A Potential Biological Control Agent for the Introduced Plant Bryophyllum Delagoense (Crassulaceae) in South Africa and Australia

Total Page:16

File Type:pdf, Size:1020Kb

A Potential Biological Control Agent for the Introduced Plant Bryophyllum Delagoense (Crassulaceae) in South Africa and Australia Proceedings of the XI International Symposium on Biological Control of Weeds Aspects of the biology and host range of Alcidodes sedi (Curculionidae: Mecysolobini), a potential biological control agent for the introduced plant Bryophyllum delagoense (Crassulaceae) in South Africa and Australia A.J. McConnachie and A.B.R. Witt Queensland Department of Natural Resources and Mines, South African Field Station, c/o PPRI, Private Bag X134, Pretoria 0001, South Africa Despite the fact that Bryophyllum delagoense (mother-of-millions) was introduced into southern Africa from Madagascar more than 130 years ago, it has not become as invasive as in Queensland, Australia. Several factors may be contributing to the current situation, one of which is the possibility that native insects in southern Africa have extended their host ranges to include B. delagoense. One indigenous species, Alcidodes sedi, has been collected on B. delagoense and is particularly damaging. Larvae of this weevil are stemborers, and high larval densities often result in plant death in laboratory situations. These observations resulted in the selection of A. sedi as a potential biological control agent for B. dela- goense in Australia, and possibly southern Africa through augmentative releases. Aspects of the biology and host range of the weevil were therefore investigated. Preliminary data on the biology of the weevil suggests that it has a developmental time of 62.1 ± 16.3 days ( n = 19) (range:15–30°C). Preliminary host-range trials indicate that the weevil is able to feed and develop on several species of Bryophyllum. There is no significant difference in the morphometrics and developmental times of the adults emerging from any of the species tested so far, suggesting that A. sedi has a wider host range than initially anticipated. Further host-range trials will be undertaken to determine if this weevil can complete its development on indigenous Crassula and Kalanchoe spp. and on species native to southern Africa in other closely related families. Future work will also explore the impact of the weevil on plant vigour in the laboratory and field, as well as its distribution and natural host range. Compatible interactions between the pathogen, weed and environment make the bridal creeper rust a successful biological control agent Louise Morin,1 Joel Armstrong,1 Wolfgang Wanjura,2 Felice Driver2,3 and Darren Kriticos1 1 Cooperative Research Centre for Australian Weed Management, CSIRO Entomology, GPO Box 1700, Canberra ACT 2601, Australia 2 CSIRO Entomology, GPO Box 1700, Canberra ACT 2601, Australia 3 Present address: C-Qentec Diagnostics Pty Ltd, 51 Rawson Street, Epping NSW 2121, Australia Bridal creeper, Asparagus asparagoides, is listed as a Weed of National Significance in Australia. It invades native vegetation through bird dispersal of seeds and establishes an underground mat of rhizomes and tubers that support its persistence in seasonally dry environments. Following extensive pathogenicity screening and host-specificity testing, an isolate of the rust fungus Puccinia myrsiphylli, originating from South Africa, was released in Australia in 2000. The rust established readily at release sites across the country and has already demonstrated its ability to cause destructive localized epidemics. The released isolate of P. myrsiphylli was chosen because of its pathogenicity and aggres- siveness towards representative Australian accessions of bridal creeper. In contrast, some of the other isolates tested did not develop profusely on plants. DNA sequence data confirmed that Australian bridal creeper populations originate from the winter rainfall region of the Western Cape Province of South Africa, where the selected rust isolate was collected. Puccinia myrsiphylli can infect leaves and 226 Abstracts: Theme 3 – Risk analysis stems of bridal creeper at any growth stage. In Australia, the optimum conditions for rust infection (at least 8 hours of leaf wetness; 16–20°C) are common during the cool months in winter-dominant rainfall areas where bridal creeper occurs. The rust produces a large number of dormant teliospores throughout the growing season of bridal creeper which allow its survival during the dry summer months, when the host foliage is dead, and the initiation of a new disease cycle the following season. The abundance of bridal creeper growing in dense patches in Australia favours the rate and extent of disease epidemics. However, the rust has been relatively slow at dispersing between bridal creeper patches. An extensive redistribution program has consequently been established to manually disseminate the rust to most bridal creeper infestations across southern Australia. Biological control of weeds program, Parana, Brazil; problems and progress in current research on Brazilian weeds in Parana State J.H. Pedrosa-Macedo Centro de Ciencias Florestais, DECIF–SCA, Universidade Federal do Parana, Av. Lothario Meissner, 3400, 80.210-170 Curitiba, Paranã, Brazil, Laboratorio Neotropical de Controle Biologico de Plantas Investigations on the arthropod natural enemies attacking various native Brazilian species of Senecio and Tecoma stans are being conducted. Insects are being studied to determine their potential for biolog- ical control of Senecio, Tecoma stans and other toxic plants in pasture situations. Cattle deaths have been attributed to various toxic plants in these genera. For example, in the state of Rio Grande do Sul, the loss of cattle due to consumption of Senecio spp. is estimated to cost US$7.5 million annually. In 2002, faunal surveys of toxic plants in the genus Senecio and on Tecoma stans were initiated. The remaining projects are all cooperative research projects with foreign universities studying the natural enemies of Brazilian plants species that have become pests elsewhere in the world, including Brazilian pepper (BP) – Schinus terebinthifolius. The impact caused by Pseudophilothrips ichini on BP has been quantified, but the tests must be repeated. Other BP natural enemies are being studied. Five potential biological control agents have been selected for strawberry guava and preliminary studies on their biology and host range are being done. Four agents against BP have been identified, and currently two of them are under study for their biology, host range and impact on the plant. The toxicity of the BP sawfly has been tested in a preliminary test with cattle. Exploratory studies on Tibouchina herbacea natural enemies have been continued with special efforts on Anthonomus partiarius biology and host- range tests. The identification of the main candidate agent for Solanum mauritianum has been confirmed and nine Solanaceae species are being used in field tests. The use of molecular taxonomy in the exploration for a cold-hardy strain of the tansy ragwort flea beetle Longitarsus jacobaeae (Coleoptera: Chrysomelidae) Kenneth P. Puliafico,1 Jeffrey L. Littlefield,1 George P. Markin2 and Urs Schaffner3 1 Entomology Department, 333 Leon Johnson Hall, Montana State University, Bozeman, MT 59717, USA 2 USDA Forest Service, Forestry Science Laboratory, Bozeman, MT 59717, USA 3 CABI Bioscience, Delémont, Switzerland CH-2800 An extensive infestation of tansy ragwort, Senecio jacobaea L. (Asteraceae), in north-western Montana has renewed the search for a cold-hardy strain of the tansy ragwort flea beetle Longitarsus jacobaeae (Waterhouse) (Coleoptera: Chrysomelidae). Early reports suggested that Swiss flea-beetle populations 227.
Recommended publications
  • FIRST REPORT of a SNOUT WEEVIL Alcidodes Sp
    FIRST REPORT OF A SNOUT WEEVIL Alcidodes sp. (COLEOPTERA: CURCULIONIDAE) FIELD INFESTATION ON MANGO Mangifera indica L. (ANACARDIACEAE) IN PERLIS, MALAYSIA Nurul Huda, A.1, 2*, Che Salmah, M.R.2, Hamdan, A.2 & Abdul Razak, M.N.3 1 Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia. 2School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia 3Faculty of Plantation and Agro-technology, Universiti Teknologi MARA, 02600 Arau, Perlis, Malaysia *Corresponding email: [email protected] ABSTRACT An infestation of a snout weevil Alcidodes sp. (Coleoptera: Curculionidae) on Mangifera indica L. (Anacardiaceae) was scientifically reported for the first time in Malaysia. This snout weevil causes severe damage on young stems and flower panicles. Even though the tree survived from a few infestations, but severe cases could pose a serious economic implication on the productivity of the crop. Thus more research regarding the pest management of M. indica is required to maximize mango production in Malaysia. Keywords: Alcidodes, Curculionidae, mango, pest ABSTRAK Penularan kumbang muncung panjang Alcidodes sp. (Coleoptera: Curculionidae) pada Mangifera indica L. (Anacardiaceae) dilaporkan secara saintifik buat kali pertama di Malaysia. Kumbang muncung panjang ini menyebabkan kerosakan teruk pada batang muda and tangkai bunga. Walaupun pokok tersebut terselamat daripada beberapa serangan tetapi kes-kes yang teruk boleh menimbulkan implikasi ekonomi yang serius terhadap produktiviti tanaman. Oleh itu lebih banyak kajian mengenai pengurusan perosak M. indica diperlukan untuk memaksimumkan pengeluaran mangga di Malaysia. Kata kunci: Alcidodes, Curculionidae, mangga, perosak INTRODUCTION The largest number of Mangifera species originate in Tropical Asia (Bally 2006) and occur in the Malay Peninsula, the Indonesian archipelago, Thailand, Indochina and the Philippines (Mukherjee 1972; Mukherjee & Litz 2009).
    [Show full text]
  • Vol 2 Issue 4, 2009 Alcidodes Ludificator Faust. : a Serious Insect
    ISSN 0973 -4031 Vol 2 Issue 4, 2009 Alcidodes ludificator Faust. : a serious insect pest of nursery and young plantations of Gmelina arborea (Roxb.) in northeastern India N. Senthilkumar and Nizara D. Barthakur* Rain Forest Research Institute, Jorhat – 785 001, Assam, India *E-mail : [email protected] Gmelina arborea (Roxb.) an important member of the family Verbenaceae, is a commercially important fast growing deciduous tree species. The wood of this species is an excellent source for pulp and paper industries and suitable for manufacture of matchboxes splints. In India and particularly in northeast, it is grown extensively, and has substantially been contributing in timber, fodder and industrial wood. However, low productivity, poor bole form and susceptibility to various insect-pests and diseases are some of the reasons for its non-deployment at commercial scale. Although G. arborea suffers multifarious insect injuries by a complex of insect pests including 21 defoliators and 13 shoot borers, Gamari Weevil, Alcidodes ludificator Faust. (Coleoptera: Curculionidae) is one of the serious pests of nursery and young plantations of G. arborea . A. ludificator is a small weevil 5-8 mm long, dark brown in colour and with a few light coloured bands on its elytra and a very diagnostic character- head with a long snout. The insect is found clasping the growing points of main or side branches or petioles of usually younger leaves. The weevil perceives any disturbance in the surrounding it hides quickly behind the thickness of stem or branch on which it is resting. This weevil has a habit of falling down to the ground and feigning dead at the slightest jerk to their roosting site.
    [Show full text]
  • The Complete Mitochondrial Genome of a Walnut Weevil, Alcidodes Juglans Chao (Coleoptera: Curculionidae)
    MITOCHONDRIAL DNA PART B 2018, VOL. 4, NO. 1, 27–28 https://doi.org/10.1080/23802359.2018.1535854 MITOGENOME ANNOUNCEMENT The complete mitochondrial genome of a walnut weevil, Alcidodes juglans Chao (Coleoptera: Curculionidae) aà bà a a a a Kangkang Xu , Xiaoyulong Chen , Lin Xu , Wenjia Yang , Yawei Wang and Can Li aGuizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China; bCollege of Tobacco Science, Guizhou University, Guiyang, China ABSTRACT ARTICLE HISTORY The walnut weevil, Alcidodes juglans Chao (Coleoptera: Curculionidae), is an important agricultural pest Received 1 September 2018 and distributed widely in China. The complete mitochondrial genome of A. juglans is 15,638 bp long, Accepted 19 September 2018 and consists of 13 protein-coding genes (PCGs), two ribosomal RNA genes, 21 transfer RNA (tRNA) KEYWORDS genes and a putative control region (GenBank accession No. MH819192). The trnI gene has not been observed in the A. juglans mitogenome. The nucleotide composition is significantly biased (A, G, C, and Alcidodes juglans Chao; þ walnut weevil; T was 38.35%, 10.02%, 14.96%, and 36.67%, respectively) with A T contents of 75.02%. All of the 21 mitochondrial genome tRNAs have the typical cloverleaf structure, with an exception for trnS1 (AGN). All PCGs are initiated by ATN codons, except for cox1 with AAT instead. Ten PCGs use a common stop codon of TAA or TAG, whereas the remaining three were terminated with a single T. The phylogenetic relationships based on neighbour-joining method showed that A.
    [Show full text]
  • Sweetpotato Major Pests.P65
    Sweetpotato:Sweetpotato:Sweetpotato: MajorMajorMajor PPPests,ests,ests, Diseases,Diseases, andand NutritionalNutritional DisordersDisordersDisorders T. Ames, N.E.J.M. Smit, A.R. Braun, J.N. O’Sullivan, and L.G. Skoglund ISBN 92-9060-187-6 Sweetpotato: Major Pests, Diseases, and Nutritional Disorders T. Ames, N.E.J.M. Smit, A.R. Braun, J.N. O’Sullivan, and L.G. Skoglund International Potato Center (CIP) C O N T E N T S The International Potato Center (CIP) is a scientific, nonprofit institution dedicated to the increased and more sustainable use of potato, Page sweetpotato, and other roots and tubers in the Foreword vii developing world, and to the improved management of agricultural resources in the Acknowledgments viii Andes and other mountain areas. CIP is part of the global agricultural research network known as the Consultative Group on Introduction 1 International Agricultural Research (CGIAR). CGIAR Insect Pests of Sweetpotato and Their Management 3 International Potato Center Apartado 1558 Storage Root Feeders 4 Lima 12, Peru Sweetpotato Weevils (Cylas spp.) 4 West Indian Sweetpotato Weevil (Euscepes ISBN 92-9060-187-6 postfasciatus)10 Press run: 1000 Rough Sweetpotato Weevil (Blosyrus sp.) 12 Printed in Lima, Peru August, 1997 Clearwing Moth (Synanthedon spp.) 14 Peloropus Weevil (Peloropus batatae)14 Cover: Photo of chlorotic spots with and without purple margins induced White Grubs 15 by SPFMV (taken by S. Fuentes). Stemborers and Feeders 16 T. Ames, N.E.J.M. Smit, A.R. Braun, J.N. O’Sullivan, and L.G. Skoglund. Clearwing Moth (Synanthedon spp.) 16 1996. Sweetpotato: Major Pests, Diseases, and Nutritional Disorders.
    [Show full text]
  • Dipterocarpaceae) in Two Consecutive Masting Events in Peninsular Malaysia
    Journal of Tropical Ecology (2011) 27:651–655. © Cambridge University Press 2011 doi:10.1017/S0266467411000393 SHORT COMMUNICATION Abundance of insect seed predators and intensity of seed predation on Shorea (Dipterocarpaceae) in two consecutive masting events in Peninsular Malaysia Tetsuro Hosaka∗,1, Takakazu Yumoto†, Yu-Yun Chen‡, I-Fang Sun§, S. Joseph Wright# and Nur Supardi Md. Noor∗∗ ∗ Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan † Research Institute for Humanity and Nature, Kyoto 603-8047, Japan ‡ Tsing Hua University, Hsinchu 300, Taiwan § Center for Tropical Ecology and Biodiversity, Tunghai University, Taichung, Taiwan, 40704, R.O.C. # Smithsonian Tropical Research Institute, Apartado 0843-03092, Ancon,´ Republic of Panama´ ∗∗ Forest Research Institute Malaysia, Kepong, Selangor, 52109, Malaysia (Accepted 6 August 2011) Key Words: Alcidodes, Andrioplecta, Dipterocarpaceae, general flowering, Nanophyidae, population dynamics, predator satiation, pre-dispersal seed predator, Shorea The family Dipterocarpaceae includes 470 tree species the length of the inter-masting period and the intensity of from 13 genera in South and South-East Asian tropical seed production during masting. forests (Ashton 1982). Many dipterocarp species in Although many animals, both vertebrates and aseasonal lowland rain forests of western Malesia flower invertebrates, eat dipterocarp seeds (Curran & Leighton synchronously during masting (or general flowering) 2000, Sun et al. 2007), pre-dispersal seed predation by events, which usually occur at irregular intervals of 2– insects is a major mortality factor for dipterocarp seeds 10 y (Ashton et al. 1988). Very few individuals flower (Nakagawa et al. 2005, Sun et al. 2007). Insect seed at other times, and successful recruitment of seedlings predation lowers the total seed crop in the community, is limited to those masting events (Ashton et al.
    [Show full text]
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS THAILAND January 2007 Forest Resources Development Service Working Paper FBS/32E Forest Management Division FAO, Rome, Italy Forestry Department Overview of forest pests – Thailand DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Thailand. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). ii Overview of forest pests – Thailand TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests...................................................................................................................... 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases..................................................................................................................
    [Show full text]
  • View Full Text-PDF
    Int. J. Curr. Res. Biosci. Plant Biol. 4(2), 60-66 (2017) International Journal of Current Research in Biosciences and Plant Biology Volume 4 ● Number 2 (February-2017) ● ISSN: 2349-8080 (Online) Journal homepage: www.ijcrbp.com Original Research Article doi: http://dx.doi.org/10.20546/ijcrbp.2017.402.008 Coleopteran-fauna (Insecta) Infesting Fruit Plantations in Jammu & Kashmir State (India): An Annotated Checklist and Biodiversity Ramesh Chander Bhagat* P. O. Box No. 1250, G.P.O., Residency Road, Srinagar, Kashmir-190 001, J & K, India *Corresponding author. A bs t r ac t Article Info This paper deals with 47 species of Coleopterans, belonging to 37 genera, distributed over Accepted: 25 January 2017 11 families, are associated with different kinds of fruit plantations, occurring in vast Available Online: 06 February 2017 localities and areas of Jammu, Kashmir and Ladakh regions. The drupaceous fruit crops (stone, nut, ber), pome (apple, pear quince), berries and aggregate, have been found to be K e yw or ds infested with 26 spp., 21 spp., 9 spp. and 1 sp. of Coleopterans under different families respectively. The apple fruit trees /crops (Malus domestica), showed highest number of Biodiversity Coleopteran species i.e., 21, belonging to 8 families. This accounts for 44.68% of total Coleopteran-fauna Coleopteran-fauna of this region studied. This is followed by nut fruit crop (Juglans Fruit plantations regia), with 12 spp. of Coleopterans species, accounts for 25.53% of total Coleopteran species of horticultural importance. The Scarabaeidae is found to be dominant family, having 15 spp., infesting diverse fruit plantations.
    [Show full text]
  • Zootaxa, Annotated Checklist of Weevils from the Papuan Region
    ZOOTAXA 1536 Annotated checklist of weevils from the Papuan region (Coleoptera, Curculionoidea) GREGORY P. SETLIFF Magnolia Press Auckland, New Zealand Zootaxa 1536 © 2007 Magnolia Press · 1 Gregory P. Setliff Annotated checklist of weevils from the Papuan region (Coleoptera, Curculionoidea) (Zootaxa 1536) 296 pp.; 30 cm. 30 July 2007 ISBN 978-1-86977-139-3 (paperback) ISBN 978-1-86977-140-9 (Online edition) FIRST PUBLISHED IN 2007 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2007 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 1536 © 2007 Magnolia Press SETLIFF Zootaxa 1536: 1–296 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Annotated checklist of weevils from the Papuan region (Coleoptera, Curculionoidea) GREGORY P. SETLIFF Department of Entomology, University of Minnesota, 219 Hodson, 1980 Folwell Avenue, St. Paul, Minnesota 55108 U.S.A. & The New Guinea Binatang Research Center, P. O. Box 604, Madang, Papua New Guinea.
    [Show full text]
  • The Major Arthropod Pests and Weeds of Agriculture in Southeast Asia
    The Major Arthropod Pests and Weeds of Agriculture in Southeast Asia: Distribution, Importance and Origin D.F. Waterhouse (ACIAR Consultant in Plant Protection) ACIAR (Australian Centre for International Agricultural Research) Canberra AUSTRALIA The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has a special research competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MO'lOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or deemed relevant to ACIAR's research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for 1I1lernational Agricultural Resl GPO Box 1571, Canberra, ACT, 2601 Waterhouse, D.F. 1993. The Major Arthropod Pests an Importance and Origin. Monograph No. 21, vi + 141pI- ISBN 1 86320077 0 Typeset by: Ms A. Ankers Publication Services Unit CSIRO Division of Entomology Canberra ACT Printed by Brown Prior Anderson, 5 Evans Street, Burwood, Victoria 3125 ii Contents Foreword v 1. Abstract 2. Introduction 3 3. Contributors 5 4. Results 9 Tables 1. Major arthropod pests in Southeast Asia 10 2. The distribution and importance of major arthropod pests in Southeast Asia 27 3. The distribution and importance of the most important arthropod pests in Southeast Asia 40 4. Aggregated ratings for the most important arthropod pests 45 5. Origin of the arthropod pests scoring 5 + (or more) or, at least +++ in one country or ++ in two countries 49 6.
    [Show full text]
  • Pest Outbreaks in Tropical Forest Plantations
    cover 04202 3/5/02 7:39 AM Page 1 CIFOR The success of exotic tree species in plantations has generally been attributed to P e s effective species-site matching and their t O O freedom from insect pests and diseases. u t b Nevertheless, there is a fear that catastrophic r e a outbreaks of pests and diseases may occur k s I suddenly in exotic plantations. There are two I n T opposing views: that plantations of exotic T r o species are at greater risk compared to p i c indigenous species and conversely that exotics a l F are at lesser risk. This report provides a critical F o r assessment of the risk of insect pest outbreaks e s t P in exotic plantations using an empirical P l a approach. Nine commonly planted species in n t a the tropics, Acacia mangium, Eucalyptus spp., t i o Gmelina arborea, Hevea brasiliensis, Leucaena n s leucocephala, Paraserianthes falcataria, Pinus caribaea, Swietenia macrophylla and Tectona grandis, were selected and their pest problems in natural forest stands, in indigenous species plantations and in exotic plantations were Pest Outbreaks in compared. Growing trees in monoculture increases the pest problem but the risk of pest Tropical Forest Plantations: outbreaks is not solely dependent on the exotic or indigenous status of a species. Pest outbreaks also occur in native plantations. The Is There a Greater Risk for Exotic Tree Species? theory relating to insect population dynamics and causes of pest outbreaks is discussed and several factors are identified that determine the risk of pest outbreaks in exotic monoculture plantations.
    [Show full text]
  • Title Patterns of Dipterocarp Seed Utilization by Insect Seed Predators
    Patterns of dipterocarp seed utilization by insect seed predators Title in a Bornean tropical rain forest( Digest_要約 ) Author(s) Asano, Iku Citation 京都大学 Issue Date 2019-03-25 URL https://doi.org/10.14989/doctor.k21848 Right 学位規則第9条第2項により要約公開 Type Thesis or Dissertation Textversion none Kyoto University Patterns of dipterocarp seed utilization by insect seed predators in a Bornean tropical rain forest Iku ASANO Summary Chapter 1. General introduction Diverse species from various insect taxa use seeds of plants as their main food resources. Seeds are preferable food resources for many insects from a standpoint of nutrition values. However, seeds are also burdensome food resources to utilize as main foods for the insects, because the seeds of most plant species are available only during limited periods and because they are usually protected by the diverse chemical and physical mechanisms that individual plant species have developed in their own ways. How seed-eating insects have adapted their feeding traits to the limited availability and the anti-herbivore defenses is one of the most interesting subjects in the evolutionary biology and ecology of interspecific interactions between seed predators and seeds. Many species of canopy trees in the lowland tropical rainforests of Southeast Asia synchronously reproduce at the community level at irregular intervals of 2–10 years. Such reproductive periods are termed “community-wide synchronized reproduction” (hereafter abbreviated as CSR) in this study. Dipterocarpaceae is a dominant family that comprises many canopy tree species in the lowland tropical rainforests of Southeast Asia. Most dipterocarp species in the region produce large fruits only during CSR periods.
    [Show full text]
  • 2 the Insect-Pest Situation in Agroforestry
    Insect Pests in Agrof orestry Working Paper No. 70 report of a GTZ Fellowship M.P. Singh Rathore Senior Visiting Fellow INTERNATIONAL CENTRE FOR RESEARCH IN AGROFORESTRY Nairobi, Kenya Contents Acknowledgements iv Abstract v 1 Introduction 1 1.1 Sources of information 1 2 The insect-pest situation in agroforestry 3 2.1 Vegetational diversity 4 2.2 Taxonomic alliance 6 2.3 Non-taxonomic alliance 6 2.4 The host range of pests 8 2.5 Biological control potential 8 2.6 Microclimate 10 2.7 Masking effect 11 2.8 Barrier effects 12 2.9 Field configuration and design 12 2.10 Exotic plants and pests 13 2.11 Domestication of plants 15 2.12 Tree-crop competition and nutrition 15 2.13 Management practices 16 3 Strategies for pest management in agroforestry 17 3.1 Choice of species 17 3.2 Microclimate 17 3.3 Field configuration and design 17 3.4 Introduction of barriers .18 3.5 Odoriferous plants 18 3.6 Trap plants 18 3.7 Management practices 18 4 Insects associated with multipurpose trees and shrubs 19 4.1 Literature retrieval 19 4.2 Field observations 19 4.3 Primary sources of information used to compile lists of insects associated with multipurpose trees and shrubs 21 5 Directions for future research 22 6 Conclusion 26 References 27 Appendices 1 Insects associated with multipurpose trees and shrubs—compilation from the literature 35 2 Insects associated with multipurpose trees and shrubs—summary of field observations 67 Acknowledgements The investigations reported in this document were fully funded by the Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ, German Agency for Technical Cooperation) through sponsorship of a Senior Visiting Fellowship, for which the author is grateful.
    [Show full text]