Autophagy in Dictyostelium: Mechanisms, Regulation and Disease in a Simple Biomedical Model

Total Page:16

File Type:pdf, Size:1020Kb

Autophagy in Dictyostelium: Mechanisms, Regulation and Disease in a Simple Biomedical Model Autophagy ISSN: 1554-8627 (Print) 1554-8635 (Online) Journal homepage: http://www.tandfonline.com/loi/kaup20 Autophagy in Dictyostelium: Mechanisms, regulation and disease in a simple biomedical model Ana Mesquita, Elena Cardenal-Muñoz, Eunice Dominguez, Sandra Muñoz- Braceras, Beatriz Nuñez-Corcuera, Ben A. Phillips, Luis C. Tábara, Qiuhong Xiong, Roberto Coria, Ludwig Eichinger, Pierre Golstein, Jason S. King, Thierry Soldati, Olivier Vincent & Ricardo Escalante To cite this article: Ana Mesquita, Elena Cardenal-Muñoz, Eunice Dominguez, Sandra Muñoz- Braceras, Beatriz Nuñez-Corcuera, Ben A. Phillips, Luis C. Tábara, Qiuhong Xiong, Roberto Coria, Ludwig Eichinger, Pierre Golstein, Jason S. King, Thierry Soldati, Olivier Vincent & Ricardo Escalante (2017) Autophagy in Dictyostelium: Mechanisms, regulation and disease in a simple biomedical model, Autophagy, 13:1, 24-40, DOI: 10.1080/15548627.2016.1226737 To link to this article: http://dx.doi.org/10.1080/15548627.2016.1226737 View supplementary material Published online: 07 Oct 2016. Submit your article to this journal Article views: 534 View related articles View Crossmark data Citing articles: 3 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=kaup20 Download by: [UNAM Ciudad Universitaria] Date: 01 August 2017, At: 08:59 AUTOPHAGY 2017, VOL. 13, NO. 1, 24–40 http://dx.doi.org/10.1080/15548627.2016.1226737 REVIEW Autophagy in Dictyostelium: Mechanisms, regulation and disease in a simple biomedical model Ana Mesquitaa,b, Elena Cardenal-Munoz~ c, Eunice Domingueza,d, Sandra Munoz-Braceras~ a, Beatriz Nunez-Corcuera~ a, Ben A. Phillipse, Luis C. Tabaraa, Qiuhong Xiongf, Roberto Coriad, Ludwig Eichingerf, Pierre Golsteing, Jason S. Kinge, Thierry Soldatic, Olivier Vincenta, and Ricardo Escalantea aInstituto de Investigaciones Biomedicas “Alberto Sols” (CSIC-UAM), Madrid, Spain; bUniversity of Cincinnati College of Medicine, Cincinnati, OH, USA; cDepartment de Biochimie, Faculte des Sciences, Universite de Geneve, Switzerland; dDepartamento de Genetica Molecular, Instituto de Fisiologıa Celular, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico; eDepartment of Biomedical Sciences, University of Sheffield, UK; fCenter for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; gCentre d’Immunologie de Marseille-Luminy, Aix Marseille Universite UM2, Inserm, U1104, CNRS UMR7280, Marseille, France ABSTRACT ARTICLE HISTORY Autophagy is a fast-moving field with an enormous impact on human health and disease. Understanding Received 6 June 2016 the complexity of the mechanism and regulation of this process often benefits from the use of simple Revised 28 July 2016 experimental models such as the social amoeba Dictyostelium discoideum. Since the publication of the first Accepted 16 August 2016 review describing the potential of D. discoideum in autophagy, significant advances have been made that KEYWORDS demonstrate both the experimental advantages and interest in using this model. Since our previous Atg proteins; autophagic cell review, research in D. discoideum has shed light on the mechanisms that regulate autophagosome death; autophagy; formation and contributed significantly to the study of autophagy-related pathologies. Here, we review Dictyostelium; infection; these advances, as well as the current techniques to monitor autophagy in D. discoideum. The social amoeba comprehensive bioinformatics search of autophagic proteins that was a substantial part of the previous review has not been revisited here except for those aspects that challenged previous predictions such as the composition of the Atg1 complex. In recent years our understanding of, and ability to investigate, autophagy in D. discoideum has evolved significantly and will surely enable and accelerate future research using this model. Introducing D. discoideum, a simple model for autophagy 4 with striking similarities to animal cells diseases, the study of the mechanism of action of certain drugs,5 cancer,6 neurodegenerative disorders7 and lysosomal- Dictyostelium discoideum is a protist that belongs to the Amoe- related disorders8 among others. D. discoideum also provides bozoa, a sister group of animals and fungi. They are known as useful ways to study the mechanisms and the physiological social amoebae since the motile cells are able to aggregate and roles of autophagy.9 As in in other organisms, autophagy is form a simple multicellular organism. Under starvation, groups required for D. discoideum to survive starvation, for the turn- of approximately 100,000 cells form a mound that goes through over of proteins, to remove protein aggregates and is also different stages of development to give rise to a fruiting body, in fundamental during infection by intracellular pathogens. The Downloaded by [UNAM Ciudad Universitaria] at 08:59 01 August 2017 which vacuolated dead cells form a stalk that supports the first description of autophagic vacuoles in D. discoideum spores (Fig. 1). Vegetative D. discoideum cells are more similar (defined at that time simply as “bodies containing partially to animal cells than fungi or plant cells in many respects. For degraded cytoplasmic material”) comes from transmission elec- example, they lack rigid cell walls that might restrict movement, tron microscopy (TEM) studies of germinating spores in allowing the cells to perform typical animal-like processes such 1969,10 shortly after Christian de Duve coined the term as phagocytosis, macropinocytosis, pseudopod-based cell autophagy.11 We have come a long way from these initial mor- motility and chemotaxis. The parallels with animal cells phological observations and now begin to understand the extends to the evolutionary conservation of many genes that significance and the mechanisms of this crucial cellular process have been lost during fungal evolution.1 in the context of a whole organism. The similarity to animal cells makes D. discoideum a suitable During starvation, autophagy is responsible for the libera- model to address the study of genes or processes relevant to tion of nutrients to maintain viability. Therefore, defects in human disease. These include the study of pathogen infec- autophagy drastically reduce the ability of cells to survive tions,2 cell motility-related pathologies,3 mitochondrial prolonged periods of nutrient deprivation. Typically, wild-type CONTACT Ricardo Escalante [email protected] Arturo Duperier 4. 28029-Madrid, Spain Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/kaup. Supplemental data for this article can be accessed on the publisher’s website. © 2017 Taylor & Francis AUTOPHAGY 25 Figure 1. D. discoideum’s life cycle and representative phenotypes associated with the lack of autophagy. Mutant strains have been described for the genes depicted at the right side (see details in the main text). The pictures correspond from top to bottom to the strains DDB_G0269162¡/atg13¡, tipC¡ and wild-type AX4. D. discoideum cells survive for more than 10 d under amino Although autophagy was initially thought to simply be a mech- acid starvation, whereas autophagy-deficient mutants start los- anism to recycle nutrients by nonselective self-degradation (so ing viability after just 24 h.12,13 During starvation, autophagy is called bulk autophagy), the enormous importance of selective also responsible for a reduction in both cell volume and total autophagy is now becoming clear. The selective process is protein.12,13 The D. discoideum developmental program takes devoted to the specific degradation of abnormal protein aggre- place in the absence of nutrients; therefore, the intracellular gates (aggrephagy), organelles (mitophagy, pexophagy, riboph- degradation and recycling of the cells own material by auto- agy, reticulophagy, nucleophagy) or pathogens (xenophagy). phagy becomes essential as a source of energy and simple Impaired selective autophagy is therefore thought to underlie metabolites required for the biosynthetic pathways taking place the etiology of numerous diseases.18 during development. Thus, it is not surprising that autophagic The hallmark of autophagy is the formation of intracellular dysfunction leads to abnormal development, which facilitates double-membrane vesicles (autophagosomes), which eventually the identification of autophagy mutants in the laboratory. The fuse with lysosomes, leading to degradation of the cargo and severity of the phenotype ranges from complete lack of aggre- the inner membrane. The basic molecular machinery that con- gation to the formation of multi-tipped mounds, which are trols autophagy was initially discovered in Saccharomyces cere- Downloaded by [UNAM Ciudad Universitaria] at 08:59 01 August 2017 unable to form normal stalks and viable spores (Fig. 1).13 It is visiae, in which the proteins involved were named Atg, for unclear how much of the defects in development are simply the autophagy-related. These proteins form different complexes result of imbalanced nutrient homeostasis or whether more that are required for the induction, elongation and completion specific signaling events are involved. However, the signaling of the autophagic process. This has been extensively reviewed peptide SDF-2 (spore differentiation factor 2) is essential for in the past few years.19-21 Most of these proteins and complexes spore formation, and its precursor protein, AcbA, is secreted by can be recognized in D. discoideum by sequence
Recommended publications
  • Sensing and Relayaing of the Autophagic Signal by the ULK1
    SENSING AND RELAYING THE AUTOPHAGIC SIGNAL BY THE ULK1 KINASE COMPLEX by Cindy Puente A Dissertation Presented to the Faculty of the Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center in Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy New York, NY May, 2016 __________________________ __________________________ Xuejun Jiang, PhD Date Dissertation Mentor Copyright © 2016 by Cindy Puente To my husband, son, family and friends for their indefinite love and support iii ABSTRACT Autophagy is a conserved catabolic process that utilizes a defined series of membrane trafficking events to generate a double-membrane vesicle termed the autophagosome, which matures by fusing to the lysosome. Subsequently, the lysosome facilitates the degradation and recycling of the cytoplasmic cargo. Autophagy plays a vital role in maintaining cellular homeostasis, especially under stressful conditions, such as nutrient starvation. As such, it is implicated in a plethora of human diseases, particularly age-related conditions such as neurodegenerative disorders. The long-term goals of this proposal were to understand the upstream molecular mechanisms that regulate the induction of mammalian autophagy and understand how this signal is transduced to the downstream, core machinery of the pathway. In yeast, the upstream signals that modulate the induction of starvation- induced autophagy are clearly defined. The nutrient-sensing kinase Tor inhibits the activation of autophagy by regulating the formation of the Atg1-Atg13-Atg17 complex, through hyper-phosphorylation of Atg13. However, in mammals, the homologous complex ULK1-ATG13-FIP200 is constitutively formed. As such, the molecular mechanism by which mTOR regulates mammalian autophagy is unknown.
    [Show full text]
  • Dicty 2014 Abstract Book (Pdf)
    Supported by: Title picture: Heilandskirche, Sacrow, Potsdam (Ralph Gräf), Dicties (Rupert Mutzel, Sascha Thewes) 2 Venue: Seminaris Hotel Potsdam An der Pirschheide 40 14471 Potsdam Organizing committee: Ralph Gräf (Universität Potsdam) Sascha Thewes (Freie Universität Berlin) Carsten Beta (Universität Potsdam) 3 Dicty 2014 - Programme Sun 3rd Mon 4th Tue 5th Wed 6th Thu 7th 9:00 - 10:40 9:00 - 10:40 1st 9:00 - 10:40 9:00 - 10:40 1st morning session morning session 1st morning session 1st morning session Development Chemotaxis and cell Phagocytosis Evolution migration coffee break coffee break coffee break coffee break 11:10 - 12:50 2nd 11:10 - 12:50 2nd 11:10 - 12:50 2nd 11:10 - 12:50 2nd morning session morning session morning session morning session Signaling Biophysics of cell Pathogen Cell Biology migration interactions I (4) 13:00 - 14:30 lunch 13:00 - 14:30 lunch 12:50 - 13:30 luxury 13:00 - 14:30 lunch break break coffee break 14:30 - 16:10 14:30 - 16:10 13:30 - 14:20 short Departure 1st afternoon 1st afternoon afternoon session session session Nucleus and Pathogen Signaling chromatin interactions II (2) II/Membrane- associated proteins coffee break coffee break 16:00 Registration 16:40 - 18:20 2nd 16:40 - 18:20 2nd Tour to Sanssouci castle afternoon session afternoon session and park (busses leave Disease models Gene expression at 14:30 pm) and genomics 18:30 Keynote lecture/Dicty Race 20:00 18:30 - 20:00 Dinner 18:30 - 20:00 Dinner 19:30 pm Welcome Dinner Conference Dinner at the Sanssouci castle 20:00 20:00 Poster Session I Poster Session II Sunday, August 3 16:00 Registration 18:30 1 Keynote lecture by Günther Gerisch 19:30 2 The Dicty World Race Daniel Irimia 20:00 Welcome Dinner 4 Monday, August 4 1st morning session: Development; Chair: Tian Jin 9:00 3 Cell signaling during development of Dictyostelium William F.
    [Show full text]
  • New Insights Into the Evasion of Host Innate Immunity by Mycobacterium Tuberculosis
    Cellular & Molecular Immunology www.nature.com/cmi REVIEW ARTICLE OPEN New insights into the evasion of host innate immunity by Mycobacterium tuberculosis Qiyao Chai1,2, Lin Wang3, Cui Hua Liu 1,2 and Baoxue Ge 3 Mycobacterium tuberculosis (Mtb) is an extremely successful intracellular pathogen that causes tuberculosis (TB), which remains the leading infectious cause of human death. The early interactions between Mtb and the host innate immune system largely determine the establishment of TB infection and disease development. Upon infection, host cells detect Mtb through a set of innate immune receptors and launch a range of cellular innate immune events. However, these innate defense mechanisms are extensively modulated by Mtb to avoid host immune clearance. In this review, we describe the emerging role of cytosolic nucleic acid-sensing pathways at the host–Mtb interface and summarize recently revealed mechanisms by which Mtb circumvents host cellular innate immune strategies such as membrane trafficking and integrity, cell death and autophagy. In addition, we discuss the newly elucidated strategies by which Mtb manipulates the host molecular regulatory machinery of innate immunity, including the intranuclear regulatory machinery, the ubiquitin system, and cellular intrinsic immune components. A better understanding of innate immune evasion mechanisms adopted by Mtb will provide new insights into TB pathogenesis and contribute to the development of more effective TB vaccines and therapies. Keywords: Mycobacterium tuberculosis; Innate
    [Show full text]
  • Nanoplankton Protists from the Western Mediterranean Sea. II. Cryptomonads (Cryptophyceae = Cryptomonadea)*
    sm69n1047 4/3/05 20:30 Página 47 SCI. MAR., 69 (1): 47-74 SCIENTIA MARINA 2005 Nanoplankton protists from the western Mediterranean Sea. II. Cryptomonads (Cryptophyceae = Cryptomonadea)* GIANFRANCO NOVARINO Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K. E-mail: [email protected] SUMMARY: This paper is an electron microscopical account of cryptomonad flagellates (Cryptophyceae = Cryptomon- adea) in the plankton of the western Mediterranean Sea. Bottle samples collected during the spring-summer of 1998 in the Sea of Alboran and Barcelona coastal waters contained a total of eleven photosynthetic species: Chroomonas (sensu aucto- rum) sp., Cryptochloris sp., 3 species of Hemiselmis, 3 species of Plagioselmis including Plagioselmis nordica stat. nov/sp. nov., Rhinomonas reticulata (Lucas) Novarino, Teleaulax acuta (Butcher) Hill, and Teleaulax amphioxeia (Conrad) Hill. Identification was based largely on cell surface features, as revealed by scanning electron microscopy (SEM). Cells were either dispersed in the water-column or associated with suspended particulate matter (SPM). Plagioselmis prolonga was the most common species both in the water-column and in association with SPM, suggesting that it might be a key primary pro- ducer of carbon. Taxonomic keys are given based on SEM. Key words: Cryptomonadea, cryptomonads, Cryptophyceae, flagellates, nanoplankton, taxonomy, ultrastructure. RESUMEN: PROTISTAS NANOPLANCTÓNICOS DEL MAR MEDITERRANEO NOROCCIDENTAL II. CRYPTOMONADALES (CRYPTOPHY- CEAE = CRYPTOMONADEA). – Este estudio describe a los flagelados cryptomonadales (Cryptophyceae = Cryptomonadea) planctónicos del Mar Mediterraneo Noroccidental mediante microscopia electrónica. La muestras recogidas en botellas durante la primavera-verano de 1998 en el Mar de Alboran y en aguas costeras de Barcelona, contenian un total de 11 espe- cies fotosintéticas: Chroomonas (sensu auctorum) sp., Cryptochloris sp., 3 especies de Hemiselmis, 3 especies de Plagio- selmis incluyendo Plagioselmis nordica stat.
    [Show full text]
  • Dicty 2017 Abstract Book (Pdf)
    Map and information BEST WESTERN HÔTEL CHAVANNES-DE-BOGIS CARACTÉRISTIQUES DES SALLES ET TARIFS La Bulle Halle de tennis r Odyssée II s Cosmos 2 II ALPES Uranu JURA Jupite LAC I Pluton Odyssée I Uranus Cosmos 1 Foyer Galaxie Pause Fumoir Space ENTRÉE Bar Réception Central de tennis Or e Étoile d' rn Lu n Satu e e rot e Bist Fitness Paus Capanna Neptun t Mars s e Restauran ur des Art rc Me rrasse Te e Piscine Observatoir LAC EFFECTIF PAR CONFIGURATION lumière du jour Salle All talksÉtage areSurf. held m 2in theHaut. room m CosmosÉcole Bloc U Théâtre Carré Cabaret Banquet Cocktail CHF Cosmos Rdc 189 3 150 50 270 - 130 200 250 1500 Cosmos I Breakfast:Rdc 116 Mon3-Thu 6:3080-10:00, Restaurant30 200 des Arts and34 Terrasse42 90 150 750 Cosmos II Lunch:Rdc 79 Mon,3 Tues, Thu,40 Terrasse20 or Observatoire70 24 35 60 100 500 Uranus I Dinner:Rdc 28 Sun2,5-Wed, Terrasse10 or Observatoire10 16 12 - - - 250 Coffee breaks: Mon-Thu, Foyer Pause Uranus II Rdc 19 2,5 8 10 10 12 - - - 250 Poster sessions: Mon-Tues from 20:00, room Odyssée Odyssée Workshops:Rdc 176 Mon3-Tues from150 20:00, room40 s Pluton220 , Jupiter34 and Uranus94 (I and170 II) 200 1200 Odyssée I Rdc 99 3 65 40 150 34 40 90 150 700 Odyssée II Contact:Rdc 74 conference@hotel3 40 -chavannes.ch20 / 70reception@hotel24 -chavannes.ch30 60 100 500 Jupiter Rdc 28 00412,5 22 960818110 10 16 12 - - - 250 Pluton Rdc 28 2,4 10 10 16 12 - - - 250 [email protected] Galaxie Rdc 28 2,4 10 10 16 12 - - - 250 Neptune Rdc 75 2,5 40 30 50 34 28 60 70 500 Mars Rdc 35 2,5 25 16 40 20 - - - 400 Mercure Rdc 35 2,5 25 16 40 20 - - - 400 Saturne Rdc 35 2,5 25 16 40 20 - - - 400 Lune Rdc 26 2,5 - - - 8 - - - 300 Orion 1 33 2,4 - - - 10 - - - 300 Vénus 2 33 2,4 - - - 10 - - - 300 Hypérion 3 33 2,4 - - - 10 - - - 300 Observatoire Rdc 98 3 50 25 100 40 50 50 70 800 La Bulle Rdc 2400 - - - - - - 900 1500 2500 Nos salles sont climatisées et équipées de connexion ISDN, ADSL et WiFi.
    [Show full text]
  • Intravirion DNA Can Access the Space Occupied by the Bacteriophage P22 Ejection Proteins
    viruses Article Intravirion DNA Can Access the Space Occupied by the Bacteriophage P22 Ejection Proteins Justin C. Leavitt 1,†, Eddie B. Gilcrease 2,‡, Brianna M. Woodbury 3, Carolyn M. Teschke 3,4,* and Sherwood R. Casjens 1,2,* 1 School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; [email protected] 2 Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; [email protected] 3 Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; [email protected] 4 Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA * Correspondence: [email protected] (C.M.T.); [email protected] (S.R.C.); Tel.: +1-860-486-4282 (C.M.T.); +1-801-712-2038 (S.R.C.) † Current address: Hamit-Darwin-Freesh, Inc., Dammeron Valley, UT 84783, USA. ‡ Current address: Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA. Abstract: Tailed double-stranded DNA bacteriophages inject some proteins with their dsDNA during infection. Phage P22 injects about 12, 12, and 30 molecules of the proteins encoded by genes 7, 16 and 20, respectively. After their ejection from the virion, they assemble into a trans-periplasmic conduit through which the DNA passes to enter the cytoplasm. The location of these proteins in the virion before injection is not well understood, although we recently showed they reside near the portal Citation: Leavitt, J.C.; Gilcrease, E.B.; protein barrel in DNA-filled heads.
    [Show full text]
  • Regulation of Autophagy by Signaling Through the Atg1/ULK1 Complex
    CORE Metadata, citation and similar papers at core.ac.uk Review Provided by Elsevier - Publisher Connector Regulation of Autophagy By Signaling Through the Atg1/ULK1 Complex Daniel Papinski and Claudine Kraft Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, A-1030 Vienna, Austria Correspondence to Claudine Kraft: [email protected] http://dx.doi.org/10.1016/j.jmb.2016.03.030 Edited by James H. Hurley Abstract Autophagy is an intracellular degradation pathway highly conserved in eukaryotic species. It is characterized by selective or bulk trafficking of cytosolic structures—ranging from single proteins to cell organelles—to the vacuole or a lysosome, in which the autophagic cargo is degraded. Autophagy fulfils a large set of roles, including nutrient mobilization in starvation conditions, clearance of protein aggregates and host defence against intracellular pathogens. Not surprisingly, autophagy has been linked to several human diseases, among them neurodegenerative disorders and cancer. Autophagy is coordinated by the action of the Atg1/ ULK1 kinase, which is the target of several important stress signaling cascades. In this review, we will discuss the available information on both upstream regulation and downstream effectors of Atg1/ULK1, with special focus on reported and proposed kinase substrates. © 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Introduction tion of the core macroautophagy machinery, which is visible as a dot at the vacuole in fluorescence Autophagy is defined as an intracellular mechanism microscopy [2,3]. Autophagosome formation occurs for the turnover of cytosolic material dependent on a in distinct steps.
    [Show full text]
  • The Taxonomic Implications of the Ultrastucture and Cell Division of a Stigma-Containing Chroomonas Sp
    S. Afr. J. Bot. , 1987,53(2): 129 - 139 129 The taxonomic implications of the ultrastucture and cell division of a stigma-containing Chroomonas sp. (Cryptophyceae) from Rocky Bay, Natal, South Africa Shirley R. Meyer Department of Botany, University of Natal, P.O . Box 375, Pietermaritzburg, 3200 Republic of South Africa Present address: P.O . Box 79, Weenen, 3325 Republic of South Africa Accepted 17 November 1986 The ultrastructure of the interphase cell and the ultrastructural details of mitosis and cytokinesis are described in a blue-green stigma-containing Chroomonas sp. isolated from a tidal pool in the Rocky Bay region of the Natal coast, R.S.A. This taxon resembles Chroomonas sp. 978/2 and C. mesostigmatica but can be separated from Chroomonas sp. (Gantt 1971), C. africana and C_ placoidea on the basis of its number of periplast plates. The periplast plates are relatively large in the Rocky Bay isolate and observations of cells undergoing mitosis and cytokinesis have shown that the plates increase in number only during cytokinesis or once the daughter cells have separated. The sequence of events in mitosis and cytokinesis are similar to those observed in C. africana, but are Significantly different in some respects from cryptomonads without stigmas. The taxonomic implications of these observations are discussed. Die ultrastruktuur van 'n sel in interfase asook ultrastrukturele besonderhede van mitose en sitokinese is by 'n blou-groen Chroomonas sp. met 'n oogvlek, ge'isoleer uit 'n gety-poel in die Rocky Bay-gebied aan die Natalse kus, R.S.A., ondersoek. Hierdie takson kom met Chroomonas sp.
    [Show full text]
  • Phagosomal Rupture by Mycobacterium Tuberculosis
    Phagosomal Rupture by Mycobacterium tuberculosis Results in Toxicity and Host Cell Death Roxane Simeone, Alexandre Bobard, Juliane Lippmann, Wilbert Bitter, Laleh Majlessi, Roland Brosch, Jost Enninga To cite this version: Roxane Simeone, Alexandre Bobard, Juliane Lippmann, Wilbert Bitter, Laleh Majlessi, et al.. Phago- somal Rupture by Mycobacterium tuberculosis Results in Toxicity and Host Cell Death. PLoS Pathogens, Public Library of Science, 2012, 8 (2), pp.e1002507. 10.1371/journal.ppat.1002507. pasteur-01899479 HAL Id: pasteur-01899479 https://hal-pasteur.archives-ouvertes.fr/pasteur-01899479 Submitted on 19 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Phagosomal Rupture by Mycobacterium tuberculosis Results in Toxicity and Host Cell Death Roxane Simeone1., Alexandre Bobard2., Juliane Lippmann2, Wilbert Bitter3, Laleh Majlessi4,5, Roland Brosch1"*, Jost Enninga2"* 1 Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France, 2 Institut Pasteur, Research Group ‘‘Dynamics of Host-Pathogen Interactions’’, Paris, France, 3 VU University, Molecular and Medical Microbiology, Amsterdam, The Netherlands, 4 Institut Pasteur, Unite´ de Re´gulation Immunitaire et Vaccinologie, Paris, France, 5 INSERM U1041, Paris, France Abstract Survival within macrophages is a central feature of Mycobacterium tuberculosis pathogenesis.
    [Show full text]
  • Baffinellaceae Fam. Nov., Cryptophyceae) from Baffin Bay: Morphology, Pigment Profile, Phylogeny, and Growth Rate Response to Three Abiotic Factors1
    J. Phycol. *, ***–*** (2018) © 2018 Phycological Society of America DOI: 10.1111/jpy.12766 BAFFINELLA FRIGIDUS GEN. ET SP. NOV. (BAFFINELLACEAE FAM. NOV., CRYPTOPHYCEAE) FROM BAFFIN BAY: MORPHOLOGY, PIGMENT PROFILE, PHYLOGENY, AND GROWTH RATE RESPONSE TO THREE ABIOTIC FACTORS1 Niels Daugbjerg,2 Andreas Norlin Marine Biological Section, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen Ø DK-2100, Denmark and Connie Lovejoy Departement de Biologie, Universite Laval, 1045 avenue de la Medecine, Quebec, Quebec, G1V 0A6, Canada Twenty years ago an Arctic cryptophyte was Abbreviations: BA, Bayesian analysis; BS, bootstrap isolated from Baffin Bay and given strain number support; Cr-PC, cryptophyte-phycocyanin; Cr-PE, CCMP2045. Here, it was described using cryptophyte-phycoerythrin; ML, maximum likeli- morphology, water- and non-water soluble pigments hood; PP, posterior probability and nuclear-encoded SSU rDNA. The influence of temperature, salinity, and light intensity on growth rates was also examined. Microscopy revealed = typical cryptophyte features but the chloroplast Cryptophytes ( cryptomonads) are ubiquitous in color was either green or red depending on the marine and freshwater ecosystems worldwide and a few species have been recorded to form blooms light intensity provided. Phycoerythrin (Cr-PE 566) was only produced when cells were grown under (e.g., Laza-Martınez 2012, Supraha et al. 2014, and À À low-light conditions (5 lmol photons Á m 2 Á s 1). references therein). However, they also reside in Non-water-soluble pigments included chlorophyll a, more extreme environments, for example, soil (Paulsen et al. 1992), snow (Javornicky and Hindak c2 and five major carotenoids. Cells measured 8.2 3 5.1 lm and a tail-like appendage gave them a 1970), and inside ikaite columns (Ikka fjord, South- comma-shape.
    [Show full text]
  • Autophagy and Cell Growth – the Yin and Yang of Nutrient Responses
    Commentary 2359 Autophagy and cell growth – the yin and yang of nutrient responses Thomas P. Neufeld Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA [email protected] Journal of Cell Science 125, 2359–2368 ß 2012. Published by The Company of Biologists Ltd doi: 10.1242/jcs.103333 Summary As a response to nutrient deprivation and other cell stresses, autophagy is often induced in the context of reduced or arrested cell growth. A plethora of signaling molecules and pathways have been shown to have opposing effects on cell growth and autophagy, and results of recent functional screens on a genomic scale support the idea that these processes might represent mutually exclusive cell fates. Understanding the ways in which autophagy and cell growth relate to one another is becoming increasingly important, as new roles for autophagy in tumorigenesis and other growth-related phenomena are uncovered. This Commentary highlights recent findings that link autophagy and cell growth, and explores the mechanisms underlying these connections and their implications for cell physiology and survival. Autophagy and cell growth can inhibit one another through a variety of direct and indirect mechanisms, and can be independently regulated by common signaling pathways. The central role of the mammalian target of rapamycin (mTOR) pathway in regulating both autophagy and cell growth exemplifies one such mechanism. In addition, mTOR-independent signaling and other more direct connections between autophagy and cell growth will also be discussed. This article is part of a Minifocus on Autophagy. For further reading, please see related articles: ‘Ubiquitin-like proteins and autophagy at a glance’ by Tomer Shpilka et al.
    [Show full text]
  • Distinct Requirements of Autophagy-Related Genes in Programmed Cell Death
    Cell Death and Differentiation (2015) 22, 1792–1802 & 2015 Macmillan Publishers Limited All rights reserved 1350-9047/15 www.nature.com/cdd Distinct requirements of Autophagy-related genes in programmed cell death TXu1, S Nicolson1, D Denton*1 and S Kumar*1 Although most programmed cell death (PCD) during animal development occurs by caspase-dependent apoptosis, autophagy- dependent cell death is also important in specific contexts. In previous studies, we established that PCD of the obsolete Drosophila larval midgut tissue is dependent on autophagy and can occur in the absence of the main components of the apoptotic pathway. As autophagy is primarily a survival mechanism in response to stress such as starvation, it is currently unclear if the regulation and mechanism of autophagy as a pro-death pathway is distinct to that as pro-survival. To establish the requirement of the components of the autophagy pathway during cell death, we examined the effect of systematically knocking down components of the autophagy machinery on autophagy induction and timing of midgut PCD. We found that there is a distinct requirement of the individual components of the autophagy pathway in a pro-death context. Furthermore, we show that TORC1 is upstream of autophagy induction in the midgut indicating that while the machinery may be distinct the activation may occur similarly in PCD and during starvation-induced autophagy signalling. Our data reveal that while autophagy initiation occurs similarly in different cellular contexts, there is a tissue/function-specific requirement for the components of the autophagic machinery. Cell Death and Differentiation (2015) 22, 1792–1802; doi:10.1038/cdd.2015.28; published online 17 April 2015 There is a fundamental requirement for multicellular organ- function in multiple steps.
    [Show full text]