Ancient Bacteria–Amoeba Relationships and Pathogenic Animal Bacteria Joan E

Total Page:16

File Type:pdf, Size:1020Kb

Ancient Bacteria–Amoeba Relationships and Pathogenic Animal Bacteria Joan E Washington University in St. Louis Washington University Open Scholarship Biology Faculty Publications & Presentations Biology 5-2-2017 Ancient bacteria–amoeba relationships and pathogenic animal bacteria Joan E. Strassmann Washington University in St Louis, [email protected] Longfei Shu Follow this and additional works at: https://openscholarship.wustl.edu/bio_facpubs Part of the Bacteriology Commons, Biology Commons, and the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Strassmann, Joan E. and Shu, Longfei, "Ancient bacteria–amoeba relationships and pathogenic animal bacteria" (2017). Biology Faculty Publications & Presentations. 136. https://openscholarship.wustl.edu/bio_facpubs/136 This Article is brought to you for free and open access by the Biology at Washington University Open Scholarship. It has been accepted for inclusion in Biology Faculty Publications & Presentations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. PRIMER Ancient bacteria±amoeba relationships and pathogenic animal bacteria Joan E. Strassmann*, Longfei Shu Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America * [email protected] Abstract Long before bacteria infected humans, they infected amoebas, which remain a potentially important reservoir for human disease. Diverse soil amoebas including Dictyostelium and Acanthamoeba can host intracellular bacteria. Though the internal environment of free-living amoebas is similar in many ways to that of mammalian macrophages, they differ in a num- a1111111111 ber of important ways, including temperature. A new study in PLOS Biology by Taylor-Mul- a1111111111 neix et al. demonstrates that Bordetella bronchiseptica has two different gene suites that are a1111111111 activated depending on whether the bacterium finds itself in a hot mammalian or cool a1111111111 amoeba host environment. This study specifically shows that B. bronchiseptica not only a1111111111 inhabits amoebas but can persist and multiply through the social stage of an amoeba host, Dictyostelium discoideum. OPEN ACCESS Citation: Strassmann JE, Shu L (2017) Ancient Environmental amoebas came before animals as hosts to bacteria bacteria±amoeba relationships and pathogenic animal bacteria. PLoS Biol 15(5): e2002460. The bacteria that most concern us are those that make us sick, but we are sometimes so preoc- https://doi.org/10.1371/journal.pbio.2002460 cupied with our battle with them that we forget they have been waging a much longer war. 9 Published: May 2, 2017 More than a billion (10 ) years before the first animals, bacteria were evolving strategies first to resist being killed by protozoan predators and then to actually infect their former predators Copyright: © 2017 Strassmann, Shu. This is an open access article distributed under the terms of [1]. These strategies are likely to have laid the groundwork for the later evolution of animal± the Creative Commons Attribution License, which bacteria interactions, so understanding how they function provides an essential context for permits unrestricted use, distribution, and understanding modern-day bacterial pathogens in humans. This is particularly true for the reproduction in any medium, provided the original bacteria that invade animals through macrophages [2]. Further, environmental amoebas are author and source are credited. still ubiquitous in modern soil and water, so they may act as important reservoirs from which Funding: The authors received no specific funding emerging human diseases can arise [3]. Many amoebas, including Acanthamoeba castellanii, for this work. D. discoideum, Hartmannella vermiformis, and Naegleria gruberi, have been found to harbor Competing interests: The authors have declared bacteria [4]. Bacteria that can defeat amoebas' defenses gain a refuge in which to proliferate, that no competing interests exist. where they are protected from hostile external conditions by their unwitting hosts [5±8]. Abbreviations: LCV, Legionella-containing vacuole; It is worth pointing out that amoebas do not fall into a monophyletic group but instead NCBI, National Center for Biotechnology share a life form and a diet based on phagocytosis. The bacteria that can evade amoeba Information; T2SS, type II secretion system; T4SS, defenses are called amoeba-resistant bacteria [3,4]. In these amoebas, resistant bacteria can type IV secretion system. survive, proliferate, and be protected in adverse situations, particularly when the host amoeba Provenance: Commissioned; externally peer forms a hardy cyst with the bacteria inside. reviewed. PLOS Biology | https://doi.org/10.1371/journal.pbio.2002460 May 2, 2017 1 / 8 Glossary Amoeba-resistant bacteria: Bacteria that have evolved to resist being killed by free-liv- ing amoebas. Bacterial secretion system: The mechanisms by which bacterial pathogens evolved to export various virulence factors across the phospholipid membrane and cell envelope. Ejectosome: A peripheral cellular organelle responsible for ejecting cytosolic bacteria from the cell without lysing that cell. Fruiting body: A multicellular structure on which spore-producing structures are borne. Free-living amoebas: Widely distributed protozoa that have the ability to alter their shape and feed on bacteria, algae, fungi, and small organic particles. Lysosome: A membrane-bound organelle that contains hydrolytic enzymes that can break down biomolecules. Phagocytosis: The process by which a cell engulfs a solid particle to form an internal compartment known as a phagosome. Phagosome: A vacuole formed around a particle engulfed by phagocytosis. Symbiosis: A relationship between individuals of different species that live closely together. Two-component regulatory system: One kind of mechanism of signal transduction that allows organisms to sense and respond to a changing environment. Spore: A unit of sexual or asexual reproduction that is able to disperse and survive in unfavorable conditions. Virulence factor: Molecules produced by pathogens that can increase their fitness in interactions with the host. Survival strategies of intracellular bacteria within amoebas Entry of bacteria into amoebas is simple because amoebas eat bacteria. Amoebas normally engulf food bacteria by phagocytosis and kill them inside the phagosome, where ingested bac- teria are confronted with acidification, oxidative stress, nutrient deprivation, and various anti- microbial small molecules [2] [9,10]. Amoeba grazing has been suggested to be one of the major forces shaping bacterial abundance and diversity [11]. However, some bacteria have developed strategies to survive phagocytosis by amoebas and are able to exploit host cell resources. Bacteria like Legionella pneumophila that remain in the vacuole of macrophages in humans are perhaps the best-studied bacteria that infect humans and amoebas, but they are by no means the only ones (Table 1) [12,13]. The most obvious strategy to avoid being killed by the amoeba host is to escape from its vac- uole into the cytosol of the amoeba (Fig 1A). For example, M. marinum and M. tuberculosis have evolved this ability (Fig 1A, yellow). This process requires the mycobacterial type VII secretion system ESX-1 [12]. In addition, both M. marinum and M. tuberculosis can eject from the cell through an F-actin structure called an ejectosome and then spread from cell to cell [19,20]. In general, the cytosol is considered to be favorable for bacterial growth because it pro- vides nutrients and is isolated from the host immune system [21]. Therefore, it is an ideal place for bacteria to thrive after escaping from the phagosome. Some intracellular patho- gens can invade a more unusual intracellular niche: the eukaryotic nucleus (Fig 1A, green). PLOS Biology | https://doi.org/10.1371/journal.pbio.2002460 May 2, 2017 2 / 8 Table 1. List of human pathogens that are found in free-living amoebas. These bacteria are isolated from various amoeba hosts and have different life- styles [8,14±16]. They have evolved sophisticated ways to export various virulence factors across their bacterial inner and sometimes outer membrane (in gram-negative bacteria), as well as through the host plasma membrane or phagosomal membrane, by using diverse secretion systems [17,18]. Bacteria Amoeba hosts Location in Bacterial secretion systems known to be Human diseases amoebas present β proteobacteria Burkholderia cepacia Acanthamoeba Extracellular Type III secretion system; type VI secretion Pneumonia system Bu. pseudomallei Acanthamoeba Extracellular Type III secretion system; type VI secretion Melioidosis system Burkholderia spp. Dictyostelium Facultative Unknown Unknown intracellular γ proteobacteria Coxiella burnetii Acanthamoeba Obligate Dot/Icm type IVB secretion system Q fever intracellular Escherichia coli O157 Acanthamoeba Extracellular Type III secretion system; Tat secretion Hemorrhagic diarrhea; kidney pathway failure Francisella tularensis Acanthamoeba Facultative Type VI secretion system Tularemia intracellular L. pneumophila Various amoebas Facultative Type II secretion system; type IV secretion Legionnaires disease intracellular system; Tat secretion pathway L. anisa Acanthamoeba Facultative Unknown Pontiac fever; Legionnaires intracellular disease Pseudomonas Acanthamoeba Extracellular Tat secretion pathway; Type VI secretion Infect human cells aeruginosa system Vibrio cholerae Acanthamoeba, Extracellular Type I secretion
Recommended publications
  • Dicty 2014 Abstract Book (Pdf)
    Supported by: Title picture: Heilandskirche, Sacrow, Potsdam (Ralph Gräf), Dicties (Rupert Mutzel, Sascha Thewes) 2 Venue: Seminaris Hotel Potsdam An der Pirschheide 40 14471 Potsdam Organizing committee: Ralph Gräf (Universität Potsdam) Sascha Thewes (Freie Universität Berlin) Carsten Beta (Universität Potsdam) 3 Dicty 2014 - Programme Sun 3rd Mon 4th Tue 5th Wed 6th Thu 7th 9:00 - 10:40 9:00 - 10:40 1st 9:00 - 10:40 9:00 - 10:40 1st morning session morning session 1st morning session 1st morning session Development Chemotaxis and cell Phagocytosis Evolution migration coffee break coffee break coffee break coffee break 11:10 - 12:50 2nd 11:10 - 12:50 2nd 11:10 - 12:50 2nd 11:10 - 12:50 2nd morning session morning session morning session morning session Signaling Biophysics of cell Pathogen Cell Biology migration interactions I (4) 13:00 - 14:30 lunch 13:00 - 14:30 lunch 12:50 - 13:30 luxury 13:00 - 14:30 lunch break break coffee break 14:30 - 16:10 14:30 - 16:10 13:30 - 14:20 short Departure 1st afternoon 1st afternoon afternoon session session session Nucleus and Pathogen Signaling chromatin interactions II (2) II/Membrane- associated proteins coffee break coffee break 16:00 Registration 16:40 - 18:20 2nd 16:40 - 18:20 2nd Tour to Sanssouci castle afternoon session afternoon session and park (busses leave Disease models Gene expression at 14:30 pm) and genomics 18:30 Keynote lecture/Dicty Race 20:00 18:30 - 20:00 Dinner 18:30 - 20:00 Dinner 19:30 pm Welcome Dinner Conference Dinner at the Sanssouci castle 20:00 20:00 Poster Session I Poster Session II Sunday, August 3 16:00 Registration 18:30 1 Keynote lecture by Günther Gerisch 19:30 2 The Dicty World Race Daniel Irimia 20:00 Welcome Dinner 4 Monday, August 4 1st morning session: Development; Chair: Tian Jin 9:00 3 Cell signaling during development of Dictyostelium William F.
    [Show full text]
  • New Insights Into the Evasion of Host Innate Immunity by Mycobacterium Tuberculosis
    Cellular & Molecular Immunology www.nature.com/cmi REVIEW ARTICLE OPEN New insights into the evasion of host innate immunity by Mycobacterium tuberculosis Qiyao Chai1,2, Lin Wang3, Cui Hua Liu 1,2 and Baoxue Ge 3 Mycobacterium tuberculosis (Mtb) is an extremely successful intracellular pathogen that causes tuberculosis (TB), which remains the leading infectious cause of human death. The early interactions between Mtb and the host innate immune system largely determine the establishment of TB infection and disease development. Upon infection, host cells detect Mtb through a set of innate immune receptors and launch a range of cellular innate immune events. However, these innate defense mechanisms are extensively modulated by Mtb to avoid host immune clearance. In this review, we describe the emerging role of cytosolic nucleic acid-sensing pathways at the host–Mtb interface and summarize recently revealed mechanisms by which Mtb circumvents host cellular innate immune strategies such as membrane trafficking and integrity, cell death and autophagy. In addition, we discuss the newly elucidated strategies by which Mtb manipulates the host molecular regulatory machinery of innate immunity, including the intranuclear regulatory machinery, the ubiquitin system, and cellular intrinsic immune components. A better understanding of innate immune evasion mechanisms adopted by Mtb will provide new insights into TB pathogenesis and contribute to the development of more effective TB vaccines and therapies. Keywords: Mycobacterium tuberculosis; Innate
    [Show full text]
  • Nanoplankton Protists from the Western Mediterranean Sea. II. Cryptomonads (Cryptophyceae = Cryptomonadea)*
    sm69n1047 4/3/05 20:30 Página 47 SCI. MAR., 69 (1): 47-74 SCIENTIA MARINA 2005 Nanoplankton protists from the western Mediterranean Sea. II. Cryptomonads (Cryptophyceae = Cryptomonadea)* GIANFRANCO NOVARINO Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K. E-mail: [email protected] SUMMARY: This paper is an electron microscopical account of cryptomonad flagellates (Cryptophyceae = Cryptomon- adea) in the plankton of the western Mediterranean Sea. Bottle samples collected during the spring-summer of 1998 in the Sea of Alboran and Barcelona coastal waters contained a total of eleven photosynthetic species: Chroomonas (sensu aucto- rum) sp., Cryptochloris sp., 3 species of Hemiselmis, 3 species of Plagioselmis including Plagioselmis nordica stat. nov/sp. nov., Rhinomonas reticulata (Lucas) Novarino, Teleaulax acuta (Butcher) Hill, and Teleaulax amphioxeia (Conrad) Hill. Identification was based largely on cell surface features, as revealed by scanning electron microscopy (SEM). Cells were either dispersed in the water-column or associated with suspended particulate matter (SPM). Plagioselmis prolonga was the most common species both in the water-column and in association with SPM, suggesting that it might be a key primary pro- ducer of carbon. Taxonomic keys are given based on SEM. Key words: Cryptomonadea, cryptomonads, Cryptophyceae, flagellates, nanoplankton, taxonomy, ultrastructure. RESUMEN: PROTISTAS NANOPLANCTÓNICOS DEL MAR MEDITERRANEO NOROCCIDENTAL II. CRYPTOMONADALES (CRYPTOPHY- CEAE = CRYPTOMONADEA). – Este estudio describe a los flagelados cryptomonadales (Cryptophyceae = Cryptomonadea) planctónicos del Mar Mediterraneo Noroccidental mediante microscopia electrónica. La muestras recogidas en botellas durante la primavera-verano de 1998 en el Mar de Alboran y en aguas costeras de Barcelona, contenian un total de 11 espe- cies fotosintéticas: Chroomonas (sensu auctorum) sp., Cryptochloris sp., 3 especies de Hemiselmis, 3 especies de Plagio- selmis incluyendo Plagioselmis nordica stat.
    [Show full text]
  • Dicty 2017 Abstract Book (Pdf)
    Map and information BEST WESTERN HÔTEL CHAVANNES-DE-BOGIS CARACTÉRISTIQUES DES SALLES ET TARIFS La Bulle Halle de tennis r Odyssée II s Cosmos 2 II ALPES Uranu JURA Jupite LAC I Pluton Odyssée I Uranus Cosmos 1 Foyer Galaxie Pause Fumoir Space ENTRÉE Bar Réception Central de tennis Or e Étoile d' rn Lu n Satu e e rot e Bist Fitness Paus Capanna Neptun t Mars s e Restauran ur des Art rc Me rrasse Te e Piscine Observatoir LAC EFFECTIF PAR CONFIGURATION lumière du jour Salle All talksÉtage areSurf. held m 2in theHaut. room m CosmosÉcole Bloc U Théâtre Carré Cabaret Banquet Cocktail CHF Cosmos Rdc 189 3 150 50 270 - 130 200 250 1500 Cosmos I Breakfast:Rdc 116 Mon3-Thu 6:3080-10:00, Restaurant30 200 des Arts and34 Terrasse42 90 150 750 Cosmos II Lunch:Rdc 79 Mon,3 Tues, Thu,40 Terrasse20 or Observatoire70 24 35 60 100 500 Uranus I Dinner:Rdc 28 Sun2,5-Wed, Terrasse10 or Observatoire10 16 12 - - - 250 Coffee breaks: Mon-Thu, Foyer Pause Uranus II Rdc 19 2,5 8 10 10 12 - - - 250 Poster sessions: Mon-Tues from 20:00, room Odyssée Odyssée Workshops:Rdc 176 Mon3-Tues from150 20:00, room40 s Pluton220 , Jupiter34 and Uranus94 (I and170 II) 200 1200 Odyssée I Rdc 99 3 65 40 150 34 40 90 150 700 Odyssée II Contact:Rdc 74 conference@hotel3 40 -chavannes.ch20 / 70reception@hotel24 -chavannes.ch30 60 100 500 Jupiter Rdc 28 00412,5 22 960818110 10 16 12 - - - 250 Pluton Rdc 28 2,4 10 10 16 12 - - - 250 [email protected] Galaxie Rdc 28 2,4 10 10 16 12 - - - 250 Neptune Rdc 75 2,5 40 30 50 34 28 60 70 500 Mars Rdc 35 2,5 25 16 40 20 - - - 400 Mercure Rdc 35 2,5 25 16 40 20 - - - 400 Saturne Rdc 35 2,5 25 16 40 20 - - - 400 Lune Rdc 26 2,5 - - - 8 - - - 300 Orion 1 33 2,4 - - - 10 - - - 300 Vénus 2 33 2,4 - - - 10 - - - 300 Hypérion 3 33 2,4 - - - 10 - - - 300 Observatoire Rdc 98 3 50 25 100 40 50 50 70 800 La Bulle Rdc 2400 - - - - - - 900 1500 2500 Nos salles sont climatisées et équipées de connexion ISDN, ADSL et WiFi.
    [Show full text]
  • Intravirion DNA Can Access the Space Occupied by the Bacteriophage P22 Ejection Proteins
    viruses Article Intravirion DNA Can Access the Space Occupied by the Bacteriophage P22 Ejection Proteins Justin C. Leavitt 1,†, Eddie B. Gilcrease 2,‡, Brianna M. Woodbury 3, Carolyn M. Teschke 3,4,* and Sherwood R. Casjens 1,2,* 1 School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; [email protected] 2 Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; [email protected] 3 Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; [email protected] 4 Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA * Correspondence: [email protected] (C.M.T.); [email protected] (S.R.C.); Tel.: +1-860-486-4282 (C.M.T.); +1-801-712-2038 (S.R.C.) † Current address: Hamit-Darwin-Freesh, Inc., Dammeron Valley, UT 84783, USA. ‡ Current address: Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA. Abstract: Tailed double-stranded DNA bacteriophages inject some proteins with their dsDNA during infection. Phage P22 injects about 12, 12, and 30 molecules of the proteins encoded by genes 7, 16 and 20, respectively. After their ejection from the virion, they assemble into a trans-periplasmic conduit through which the DNA passes to enter the cytoplasm. The location of these proteins in the virion before injection is not well understood, although we recently showed they reside near the portal Citation: Leavitt, J.C.; Gilcrease, E.B.; protein barrel in DNA-filled heads.
    [Show full text]
  • The Taxonomic Implications of the Ultrastucture and Cell Division of a Stigma-Containing Chroomonas Sp
    S. Afr. J. Bot. , 1987,53(2): 129 - 139 129 The taxonomic implications of the ultrastucture and cell division of a stigma-containing Chroomonas sp. (Cryptophyceae) from Rocky Bay, Natal, South Africa Shirley R. Meyer Department of Botany, University of Natal, P.O . Box 375, Pietermaritzburg, 3200 Republic of South Africa Present address: P.O . Box 79, Weenen, 3325 Republic of South Africa Accepted 17 November 1986 The ultrastructure of the interphase cell and the ultrastructural details of mitosis and cytokinesis are described in a blue-green stigma-containing Chroomonas sp. isolated from a tidal pool in the Rocky Bay region of the Natal coast, R.S.A. This taxon resembles Chroomonas sp. 978/2 and C. mesostigmatica but can be separated from Chroomonas sp. (Gantt 1971), C. africana and C_ placoidea on the basis of its number of periplast plates. The periplast plates are relatively large in the Rocky Bay isolate and observations of cells undergoing mitosis and cytokinesis have shown that the plates increase in number only during cytokinesis or once the daughter cells have separated. The sequence of events in mitosis and cytokinesis are similar to those observed in C. africana, but are Significantly different in some respects from cryptomonads without stigmas. The taxonomic implications of these observations are discussed. Die ultrastruktuur van 'n sel in interfase asook ultrastrukturele besonderhede van mitose en sitokinese is by 'n blou-groen Chroomonas sp. met 'n oogvlek, ge'isoleer uit 'n gety-poel in die Rocky Bay-gebied aan die Natalse kus, R.S.A., ondersoek. Hierdie takson kom met Chroomonas sp.
    [Show full text]
  • Phagosomal Rupture by Mycobacterium Tuberculosis
    Phagosomal Rupture by Mycobacterium tuberculosis Results in Toxicity and Host Cell Death Roxane Simeone, Alexandre Bobard, Juliane Lippmann, Wilbert Bitter, Laleh Majlessi, Roland Brosch, Jost Enninga To cite this version: Roxane Simeone, Alexandre Bobard, Juliane Lippmann, Wilbert Bitter, Laleh Majlessi, et al.. Phago- somal Rupture by Mycobacterium tuberculosis Results in Toxicity and Host Cell Death. PLoS Pathogens, Public Library of Science, 2012, 8 (2), pp.e1002507. 10.1371/journal.ppat.1002507. pasteur-01899479 HAL Id: pasteur-01899479 https://hal-pasteur.archives-ouvertes.fr/pasteur-01899479 Submitted on 19 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Phagosomal Rupture by Mycobacterium tuberculosis Results in Toxicity and Host Cell Death Roxane Simeone1., Alexandre Bobard2., Juliane Lippmann2, Wilbert Bitter3, Laleh Majlessi4,5, Roland Brosch1"*, Jost Enninga2"* 1 Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France, 2 Institut Pasteur, Research Group ‘‘Dynamics of Host-Pathogen Interactions’’, Paris, France, 3 VU University, Molecular and Medical Microbiology, Amsterdam, The Netherlands, 4 Institut Pasteur, Unite´ de Re´gulation Immunitaire et Vaccinologie, Paris, France, 5 INSERM U1041, Paris, France Abstract Survival within macrophages is a central feature of Mycobacterium tuberculosis pathogenesis.
    [Show full text]
  • Baffinellaceae Fam. Nov., Cryptophyceae) from Baffin Bay: Morphology, Pigment Profile, Phylogeny, and Growth Rate Response to Three Abiotic Factors1
    J. Phycol. *, ***–*** (2018) © 2018 Phycological Society of America DOI: 10.1111/jpy.12766 BAFFINELLA FRIGIDUS GEN. ET SP. NOV. (BAFFINELLACEAE FAM. NOV., CRYPTOPHYCEAE) FROM BAFFIN BAY: MORPHOLOGY, PIGMENT PROFILE, PHYLOGENY, AND GROWTH RATE RESPONSE TO THREE ABIOTIC FACTORS1 Niels Daugbjerg,2 Andreas Norlin Marine Biological Section, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen Ø DK-2100, Denmark and Connie Lovejoy Departement de Biologie, Universite Laval, 1045 avenue de la Medecine, Quebec, Quebec, G1V 0A6, Canada Twenty years ago an Arctic cryptophyte was Abbreviations: BA, Bayesian analysis; BS, bootstrap isolated from Baffin Bay and given strain number support; Cr-PC, cryptophyte-phycocyanin; Cr-PE, CCMP2045. Here, it was described using cryptophyte-phycoerythrin; ML, maximum likeli- morphology, water- and non-water soluble pigments hood; PP, posterior probability and nuclear-encoded SSU rDNA. The influence of temperature, salinity, and light intensity on growth rates was also examined. Microscopy revealed = typical cryptophyte features but the chloroplast Cryptophytes ( cryptomonads) are ubiquitous in color was either green or red depending on the marine and freshwater ecosystems worldwide and a few species have been recorded to form blooms light intensity provided. Phycoerythrin (Cr-PE 566) was only produced when cells were grown under (e.g., Laza-Martınez 2012, Supraha et al. 2014, and À À low-light conditions (5 lmol photons Á m 2 Á s 1). references therein). However, they also reside in Non-water-soluble pigments included chlorophyll a, more extreme environments, for example, soil (Paulsen et al. 1992), snow (Javornicky and Hindak c2 and five major carotenoids. Cells measured 8.2 3 5.1 lm and a tail-like appendage gave them a 1970), and inside ikaite columns (Ikka fjord, South- comma-shape.
    [Show full text]
  • Investigation of the Pseudomonas Chlororaphis PA23 - Acanthamoeba Castellanii Interaction
    Investigation of the Pseudomonas chlororaphis PA23 - Acanthamoeba castellanii interaction and the role of polyhydroxyalkanoates in PA23 physiology By Akrm Saleh Ghergab A Thesis Submitted to the Faculty of Graduate Studies of The University of Manitoba in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Microbiology University of Manitoba Winnipeg Copyright © 2020 by Akrm Saleh Ghergab I Abstract Pseudomonas chlororaphis PA23 is a biocontrol agent (BCA) that is able to protect canola against the pathogenic fungus Sclerotinia sclerotiorum. PA23 secretes a number of metabolites that contribute to fungal antagonism, including pyrrolnitrin (PRN), phenazine (PHZ), hydrogen cyanide (HCN) and degradative enzymes. Beyond pathogen suppression, the success of a BCA is dependent upon its ability to persist in the environment and avoid the threat of grazing predators, including protozoa. The first part of this thesis investigated whether PA23 is able to resist predation by Acanthamoeba castellanii (Ac) and defined the role of antifungal (AF) compounds in the bacterial-protozoan interaction. We discovered that PRN, PHZ and HCN contribute to PA23 toxicity towards Ac trophozoites. Ac preferentially migrated towards regulatory mutants devoid of AF metabolites as well as a PRN biosynthetic mutant, indicating that AF metabolites act to repel Ac. We also discovered that toxin-producing strains were able to survive inside trophozoites for up to 24 h. Collectively, our findings indicate that PRN, PHZ and HCN are involved in amoebicidal activity, and through the production of these molecules, PA23 is able to avoid the threat of predation. PA23 accumulates polyhydroxyalkanoate (PHA) polymers as carbon and energy storage compounds.
    [Show full text]
  • This Article Was Published in an Elsevier Journal. the Attached Copy
    This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author’s institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Available online at www.sciencedirect.com Harmful Algae 7 (2008) 293–307 www.elsevier.com/locate/hal Characterization, dynamics, and ecological impacts of harmful Cochlodinium polykrikoides blooms on eastern Long Island, NY, USA Christopher J. Gobler a,*, Dianna L. Berry a, O. Roger Anderson b, Amanda Burson a, Florian Koch a, Brooke S. Rodgers a, Lindsay K. Moore a, Jennifer A. Goleski a, Bassem Allam a, Paul Bowser c, Yingzhong Tang a, Robert Nuzzi d a School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA b Biology, Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964, USA c Aquatic Animal Health Program, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University Ithaca, NY 14853-6401, USA d Suffolk County Department of Health Services, Office of Ecology, Yapank, NY 11980, USA Received 16 November 2006; received in revised form 1 February 2007 Abstract We report on the emergence of Cochlodinium polykrikoides blooms in the Peconic Estuary and Shinnecock Bay, NY, USA, during 2002–2006.
    [Show full text]
  • Regulation of the Actin Cytoskeleton Via Rho Gtpase Signalling in Dictyostelium and Mammalian Cells: a Parallel Slalom
    cells Review Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom Vedrana Fili´c*, Lucija Mijanovi´c,Darija Putar, Antea Talaji´c,Helena Cetkovi´cand´ Igor Weber * Division of Molecular Biology, Ruder¯ Boškovi´cInstitute, Bijeniˇcka54, HR-10000 Zagreb, Croatia; [email protected] (L.M.); [email protected] (D.P.); [email protected] (A.T.); [email protected] (H.C.)´ * Correspondence: vedrana.fi[email protected] (V.F.); [email protected] (I.W.) Abstract: Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resem- blance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar Citation: Fili´c,V.; Mijanovi´c,L.; signalling networks in mammals.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility Permalink https://escholarship.org/uc/item/6mt5h51w Author Haglund, Cathleen Margaret Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility by Cathleen Margaret Haglund A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Matthew D. Welch, Chair Professor David Drubin Professor Daniel A. Portnoy Professor Kathleen Ryan Spring 2011 Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility © 2011 by Cathleen Margaret Haglund ABSTRACT Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility by Cathleen Margaret Haglund Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor Matthew D. Welch, Chair Diverse intracellular pathogens subvert the host actin polymerization machinery to drive movement within and between cells during infection. Rickettsia in the spotted fever group (SFG) are Gram-negative, obligate intracellular bacterial pathogens that undergo actin-based motility and assemble distinctive ‘comet tails’ containing long, unbranched actin filaments. Despite this distinct organization, it was proposed that actin in Rickettsia comet tails was nucleated by the host Arp2/3 complex and the bacterial protein RickA, which assemble branched actin networks. To identify additional rickettisal proteins that might function in actin assembly, we searched translated Rickettsia genome databases for proteins with WASP homology 2 (WH2) motifs, which are actin-binding peptides found in many cellular proteins.
    [Show full text]