The Biochemistry Department of the University of Geneva: Understanding the Molecular Basis and Function of Intracellular Organization

Total Page:16

File Type:pdf, Size:1020Kb

The Biochemistry Department of the University of Geneva: Understanding the Molecular Basis and Function of Intracellular Organization 830 CHIMIA 2009, 63, No. 12 THE 450TH ANNIVERSARYOFTHE ACADÉMIE ET UNIVERSITÉ DE GENÈVE doi:10.2533/chimia.2009.830 Chimia 63 (2009) 830–834 © Schweizerische Chemische Gesellschaft The Biochemistry Department of the University of Geneva: Understanding the Molecular Basis and Function of Intracellular Organization Marcos González-Gaitán, Jean Gruenberg, Thanos Halazonetis, Ulrich K. Laemmli, Jean-Marc Matter, Howard Riezman*, Olivier Schaad, Thierry Soldati, and Reika Watanabe Abstract: The Biochemistry Department at the University of Geneva currently has four full professors, a professor emeritus, one assistant professor, two MER (Maître d’enseignement et de Recherche) and a permanent scientific collaborator. The research interests of the members of the Biochemistry Department are described. Keywords: Animal cells · Cell division · Dictyostelium · Drosophila · Endocytosis · Lipids · Organelles · Secretion · Signaling · Yeast · Zebra fish Introduction The Biochemistry Department at the University of Geneva currently has four full professors, a professor emeritus, one assistant professor, two MER (Maître d’enseignement et de Recherche) and a permanent scientific collaborator (Fig. 1). Two of the professors have joint ap- pointments with the Department of Mo- lecular Biology, Thanos Halazonetis has his laboratories in Molecular Biology and Marcos González-Gaitán has his laborato- ries in Biochemistry. The director is cho- sen yearly by consensus and is currently Howard Riezman. The department teaches informatics for chemists and biochemists, as well as biochemistry at all levels. The research in the department is highly fo- cused on membrane biology and cellular organization, however the systems used Fig. 1. Current members of the Biochemistry department at the University of Geneva (October and the questions addressed are highly di- 2009). Top row, left to right, Jean-Marc Matter, Olivier Schaad, Thierry Soldati, Marcos González- versified (Fig. 2). Most of the topics of re- Gaitán, Jean Gruenberg, Ulrich Laemmli, bottom row, left to right, Thanos Halazonetis, Reika search concern the biosynthesis, function Watanabe, Howard Riezman and trafficking of membranes. The groups of González-Gaitán, Gruenberg, Riezman has specialized in bioinformatics and has and Soldati have all worked on the path- been involved in data analysis of transcrip- way of endocytosis, especially concerning tion and lipidomics. In this short article the the roles of endocytosis in fly develop- research accomplishments of the different ment, the formation of multivesicular bod- groups are exposed. ies in animal cells, the internalization step in yeast, and phagocytosis in Dictyoste- lium discoideum, respectively. The Wata- In and Around the Nucleus nabe and Riezman groups have worked on membrane trafficking from the endoplas- Linking the regulation of gene expres- *Correspondence: Prof. H. Riezman Department of Biochemistry mic reticulum. The Laemmli group works sion to ontogenesis remains a major issue Sciences II on nuclear organization and how it regu- in developmental neurobiology. The Mat- 30 quai Ernest-Ansermet lates gene expression. The Matter group ter group is interested in defining how the CH-1211 Genève 4 works on developmental neurobiology and interplay between regulatory factors and Tel.: +41 22 379 6469 Fax: +41 22 379 6470 his laboratories are housed in the depart- key transcriptional targets coordinates the E-mail: [email protected] ment of Animal Biology. Olivier Schaad complex processes of neuron specifica- THE 450TH ANNIVERSARYOFTHE ACADÉMIE ET UNIVERSITÉ DE GENÈVE CHIMIA 2009, 63, No. 12 831 molecular genetics is one of the most highly cited studies in the history of science.[30–36] The bacteriophage work was done before Prof. Laemmli moved to Geneva. When he arrived in Geneva he devoted most of his efforts towards the study of how eukaryotic chromosomes are organized and has pub- lished numerous articles in this field in the most prestigious journals.[37–45] His work revealed the presence of a nuclear scaffold to which the DNA is attached. This creates chromosomal DNA loop structures. These structures are important features, not only to explain how the DNA is organized in the nucleus, but also how gene regulation is controlled. More recently he has shown that nuclear pores interact with the pro- moter regions of genes influencing their expression[46] and he has introduced novel technology to rapidly inactivate proteins by sequestering them away from their site of action.[47] Fig. 2. A schematic representation of the cell with the names of the groups and the cellular struc- tures on which they work. Intracellular Trafficking and Membrane Biogenesis tion and morphogenesis of the retina.[1] scription[8,9] where he made important con- Although retina development relies on the tributions before shifting his attention to The major aim of the Soldati group is whole on regulatory proteins widely ex- oncogenesis, in particular the role of DNA to understand the integration, the coopera- pressed in the developing nervous system, damage in cancer. He has become a world tion of signalling, cytoskeleton and mem- Atonal homolog 5 (Ath5) expression is a leader in this field in which he has investi- brane trafficking in phagocytosis and its specific feature of retina ontogenesis.[2] gated the mechanism whereby cells detect relevance to host–pathogen interactions. The group focuses on the regulation and and respond to DNA damage, in particu- To this end, they use the social amoeba function of Ath5 as a key determinant of lar double strand DNA breaks.[10–20] These Dictyostelium as a model organism as it the retina cell fate and as an important studies have important implications for the is a professional phagocyte very similar to regulator of neuronal patterning. They ask understanding of the origins of cancer, in mammalian phagocytes of the innate im- how Ath5 interconnects a cell fate decision particular, because DNA damage and the mune system in morphology and behav- with the genetic pathways that regulate cell way a cell deals with it seem to be early iour, but it is genetically and biochemically cycle exit, cell polarity and cell migration. predictive parameters for oncogenesis. tractable.[48] In the recent past, their work The characterization of interspecies In recent years, Olivier Schaad has fo- has concentrated on the lipidomic and differences in gene regulation is crucial cused on the analysis of microarray data. proteomic characterisation of phagosomal to understanding the molecular bases of He was concerned with the subsequent components[49] (Dieckmann and Soldati, in phenotypic diversity and evolution. Ath5 management of the huge amounts of com- press), as well as on the molecular dissec- participates in the ontogenesis of the ver- puter data, and development of software tion of the role of actin and class I myosins tebrate retina. Their study reveals how evo- to analyse microarray data.[21–29] He ap- in the formation and closure of the phago- lutionarily conserved, non-coding DNA proached the analysis of microarray data cytic cup, and in the flux of membrane sequences mediate both the conserved and in a quantitative manner starting by the during maturation and recycling from en- the species-specific transcriptional fea- developing of software for the automation dosomes/phagosomes.[50] The projects are tures of theAth5 gene.[3,4] In the mouse and the analysis of microarray data. being extended to include other major reg- chick retinas, species-related variations in A recent focus of his work has been the ulators of the specificity and efficiency of the chromatin-binding profiles of bHLH study of microarray data for the analysis of membrane transport such as the Rab GT- transcription factors correlate with distinct circadian gene expression.[25] The discov- Pases and the exocyst tethering complex. features of the Ath5 promoters and under- ery of circadian transcripts is a challeng- Crucially, the group has established lie variations in the transcriptional rates of ing task. There are two major difficulties: Dictyostelium as a model host to study the Ath5 genes.[5–7] The different expres- the lack of high temporal resolution in the infection and dissemination of pathogenic sion kinetics of Ath5 generate differences levels of expression of the transcripts of mycobacteria.[51] Interestingly, pathogenic in the expression patterns of a set of genes interest and the large number of probe- mycobacteria such as M. tuberculosis, M. regulated by Ath5 in dose-dependent man- sets (>45,000) to analyze. He developed marinum and M. leprae use common strat- ner, including those involved in neurite an automatic and robust procedure that egies to invade phagocytes of the innate im- outgrowth and growth cone migration. addresses these challenges. The algorithm mune system, manipulate their otherwise In sum, they show how highly conserved combines Fourier analysis, random permu- bactericidal phagocytic apparatus and in- regulatory elements are put to use mediat- tation, and least square optimization. crease the success of cell-to-cell transmis- ing non-conserved functions and creating Prof. Ulrich K. Laemmli has been a pio- sion. M. marinum, a fish pathogen, is the interspecies neuronal diversity (Skowron- neer in the fields of biochemistry and mo- closest relative to the tuberculosis group ska-Krawczyk et al. in press). lecular biology. His early work was on the of mycobacteria and provides a powerful Prof. Thanos D. Halazonetis began his biogenesis
Recommended publications
  • Dicty 2014 Abstract Book (Pdf)
    Supported by: Title picture: Heilandskirche, Sacrow, Potsdam (Ralph Gräf), Dicties (Rupert Mutzel, Sascha Thewes) 2 Venue: Seminaris Hotel Potsdam An der Pirschheide 40 14471 Potsdam Organizing committee: Ralph Gräf (Universität Potsdam) Sascha Thewes (Freie Universität Berlin) Carsten Beta (Universität Potsdam) 3 Dicty 2014 - Programme Sun 3rd Mon 4th Tue 5th Wed 6th Thu 7th 9:00 - 10:40 9:00 - 10:40 1st 9:00 - 10:40 9:00 - 10:40 1st morning session morning session 1st morning session 1st morning session Development Chemotaxis and cell Phagocytosis Evolution migration coffee break coffee break coffee break coffee break 11:10 - 12:50 2nd 11:10 - 12:50 2nd 11:10 - 12:50 2nd 11:10 - 12:50 2nd morning session morning session morning session morning session Signaling Biophysics of cell Pathogen Cell Biology migration interactions I (4) 13:00 - 14:30 lunch 13:00 - 14:30 lunch 12:50 - 13:30 luxury 13:00 - 14:30 lunch break break coffee break 14:30 - 16:10 14:30 - 16:10 13:30 - 14:20 short Departure 1st afternoon 1st afternoon afternoon session session session Nucleus and Pathogen Signaling chromatin interactions II (2) II/Membrane- associated proteins coffee break coffee break 16:00 Registration 16:40 - 18:20 2nd 16:40 - 18:20 2nd Tour to Sanssouci castle afternoon session afternoon session and park (busses leave Disease models Gene expression at 14:30 pm) and genomics 18:30 Keynote lecture/Dicty Race 20:00 18:30 - 20:00 Dinner 18:30 - 20:00 Dinner 19:30 pm Welcome Dinner Conference Dinner at the Sanssouci castle 20:00 20:00 Poster Session I Poster Session II Sunday, August 3 16:00 Registration 18:30 1 Keynote lecture by Günther Gerisch 19:30 2 The Dicty World Race Daniel Irimia 20:00 Welcome Dinner 4 Monday, August 4 1st morning session: Development; Chair: Tian Jin 9:00 3 Cell signaling during development of Dictyostelium William F.
    [Show full text]
  • New Insights Into the Evasion of Host Innate Immunity by Mycobacterium Tuberculosis
    Cellular & Molecular Immunology www.nature.com/cmi REVIEW ARTICLE OPEN New insights into the evasion of host innate immunity by Mycobacterium tuberculosis Qiyao Chai1,2, Lin Wang3, Cui Hua Liu 1,2 and Baoxue Ge 3 Mycobacterium tuberculosis (Mtb) is an extremely successful intracellular pathogen that causes tuberculosis (TB), which remains the leading infectious cause of human death. The early interactions between Mtb and the host innate immune system largely determine the establishment of TB infection and disease development. Upon infection, host cells detect Mtb through a set of innate immune receptors and launch a range of cellular innate immune events. However, these innate defense mechanisms are extensively modulated by Mtb to avoid host immune clearance. In this review, we describe the emerging role of cytosolic nucleic acid-sensing pathways at the host–Mtb interface and summarize recently revealed mechanisms by which Mtb circumvents host cellular innate immune strategies such as membrane trafficking and integrity, cell death and autophagy. In addition, we discuss the newly elucidated strategies by which Mtb manipulates the host molecular regulatory machinery of innate immunity, including the intranuclear regulatory machinery, the ubiquitin system, and cellular intrinsic immune components. A better understanding of innate immune evasion mechanisms adopted by Mtb will provide new insights into TB pathogenesis and contribute to the development of more effective TB vaccines and therapies. Keywords: Mycobacterium tuberculosis; Innate
    [Show full text]
  • Nanoplankton Protists from the Western Mediterranean Sea. II. Cryptomonads (Cryptophyceae = Cryptomonadea)*
    sm69n1047 4/3/05 20:30 Página 47 SCI. MAR., 69 (1): 47-74 SCIENTIA MARINA 2005 Nanoplankton protists from the western Mediterranean Sea. II. Cryptomonads (Cryptophyceae = Cryptomonadea)* GIANFRANCO NOVARINO Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K. E-mail: [email protected] SUMMARY: This paper is an electron microscopical account of cryptomonad flagellates (Cryptophyceae = Cryptomon- adea) in the plankton of the western Mediterranean Sea. Bottle samples collected during the spring-summer of 1998 in the Sea of Alboran and Barcelona coastal waters contained a total of eleven photosynthetic species: Chroomonas (sensu aucto- rum) sp., Cryptochloris sp., 3 species of Hemiselmis, 3 species of Plagioselmis including Plagioselmis nordica stat. nov/sp. nov., Rhinomonas reticulata (Lucas) Novarino, Teleaulax acuta (Butcher) Hill, and Teleaulax amphioxeia (Conrad) Hill. Identification was based largely on cell surface features, as revealed by scanning electron microscopy (SEM). Cells were either dispersed in the water-column or associated with suspended particulate matter (SPM). Plagioselmis prolonga was the most common species both in the water-column and in association with SPM, suggesting that it might be a key primary pro- ducer of carbon. Taxonomic keys are given based on SEM. Key words: Cryptomonadea, cryptomonads, Cryptophyceae, flagellates, nanoplankton, taxonomy, ultrastructure. RESUMEN: PROTISTAS NANOPLANCTÓNICOS DEL MAR MEDITERRANEO NOROCCIDENTAL II. CRYPTOMONADALES (CRYPTOPHY- CEAE = CRYPTOMONADEA). – Este estudio describe a los flagelados cryptomonadales (Cryptophyceae = Cryptomonadea) planctónicos del Mar Mediterraneo Noroccidental mediante microscopia electrónica. La muestras recogidas en botellas durante la primavera-verano de 1998 en el Mar de Alboran y en aguas costeras de Barcelona, contenian un total de 11 espe- cies fotosintéticas: Chroomonas (sensu auctorum) sp., Cryptochloris sp., 3 especies de Hemiselmis, 3 especies de Plagio- selmis incluyendo Plagioselmis nordica stat.
    [Show full text]
  • Dicty 2017 Abstract Book (Pdf)
    Map and information BEST WESTERN HÔTEL CHAVANNES-DE-BOGIS CARACTÉRISTIQUES DES SALLES ET TARIFS La Bulle Halle de tennis r Odyssée II s Cosmos 2 II ALPES Uranu JURA Jupite LAC I Pluton Odyssée I Uranus Cosmos 1 Foyer Galaxie Pause Fumoir Space ENTRÉE Bar Réception Central de tennis Or e Étoile d' rn Lu n Satu e e rot e Bist Fitness Paus Capanna Neptun t Mars s e Restauran ur des Art rc Me rrasse Te e Piscine Observatoir LAC EFFECTIF PAR CONFIGURATION lumière du jour Salle All talksÉtage areSurf. held m 2in theHaut. room m CosmosÉcole Bloc U Théâtre Carré Cabaret Banquet Cocktail CHF Cosmos Rdc 189 3 150 50 270 - 130 200 250 1500 Cosmos I Breakfast:Rdc 116 Mon3-Thu 6:3080-10:00, Restaurant30 200 des Arts and34 Terrasse42 90 150 750 Cosmos II Lunch:Rdc 79 Mon,3 Tues, Thu,40 Terrasse20 or Observatoire70 24 35 60 100 500 Uranus I Dinner:Rdc 28 Sun2,5-Wed, Terrasse10 or Observatoire10 16 12 - - - 250 Coffee breaks: Mon-Thu, Foyer Pause Uranus II Rdc 19 2,5 8 10 10 12 - - - 250 Poster sessions: Mon-Tues from 20:00, room Odyssée Odyssée Workshops:Rdc 176 Mon3-Tues from150 20:00, room40 s Pluton220 , Jupiter34 and Uranus94 (I and170 II) 200 1200 Odyssée I Rdc 99 3 65 40 150 34 40 90 150 700 Odyssée II Contact:Rdc 74 conference@hotel3 40 -chavannes.ch20 / 70reception@hotel24 -chavannes.ch30 60 100 500 Jupiter Rdc 28 00412,5 22 960818110 10 16 12 - - - 250 Pluton Rdc 28 2,4 10 10 16 12 - - - 250 [email protected] Galaxie Rdc 28 2,4 10 10 16 12 - - - 250 Neptune Rdc 75 2,5 40 30 50 34 28 60 70 500 Mars Rdc 35 2,5 25 16 40 20 - - - 400 Mercure Rdc 35 2,5 25 16 40 20 - - - 400 Saturne Rdc 35 2,5 25 16 40 20 - - - 400 Lune Rdc 26 2,5 - - - 8 - - - 300 Orion 1 33 2,4 - - - 10 - - - 300 Vénus 2 33 2,4 - - - 10 - - - 300 Hypérion 3 33 2,4 - - - 10 - - - 300 Observatoire Rdc 98 3 50 25 100 40 50 50 70 800 La Bulle Rdc 2400 - - - - - - 900 1500 2500 Nos salles sont climatisées et équipées de connexion ISDN, ADSL et WiFi.
    [Show full text]
  • Intravirion DNA Can Access the Space Occupied by the Bacteriophage P22 Ejection Proteins
    viruses Article Intravirion DNA Can Access the Space Occupied by the Bacteriophage P22 Ejection Proteins Justin C. Leavitt 1,†, Eddie B. Gilcrease 2,‡, Brianna M. Woodbury 3, Carolyn M. Teschke 3,4,* and Sherwood R. Casjens 1,2,* 1 School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; [email protected] 2 Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; [email protected] 3 Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; [email protected] 4 Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA * Correspondence: [email protected] (C.M.T.); [email protected] (S.R.C.); Tel.: +1-860-486-4282 (C.M.T.); +1-801-712-2038 (S.R.C.) † Current address: Hamit-Darwin-Freesh, Inc., Dammeron Valley, UT 84783, USA. ‡ Current address: Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA. Abstract: Tailed double-stranded DNA bacteriophages inject some proteins with their dsDNA during infection. Phage P22 injects about 12, 12, and 30 molecules of the proteins encoded by genes 7, 16 and 20, respectively. After their ejection from the virion, they assemble into a trans-periplasmic conduit through which the DNA passes to enter the cytoplasm. The location of these proteins in the virion before injection is not well understood, although we recently showed they reside near the portal Citation: Leavitt, J.C.; Gilcrease, E.B.; protein barrel in DNA-filled heads.
    [Show full text]
  • The Taxonomic Implications of the Ultrastucture and Cell Division of a Stigma-Containing Chroomonas Sp
    S. Afr. J. Bot. , 1987,53(2): 129 - 139 129 The taxonomic implications of the ultrastucture and cell division of a stigma-containing Chroomonas sp. (Cryptophyceae) from Rocky Bay, Natal, South Africa Shirley R. Meyer Department of Botany, University of Natal, P.O . Box 375, Pietermaritzburg, 3200 Republic of South Africa Present address: P.O . Box 79, Weenen, 3325 Republic of South Africa Accepted 17 November 1986 The ultrastructure of the interphase cell and the ultrastructural details of mitosis and cytokinesis are described in a blue-green stigma-containing Chroomonas sp. isolated from a tidal pool in the Rocky Bay region of the Natal coast, R.S.A. This taxon resembles Chroomonas sp. 978/2 and C. mesostigmatica but can be separated from Chroomonas sp. (Gantt 1971), C. africana and C_ placoidea on the basis of its number of periplast plates. The periplast plates are relatively large in the Rocky Bay isolate and observations of cells undergoing mitosis and cytokinesis have shown that the plates increase in number only during cytokinesis or once the daughter cells have separated. The sequence of events in mitosis and cytokinesis are similar to those observed in C. africana, but are Significantly different in some respects from cryptomonads without stigmas. The taxonomic implications of these observations are discussed. Die ultrastruktuur van 'n sel in interfase asook ultrastrukturele besonderhede van mitose en sitokinese is by 'n blou-groen Chroomonas sp. met 'n oogvlek, ge'isoleer uit 'n gety-poel in die Rocky Bay-gebied aan die Natalse kus, R.S.A., ondersoek. Hierdie takson kom met Chroomonas sp.
    [Show full text]
  • Phagosomal Rupture by Mycobacterium Tuberculosis
    Phagosomal Rupture by Mycobacterium tuberculosis Results in Toxicity and Host Cell Death Roxane Simeone, Alexandre Bobard, Juliane Lippmann, Wilbert Bitter, Laleh Majlessi, Roland Brosch, Jost Enninga To cite this version: Roxane Simeone, Alexandre Bobard, Juliane Lippmann, Wilbert Bitter, Laleh Majlessi, et al.. Phago- somal Rupture by Mycobacterium tuberculosis Results in Toxicity and Host Cell Death. PLoS Pathogens, Public Library of Science, 2012, 8 (2), pp.e1002507. 10.1371/journal.ppat.1002507. pasteur-01899479 HAL Id: pasteur-01899479 https://hal-pasteur.archives-ouvertes.fr/pasteur-01899479 Submitted on 19 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Phagosomal Rupture by Mycobacterium tuberculosis Results in Toxicity and Host Cell Death Roxane Simeone1., Alexandre Bobard2., Juliane Lippmann2, Wilbert Bitter3, Laleh Majlessi4,5, Roland Brosch1"*, Jost Enninga2"* 1 Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France, 2 Institut Pasteur, Research Group ‘‘Dynamics of Host-Pathogen Interactions’’, Paris, France, 3 VU University, Molecular and Medical Microbiology, Amsterdam, The Netherlands, 4 Institut Pasteur, Unite´ de Re´gulation Immunitaire et Vaccinologie, Paris, France, 5 INSERM U1041, Paris, France Abstract Survival within macrophages is a central feature of Mycobacterium tuberculosis pathogenesis.
    [Show full text]
  • Baffinellaceae Fam. Nov., Cryptophyceae) from Baffin Bay: Morphology, Pigment Profile, Phylogeny, and Growth Rate Response to Three Abiotic Factors1
    J. Phycol. *, ***–*** (2018) © 2018 Phycological Society of America DOI: 10.1111/jpy.12766 BAFFINELLA FRIGIDUS GEN. ET SP. NOV. (BAFFINELLACEAE FAM. NOV., CRYPTOPHYCEAE) FROM BAFFIN BAY: MORPHOLOGY, PIGMENT PROFILE, PHYLOGENY, AND GROWTH RATE RESPONSE TO THREE ABIOTIC FACTORS1 Niels Daugbjerg,2 Andreas Norlin Marine Biological Section, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen Ø DK-2100, Denmark and Connie Lovejoy Departement de Biologie, Universite Laval, 1045 avenue de la Medecine, Quebec, Quebec, G1V 0A6, Canada Twenty years ago an Arctic cryptophyte was Abbreviations: BA, Bayesian analysis; BS, bootstrap isolated from Baffin Bay and given strain number support; Cr-PC, cryptophyte-phycocyanin; Cr-PE, CCMP2045. Here, it was described using cryptophyte-phycoerythrin; ML, maximum likeli- morphology, water- and non-water soluble pigments hood; PP, posterior probability and nuclear-encoded SSU rDNA. The influence of temperature, salinity, and light intensity on growth rates was also examined. Microscopy revealed = typical cryptophyte features but the chloroplast Cryptophytes ( cryptomonads) are ubiquitous in color was either green or red depending on the marine and freshwater ecosystems worldwide and a few species have been recorded to form blooms light intensity provided. Phycoerythrin (Cr-PE 566) was only produced when cells were grown under (e.g., Laza-Martınez 2012, Supraha et al. 2014, and À À low-light conditions (5 lmol photons Á m 2 Á s 1). references therein). However, they also reside in Non-water-soluble pigments included chlorophyll a, more extreme environments, for example, soil (Paulsen et al. 1992), snow (Javornicky and Hindak c2 and five major carotenoids. Cells measured 8.2 3 5.1 lm and a tail-like appendage gave them a 1970), and inside ikaite columns (Ikka fjord, South- comma-shape.
    [Show full text]
  • Investigation of the Pseudomonas Chlororaphis PA23 - Acanthamoeba Castellanii Interaction
    Investigation of the Pseudomonas chlororaphis PA23 - Acanthamoeba castellanii interaction and the role of polyhydroxyalkanoates in PA23 physiology By Akrm Saleh Ghergab A Thesis Submitted to the Faculty of Graduate Studies of The University of Manitoba in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Microbiology University of Manitoba Winnipeg Copyright © 2020 by Akrm Saleh Ghergab I Abstract Pseudomonas chlororaphis PA23 is a biocontrol agent (BCA) that is able to protect canola against the pathogenic fungus Sclerotinia sclerotiorum. PA23 secretes a number of metabolites that contribute to fungal antagonism, including pyrrolnitrin (PRN), phenazine (PHZ), hydrogen cyanide (HCN) and degradative enzymes. Beyond pathogen suppression, the success of a BCA is dependent upon its ability to persist in the environment and avoid the threat of grazing predators, including protozoa. The first part of this thesis investigated whether PA23 is able to resist predation by Acanthamoeba castellanii (Ac) and defined the role of antifungal (AF) compounds in the bacterial-protozoan interaction. We discovered that PRN, PHZ and HCN contribute to PA23 toxicity towards Ac trophozoites. Ac preferentially migrated towards regulatory mutants devoid of AF metabolites as well as a PRN biosynthetic mutant, indicating that AF metabolites act to repel Ac. We also discovered that toxin-producing strains were able to survive inside trophozoites for up to 24 h. Collectively, our findings indicate that PRN, PHZ and HCN are involved in amoebicidal activity, and through the production of these molecules, PA23 is able to avoid the threat of predation. PA23 accumulates polyhydroxyalkanoate (PHA) polymers as carbon and energy storage compounds.
    [Show full text]
  • This Article Was Published in an Elsevier Journal. the Attached Copy
    This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author’s institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Available online at www.sciencedirect.com Harmful Algae 7 (2008) 293–307 www.elsevier.com/locate/hal Characterization, dynamics, and ecological impacts of harmful Cochlodinium polykrikoides blooms on eastern Long Island, NY, USA Christopher J. Gobler a,*, Dianna L. Berry a, O. Roger Anderson b, Amanda Burson a, Florian Koch a, Brooke S. Rodgers a, Lindsay K. Moore a, Jennifer A. Goleski a, Bassem Allam a, Paul Bowser c, Yingzhong Tang a, Robert Nuzzi d a School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA b Biology, Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964, USA c Aquatic Animal Health Program, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University Ithaca, NY 14853-6401, USA d Suffolk County Department of Health Services, Office of Ecology, Yapank, NY 11980, USA Received 16 November 2006; received in revised form 1 February 2007 Abstract We report on the emergence of Cochlodinium polykrikoides blooms in the Peconic Estuary and Shinnecock Bay, NY, USA, during 2002–2006.
    [Show full text]
  • Regulation of the Actin Cytoskeleton Via Rho Gtpase Signalling in Dictyostelium and Mammalian Cells: a Parallel Slalom
    cells Review Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom Vedrana Fili´c*, Lucija Mijanovi´c,Darija Putar, Antea Talaji´c,Helena Cetkovi´cand´ Igor Weber * Division of Molecular Biology, Ruder¯ Boškovi´cInstitute, Bijeniˇcka54, HR-10000 Zagreb, Croatia; [email protected] (L.M.); [email protected] (D.P.); [email protected] (A.T.); [email protected] (H.C.)´ * Correspondence: vedrana.fi[email protected] (V.F.); [email protected] (I.W.) Abstract: Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resem- blance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar Citation: Fili´c,V.; Mijanovi´c,L.; signalling networks in mammals.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility Permalink https://escholarship.org/uc/item/6mt5h51w Author Haglund, Cathleen Margaret Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility by Cathleen Margaret Haglund A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Matthew D. Welch, Chair Professor David Drubin Professor Daniel A. Portnoy Professor Kathleen Ryan Spring 2011 Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility © 2011 by Cathleen Margaret Haglund ABSTRACT Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility by Cathleen Margaret Haglund Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor Matthew D. Welch, Chair Diverse intracellular pathogens subvert the host actin polymerization machinery to drive movement within and between cells during infection. Rickettsia in the spotted fever group (SFG) are Gram-negative, obligate intracellular bacterial pathogens that undergo actin-based motility and assemble distinctive ‘comet tails’ containing long, unbranched actin filaments. Despite this distinct organization, it was proposed that actin in Rickettsia comet tails was nucleated by the host Arp2/3 complex and the bacterial protein RickA, which assemble branched actin networks. To identify additional rickettisal proteins that might function in actin assembly, we searched translated Rickettsia genome databases for proteins with WASP homology 2 (WH2) motifs, which are actin-binding peptides found in many cellular proteins.
    [Show full text]