have been developed for power generation applications. Historically, the focus has been on the development of cost-effective solar technologies for large (100 MWe or greater) central power plant applications. The U.S. Department of Energy’s (DOE) Solar R&D program focuses on the development of technologies suitable for meeting the power requirements of utilities in the southwestern United States. -
Clean Vehicles As an Enabler for a Clean Electricity Grid
Environmental Research Letters LETTER • OPEN ACCESS Related content - The neglected social dimensions to a Clean vehicles as an enabler for a clean electricity vehicle-to-grid (V2G) transition: a critical and systematic review Benjamin K Sovacool, Lance Noel, Jonn grid Axsen et al. - A temporal assessment of vehicle use To cite this article: Jonathan Coignard et al 2018 Environ. Res. Lett. 13 054031 patterns and their impact on the provision of vehicle-to-grid services Chioke B Harris and Michael E Webber - Consequential life cycle air emissions externalities for plug-in electric vehicles in View the article online for updates and enhancements. the PJM interconnection Allison Weis, Paulina Jaramillo and Jeremy Michalek This content was downloaded from IP address 131.243.172.148 on 25/07/2018 at 22:55 Environ. Res. Lett. 13 (2018) 054031 https://doi.org/10.1088/1748-9326/aabe97 LETTER Clean vehicles as an enabler for a clean electricity grid OPEN ACCESS Jonathan Coignard1, Samveg Saxena1,4, Jeffery Greenblatt1,2,4 and Dai Wang1,3 RECEIVED 1 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States of America 17 November 2017 2 Emerging Futures, LLC, Berkeley, CA 94710, United States of America REVISED 3 Now at Tesla, 3500 Deer Creek Rd., Palo Alto, CA 94304, United States of America 6 April 2018 4 Author to whom any correspondence should be addressed. ACCEPTED FOR PUBLICATION 17 April 2018 E-mail: [email protected] and [email protected] PUBLISHED 16 May 2018 Keywords: electric vehicles, energy storage, renewable energy, climate policy, California Supplementary material for this article is available online Original content from this work may be used under the terms of the Abstract Creative Commons Attribution 3.0 licence. -
The Green Economic Recovery: Wind Energy Tax Policy After Financial Crisis and the American Recovery and Reinvestment Tax Act of 2009
CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Oregon Scholars' Bank JEFFRY S. HINMAN∗ The Green Economic Recovery: Wind Energy Tax Policy After Financial Crisis and the American Recovery and Reinvestment Tax Act of 2009 I. The Benefits, Challenges, and Potential of the U.S. Wind Industry................................................................................... 39 A. Environmental Benefits of Wind...................................... 40 B. Economic Benefits of Wind ............................................. 41 1. Jobs and Economic Activity........................................ 41 2. Competitiveness with Traditional Power Plants ......... 43 C. Challenges for the Wind Energy Industry ......................... 44 1. Efficiency, Grid Access, and Intermittency ................ 44 2. Environmental Concerns and Local Opposition ......... 45 II. Federal Support for Renewable Energy Past and Present ....... 46 A. Renewable Energy Tax Policy 1978 to 1992 .................... 47 1. The National Energy Act of 1978 ............................... 48 2. Additional State-Level Tax Incentives in California During the 1980s ....................................... 50 3. The California Wind Boom......................................... 51 4. Shortcomings of the Wind Boom................................ 52 5. The Free Market Approach 1986 to 1992 ................... 53 ∗ J.D., University of Oregon School of Law, 2009; Editor-in-Chief, Journal of Environmental Law and Litigation, 2008–2009; Recipient, Tax Law Certificate of Completion; B.S., Oregon State University, 2002. I want to thank the editorial staff of the Journal of Environmental Law and Litigation for their friendship and masterful edits. I also want to extend my appreciation to the excellent tax law faculty at the University of Oregon, Professors Roberta Mann and Nancy Shurtz, for their guidance and feedback. Finally, and most importantly, I owe a huge debt of gratitude to my incredible wife Kathleen for her patience and support. -
Evolving Relationship Between Nuclear and Renewables in a Near-Zero Energy System
EVOLVING RELATIONSHIP BETWEEN NUCLEAR AND RENEWABLES IN A NEAR-ZERO ENERGY SYSTEM Mengyao Yuan, Carnegie Institution for Science, 1-650-319-8904, [email protected] Fan Tong, Carnegie Institution for Science, 1-650-319-8904, [email protected] Lei Duan, Carnegie Institution for Science, 1-650-319-8904, [email protected] Nathan S. Lewis, California Institute of Technology, 1-626-395-6335, [email protected] Ken Caldeira, Carnegie Institution for Science, 1-650-319-8904, [email protected] Overview The electricity sector worldwide has seen increasing integration of variable renewable energy resources such as wind and solar photovoltaic (PV). This trend may continue in the coming decades, contributing to a transformation towards a near-zero emissions energy system. The high variability of renewable resources poses challenges to system robustness, highlighting the importance of reliable storage and flexible baseload power needed to fill the gap between intermittent generation and variable demand. Nuclear energy represents one prominent form of low-carbon baseload power. Recently, however, nuclear power plants have faced substantial competition from low-cost renewables and natural gas and are exposed to risks of early retirement in countries such as the US and Germany (Froggatt and Schneider 2015, Roth and Jaramillo 2017). Nuclear energy is traditionally considered a non-dispatchable generation technology, although recent French experience suggests that nuclear power plants can be operated flexibly to assume a more load-following role (Lokhov 2011). Nuclear power plants are also characterized by high fixed costs and low variable costs (Lokhov 2011). High fixed costs motivate high capacity factors, so even if nuclear power plants can be made technically dispatchable, there can be economic incentive to operate them as baseload generation.