Pigeonpea and Chickpea Insect Identification Handbook

Total Page:16

File Type:pdf, Size:1020Kb

Pigeonpea and Chickpea Insect Identification Handbook Abstract Reed, W., Lateef, S.S., Sithanantham, S., and Pawar, C. S. 1989. P i g e o n p e a a n d c h i c k p e a i n s e c t i d e n t i f i c a t i o n h a n d - book. Information Bulletin no. 26. Patancheru, Andhra Pradesh 502 324: India. International Crops Research I n s t i t u t e f o r t h e S e m i - A r i d T r o p i c s . P i g e o n p e a a n d c h i c k p e a a r e t h e t w o m a j o r p u l s e c r o p s t h a t a r e a t t a c k e d b y s e v era l i n s e c t p e s t s a t d i f f e r e n t s t a g e s o f p l a n t g r o w t h t h r o u g h o u t t h e s e m i - a r i d t r o p i c s . M a n y o f t h e m c a u s e s e v e r e y i e l d l o s s e s i n t h e s e c r o p s . T h i s b u l l e t i n p r o v i d e s a s h o r t d e s c r i p t i o n o f t h e s e i n s e c t s , t h e i r b i o l o g y , distribution, and damage symptoms. It includes brief i n f o r m a t i o n o n t h e o p t i o n s a v a i l a b l e t o c o n t r o l t h e s e pests, a s w e l l a s d e s c r i p t i o n a n d i l l u s t r a t i o n s o f s e ve ral b e n e f i c i a l insects like parasites, predators, and pollinators. Th e t e x t i s s u p p o r t e d b y s e v e ra l c o l o r p h o t o g r a p h s t o h e l p i d e n t i f y t h e pests. T h e I n t e r n a t i o n a l C r o p s R e s e a r c h I n s t i t u t e f o r t h e S e m i - A r i d T r o p i c s i s a n o n p r o f i t , s c i e n t i f i c , r e s e a r c h a n d t r a i n - i n g I n s t i t u t e r e c e i v i n g s u p p o r t f r o m d o n o r s t h r o u g h t h e C o n s u l t a t i v e G r o u p o n I n t e r n a t i o n a l A g r i c u l t u r a l R e s e a r c h . D o n o r s t o I C R I S A T i n c l u d e g o v e r n m e n t s a n d a g e n c i e s o f Australia, Belgium, Canada, Federal Republic of Ger- many, Finland, France, India, Italy. Japan, Netherlands , Norway, Sweden, Switzerland, United Kingdom, United S t a t e s o f A m e r i c a , a n d t h e f o l l o w i n g i n t e r n a t i o n a l a n d private organizations: Asian Development Bank, Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ), Inter - national Development Research Centre, International F u n d f o r A g r i c u l t u r a l D e v e l o p m e n t , T h e E u r o p e a n E c o n o m i c Community, The Opec Fund for International Develop- m e n t , T h e W o r l d B a n k , a n d U n i t e d N a t i o n s D e v e l o p m e n t P r o g r a m m e . I n f o r m a t i o n a n d c o n c l u s i o n s i n t h i s p u b l i c a - t i o n d o n o t n e c e s s a r i l y r e f l e c t t h e p o s i t i o n o f t h e a f o r e - m e n t i o n e d g o v e r n m e n t s , a g e n c i e s , a n d i n t e r n a t i o n a l a n d private organizations. Cover: Helicoverpa armigera l a r v a damaging pigeonpea pods. Pigeonpea and Chickpea Insect Identification Handbook W. Reed, S.S. Lateef, S. Sithanantham, and C.S. Pawar Entomologists, ICRISAT ICRISAT Information Bulletin no. 26 International Crops Research Institute for the Semi-Arid Tropics Patancheru, Andhra Pradesh 502 324, India 1989 Credits Editing: V. Sadhana Designing: S . M . S i n h a Photography: A . B . C h i t n i s ; H.S. D u g g a l ; D . G . Faris; I C A R D A ; I C R I S A T E l e c t r o n M i c r o s c o p y U n i t ; I C R I S A T P h o t o L i b r a r y ; S.S. Lateef; W. R e e d ; S. S i t h a n a n t h a m Artwork: P. S a t y a n a r a y a n a Typesetting: I C R I S A T C o m p o s i n g U n i t C o p y r i g h t © 1989 b y t h e I n t e r n a t i o n a l C r o p s R e s e a r c h Institute f o r t h e S e m i - A r i d T r o p i c s ( I C R I S A T ) . A l l r i g h t s reserved. E x c e p t f o r q u o t a t i o n s o f s h o r t pas- s a g e s f o r t h e p u r p o s e o f c r i t i c i s m a n d review, n o p a r t o f t h i s p u b l i c a t i o n m a y b e r e p r o d u c e d , s t o r e d i n retrieval s y s t e m s , o r t r a n s m i t t e d , i n a n y f o r m o r b y a n y m e a n s , electronic, mechanical, photocopying, recording, or o t h e r - w i s e , w i t h o u t p r i o r p e r m i s s i o n o f I C R I S A T . T h e I n s t i t u t e d o e s n o t r e q u i r e p a y m e n t f o r t h e n o n c o m m e r c i a l use o f its p u b l i s h e d w o r k s , a n d h o p e s t h a t t h i s C o p y r i g h t d e c l a r a - t i o n w i l l n o t d i m i n i s h t h e b o n a f i d e u s e o f its r e s e a r c h f i n d i n g s i n a g r i c u l t u r a l r e s e a r c h a n d d e v e l o p m e n t i n o r f o r t h e s e m i - a r i d t r o p i c s .
Recommended publications
  • 1 1 DNA Barcodes Reveal Deeply Neglected Diversity and Numerous
    Page 1 of 57 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France. 12 3Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, 13 CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France. 14 4 Landesmuseum für Kärnten, Abteilung Zoologie, Museumgasse 2, 9020 Klagenfurt, Austria 15 5 Department of Entomology, University of Antananarivo, Antananarivo 101, Madagascar 16 6 Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road E., Guelph, ON 17 N1G2W1, Canada 18 7Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Genome Downloaded from www.nrcresearchpress.com by UNIV GUELPH on 10/03/18 19 Montpellier–Université Paul-Valéry Montpellier–EPHE), 1919 Route de Mende, F-34293 20 Montpellier, France. 21 8Department of Life Sciences, Natural History Museum, Cromwell Road, SW7 5BD, UK. 22 23 24 Email for correspondence: [email protected] For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. 1 Page 2 of 57 25 26 Abstract 27 Madagascar is a prime evolutionary hotspot globally, but its unique biodiversity is under threat, 28 essentially from anthropogenic disturbance.
    [Show full text]
  • DNA Barcodes Reveal Deeply Neglected Diversity and Numerous Invasions of Micromoths in Madagascar
    Genome DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar Journal: Genome Manuscript ID gen-2018-0065.R2 Manuscript Type: Article Date Submitted by the 17-Jul-2018 Author: Complete List of Authors: Lopez-Vaamonde, Carlos; Institut National de la Recherche Agronomique (INRA), ; Institut de Recherche sur la Biologie de l’Insecte (IRBI), Sire, Lucas; Institut de Recherche sur la Biologie de l’Insecte Rasmussen,Draft Bruno; Institut de Recherche sur la Biologie de l’Insecte Rougerie, Rodolphe; Institut Systématique, Evolution, Biodiversité (ISYEB), Wieser, Christian; Landesmuseum für Kärnten Ahamadi, Allaoui; University of Antananarivo, Department Entomology Minet, Joël; Institut de Systematique Evolution Biodiversite deWaard, Jeremy; Biodiversity Institute of Ontario, University of Guelph, Decaëns, Thibaud; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry Montpellier–EPHE), , CEFE UMR 5175 CNRS Lees, David; Natural History Museum London Keyword: Africa, invasive alien species, Lepidoptera, Malaise trap, plant pests Is the invited manuscript for consideration in a Special 7th International Barcode of Life Issue? : https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 57 Genome 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France.
    [Show full text]
  • Aproaerema Modicella (Deventer) (Lepidoptera: Gelechiidae)
    Biology and control of the groundnut leafminer, Aproaerema modicella (Deventer) (Lepidoptera: Gelechiidae) T. G. Shanower*, J. A. Wlghtman and A. P. Gutlerrez' Legumes Entomology, ICRISAT, Patancheru PO, Andhra Pradesh 502 324, Indla and '~lvlslonof B~olog~calControl, University of California. Berkeley. 1050 San Pablo Avenue, Albany. CA 94706, USA Abstract The gr~)~~ndr~c~tI~,:~tniincr. ,.?~~rocrtr-c~rt~ri rtroclrii'l!i.r (Ilcvcntcr) (I.cpidoptera: (iclcchlldac). I\ ;In 1ri1lxnta111pC\1 of \cvcr;ll lcyl~rnccrop\ in South anil So~~th-I:a\tA\ia. For grountlnut. \iclll loh\c\ of --.511",, h;~\cIhcxcn rclx>rtc(l 11. ;~dd~t~on(1) grouriclnut and \o\hci111 (the main crops att;~ckcd).I2 ;iltcrr~;~t~\clio\~ plants h;~vct~,clr :i~por-tctl ,I, r~rr~ilrccllo IS prc\cnt thro~tgh~~~ttlic rcgioli. ;iIthough it ha\ licc~i\~LI~IL~ rr~o\t iri~cnsivrl~ in 11id1;1:11icI '~II;III~III~I I<c\c;ircti concl~~ctccl(ncr rhc p21st 10 >car\ ha\ ~>ri)\i~lctl;I g(>od untlcrsti~ndir~g of tllc hioloy!. l~fcc.\tlc and natur,~lcncnllcs of thi5 pest. Rc\carch on rnani~gcn~i~ntha\ Iocu\ctl oil chi,rriical corntrol. l'hi\ p;ipcr rcvicw thc litcr;~turcon thc hu\t plant\. rli\trit)ution. I?~trlogy;~ncl i~ontrol of .4 rr~o~lrr~rllu.cmpt~;~si;.iny rc\~,:~rch rcpt~rtcd .;lnec 1WI A\pcct\ of .,I. 11r~11!1r~~110ccoll~g\ tlli~t i~t.cd l~~itli~,~ \ILICI> ,IIL~ aI\o IIIcII~~~I~~LI. Keywords Groundnut Atachrs Aproa~remarnod~celia qroundnut leafmtner natural enemles biology host plants Taxonomy and distribution Victn;~ni.
    [Show full text]
  • The Curculionoidea of the Maltese Islands (Central Mediterranean) (Coleoptera)
    BULLETIN OF THE ENTOMOLOGICAL SOCIETY OF MALTA (2010) Vol. 3 : 55-143 The Curculionoidea of the Maltese Islands (Central Mediterranean) (Coleoptera) David MIFSUD1 & Enzo COLONNELLI2 ABSTRACT. The Curculionoidea of the families Anthribidae, Rhynchitidae, Apionidae, Nanophyidae, Brachyceridae, Curculionidae, Erirhinidae, Raymondionymidae, Dryophthoridae and Scolytidae from the Maltese islands are reviewed. A total of 182 species are included, of which the following 51 species represent new records for this archipelago: Araecerus fasciculatus and Noxius curtirostris in Anthribidae; Protapion interjectum and Taeniapion rufulum in Apionidae; Corimalia centromaculata and C. tamarisci in Nanophyidae; Amaurorhinus bewickianus, A. sp. nr. paganettii, Brachypera fallax, B. lunata, B. zoilus, Ceutorhynchus leprieuri, Charagmus gressorius, Coniatus tamarisci, Coniocleonus pseudobliquus, Conorhynchus brevirostris, Cosmobaris alboseriata, C. scolopacea, Derelomus chamaeropis, Echinodera sp. nr. variegata, Hypera sp. nr. tenuirostris, Hypurus bertrandi, Larinus scolymi, Leptolepurus meridionalis, Limobius mixtus, Lixus brevirostris, L. punctiventris, L. vilis, Naupactus cervinus, Otiorhynchus armatus, O. liguricus, Rhamphus oxyacanthae, Rhinusa antirrhini, R. herbarum, R. moroderi, Sharpia rubida, Sibinia femoralis, Smicronyx albosquamosus, S. brevicornis, S. rufipennis, Stenocarus ruficornis, Styphloderes exsculptus, Trichosirocalus centrimacula, Tychius argentatus, T. bicolor, T. pauperculus and T. pusillus in Curculionidae; Sitophilus zeamais and
    [Show full text]
  • (St31) (Hemiptera: Reduviidae), a Potential Biological Control Agent
    J. Biol. Control, 17(2): 113-119.2003 Biology and prey influence on the postembryonic development of Rhynocoris longifrons (St31) (Hemiptera: Reduviidae), a potential biological control agent D. P. AMBROSE, S. P. KUMAR, G. R. SUBBU and M. A. CLAVER Entomology Research Unit, St. Xavier's College TiruneIveIi 627 002, Tamil Nadu, India E-mail: [email protected] ABSTRA CT: Rhynocoris longifrons (Still) is a ferrugineous and griseously sericeous harpactorine, alate and multivolitine assassin bug inhabiting concealed microhabitats such as beneath the boulders and in small crevices. It lays eggs in batches and the eggs hatch in 7.8 ± 1.5 to 8.3 ± 1.0 day. The total nymphal development period ranges from 58.6 ± 2.2 to 72.6:t: 4.7 days. The females lived longer than the males. The sex ratio was female-biased. A brief description of egg, nymphal instar and a redescription of adult male are given. The prey influence on the .incubation, developmental, pre-oviposition periods, sex ratio, adult longevity, fecundity and hatchability was studied on four different prey species such as Corcyra cecphaionica Stainton, Odontotermesobesus Rambur, Clavigralla gibbosa Spinola and Helicoverpa armigera (Hubner). H. armigera fed individuals exhibited shorter preoviposition, incubation and stadial periods and these parameters were extended in C. cephalonica, C. gibbosa and O. obes/ls fed R. longifrons. The nymphal longevity, fecundity and hatchability were greater in H. armigera fed individuals. The nymphal mortality was lower in H. armigera fed individuals. KEY WORDS: Biology, prey influence, RhYllocoris longifrolls INTRODUCTION Nadu, South India. So farno information is available on its biology and ecology.
    [Show full text]
  • Management of Pod Bug, Clavigralla Gibbosa Spinola (Heteroptera : Coreidae) on Pigeonpea
    J. Exp. Zool. India Vol. 22, No. 1, pp. 233-237, 2019 www.connectjournals.com/jez ISSN 0972-0030 MANAGEMENT OF POD BUG, CLAVIGRALLA GIBBOSA SPINOLA (HETEROPTERA : COREIDAE) ON PIGEONPEA B. R. Chethan, V. Rachappa, S. G. Hanchinal, N. R. Harischandra and S. R. Doddagoudar1 Department of Agricultural Entomology, University of Agricultural Sciences, Raichur-584 104, India. 1Department of Seed Science and Technology, University of Agricultural Sciences, Raichur-584 104, India. e-mail: [email protected] (Accepted 11 December 2018) ABSTRACT : Investigations were carried out to evaluate newer insecticides against pod bug, Clavigralla gibbosa Spinola in pigeonpea during kharif 2017-18 at Agricultural Research Station, Kalaburagi, Karnataka, India under field conditions with nine treatments and three replications. The flonicamid 50 WG recorded significantly lowest population of 0.67 bugs per plant while the bug population in acephate 75 SP and thiamethoxam 25 WG was 0.87 and 1.00 bug/plant, respectively and all the three were statistically on par. The maximum population reduction over control was registered in the plot treated with flonicamid 50 WG (94.91 %) followed by acephate 75 SP (93.22 %), tolfenpyrad 15 EC (79.37%) and fipronil 5 EC (77.97 %) at 10 days after spray. Significant differences were found in the relative efficacy of different insecticides in reducing the pod and grain damage by pod bugs. The results showed that the pod damage due to pod bug was lowest in plot treated with flonicamid 50 WG (9.33%) followed by acephate 75 SP (10.67%) and highest in buprofezin 20 SC (16.33%). The grain damage was lowest in flonicamid 50 WG (6.77%) followed by acephate 75 SP (8.72%).
    [Show full text]
  • FIRST REPORT of a SNOUT WEEVIL Alcidodes Sp
    FIRST REPORT OF A SNOUT WEEVIL Alcidodes sp. (COLEOPTERA: CURCULIONIDAE) FIELD INFESTATION ON MANGO Mangifera indica L. (ANACARDIACEAE) IN PERLIS, MALAYSIA Nurul Huda, A.1, 2*, Che Salmah, M.R.2, Hamdan, A.2 & Abdul Razak, M.N.3 1 Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia. 2School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia 3Faculty of Plantation and Agro-technology, Universiti Teknologi MARA, 02600 Arau, Perlis, Malaysia *Corresponding email: [email protected] ABSTRACT An infestation of a snout weevil Alcidodes sp. (Coleoptera: Curculionidae) on Mangifera indica L. (Anacardiaceae) was scientifically reported for the first time in Malaysia. This snout weevil causes severe damage on young stems and flower panicles. Even though the tree survived from a few infestations, but severe cases could pose a serious economic implication on the productivity of the crop. Thus more research regarding the pest management of M. indica is required to maximize mango production in Malaysia. Keywords: Alcidodes, Curculionidae, mango, pest ABSTRAK Penularan kumbang muncung panjang Alcidodes sp. (Coleoptera: Curculionidae) pada Mangifera indica L. (Anacardiaceae) dilaporkan secara saintifik buat kali pertama di Malaysia. Kumbang muncung panjang ini menyebabkan kerosakan teruk pada batang muda and tangkai bunga. Walaupun pokok tersebut terselamat daripada beberapa serangan tetapi kes-kes yang teruk boleh menimbulkan implikasi ekonomi yang serius terhadap produktiviti tanaman. Oleh itu lebih banyak kajian mengenai pengurusan perosak M. indica diperlukan untuk memaksimumkan pengeluaran mangga di Malaysia. Kata kunci: Alcidodes, Curculionidae, mangga, perosak INTRODUCTION The largest number of Mangifera species originate in Tropical Asia (Bally 2006) and occur in the Malay Peninsula, the Indonesian archipelago, Thailand, Indochina and the Philippines (Mukherjee 1972; Mukherjee & Litz 2009).
    [Show full text]
  • Stage Preference and Functional Response of Rhynocoris Longifrons (Stål) (Hemiptera: Reduviidae) on Three Hemipteran Cotton Pests
    733 Vol.55, n. 5: pp.733-740, September-October 2012 BRAZILIAN ARCHIVES OF ISSN 1516-8913 Printed in Brazil BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Stage Preference and Functional Response of Rhynocoris longifrons (Stål) (Hemiptera: Reduviidae) on Three Hemipteran Cotton Pests Kitherian Sahayaraj *, Subramanian Kalidas and Majesh Tomson Crop Protection Research Centre; Department of Advanced Zoology and Biotechnology; St. Xavier’s College (Autonomous); Palayamkottai 627 002; Tamil Nadu - India ABSTRACT In this work, the stage preference and functional response of the indigenous reduviid bug Rhynocoris longifrons feeding on five different densities of the cotton aphid Aphis gossypii , Phenacoccus solenopsis , and Dysdercus cingulatus was examined in Petri dish arenas containing cotton leaves under laboratory conditions. The reduviid predator exhibited a Type II functional response at all hemipteran pests evaluated when data were fit to Holling’s disc equation. Predatory rate gradually increased while the predator grew older and adults consumed maximum number of D. cingulatus and P. solenopsis . An opposite trend was observed, while the reduviid was provided with Aphis gossypii . The rate of attack on P. solenopsis was quite low but fairly consistent, with the different life stages of the predator generally more effective. Further investigation of the biological control potential of R. longifrons against cotton pests under pot and controlled filed should be done due to the predator’s ability to kill adult stages of all prey species evaluated. These results indicated that R. longifrons could eat more aphids at high prey densities; however, predators also considerably reduced other cotton pests too so it could be considered a prospective candidate for use as a commercial biological control agent for cotton hemipteran pests in India.
    [Show full text]
  • Vol 2 Issue 4, 2009 Alcidodes Ludificator Faust. : a Serious Insect
    ISSN 0973 -4031 Vol 2 Issue 4, 2009 Alcidodes ludificator Faust. : a serious insect pest of nursery and young plantations of Gmelina arborea (Roxb.) in northeastern India N. Senthilkumar and Nizara D. Barthakur* Rain Forest Research Institute, Jorhat – 785 001, Assam, India *E-mail : [email protected] Gmelina arborea (Roxb.) an important member of the family Verbenaceae, is a commercially important fast growing deciduous tree species. The wood of this species is an excellent source for pulp and paper industries and suitable for manufacture of matchboxes splints. In India and particularly in northeast, it is grown extensively, and has substantially been contributing in timber, fodder and industrial wood. However, low productivity, poor bole form and susceptibility to various insect-pests and diseases are some of the reasons for its non-deployment at commercial scale. Although G. arborea suffers multifarious insect injuries by a complex of insect pests including 21 defoliators and 13 shoot borers, Gamari Weevil, Alcidodes ludificator Faust. (Coleoptera: Curculionidae) is one of the serious pests of nursery and young plantations of G. arborea . A. ludificator is a small weevil 5-8 mm long, dark brown in colour and with a few light coloured bands on its elytra and a very diagnostic character- head with a long snout. The insect is found clasping the growing points of main or side branches or petioles of usually younger leaves. The weevil perceives any disturbance in the surrounding it hides quickly behind the thickness of stem or branch on which it is resting. This weevil has a habit of falling down to the ground and feigning dead at the slightest jerk to their roosting site.
    [Show full text]
  • Studies on Succession of Insect Pest Complex and Their Natural Enemies in Pigeonpea [Cajanus Cajan (L.) Millsp.]
    INTERNATIONAL JOURNAL OF PLANT PROTECTION e ISSN-0976-6855 | Visit us : www.researchjournal.co.in VOLUME 7 | ISSUE 2 | OCTOBER, 2014 | 318-324 IJPP RESEARCH PAPER DOI : 10.15740/HAS/IJPP/7.2/318-324 Studies on succession of insect pest complex and their natural enemies in pigeonpea [Cajanus cajan (L.) Millsp.] U.A. PAWAR*1, P.S. CHINTKUNTALAWAR1 AND T.B. UGALE2 1Department of Agricultural Entomology, K.K. Wagh College of Agriculture, NASHIK (M.S.) INDIA 2Department of Agricultural Entomology, Jawaharlal Nehru Krishi Vishwa Vidyalaya, JABALPUR (M.P.) INDIA ARITCLE INFO ABSTRACT Received : 24.03.2014 A field experiment was conducted at experimental field of Department of Entomology, Live Revised : 24.07.2014 Stock Farm, Adhartal, J.N. Krishi Vishwa Vidyalaya, Jabalpur (M.P.) during Kharif season Accepted : 08.08.2014 2009-2010. Thirteen different species of insects and one insectivorus bird species were recorded on the pigeonpea at Jabalpur during 2009-2010. Data collected reveled that fauna belonging KEY WORDS : to seven orders and fourteen families were associated with the pigeonpea crop. The first Pigeonpea, Key pest, Predator, group of insects included jassid, leaf webber, tussock caterpillar and red pumpkin beetle Insectivorous bird which appeared when the crop age was about 39 days old i.e. during vegetative stage and remained available upto the reproductive stage. The next group of insects to appear on the crop were jassid, thrips, blister beetle, pod bug, gram pod borer, pod fly, green stink bug and red gram plume moth. These appeared when the crop age was about 102 days old i.e.
    [Show full text]
  • Modified Behaviour in Nucleopolyhedro Virus Infected Field Bean Pod Borer, Adisura Atkinsoni and Its Impact on Assessing the Field Efficacy of NPV
    Indian Journal of Experimental Biology Vol. 41, April 2003, pp. 379-382 Modified behaviour in nucleopolyhedro virus infected field bean pod borer, Adisura atkinsoni and its impact on assessing the field efficacy of NPV K Narayanan Project Directorate of Biological Control, Hebbal, Bangalore 560 024, India Received 31 October 2002; revised 4 February 2003 When nucleopolyhedro virus of A.atkinsoni was applied at 250 LEtha, there was no significant difference between the viruses treated and control plots with regard to the total number of live larvae feeding outside the pod. However, due to changes in behaviour in NPV infected A. atkinsoni by way of coming out of the pod, there was a significant difference when counts were taken with regard to total number of larvae found feeding inside the pod. Both endosulfan at (0.07%) and virus (125 LEtha) in combination with endosulfan (0.035%) significantly reduced the larval population of A. atkinsoni and Sphaenarches anisodactylus. There was no significant difference between the virus and control plots with regard to percent­ age of pod damage. However, when the yield was assessed based on the seed weight, there was significant difference. Observations on the microbial control of certain insect system, based on the modified behaviour of NPY in­ pests with the nucleopolyhedro virus (NPV) have re­ fected A.atkinsoni has been reported and discussed. vealed that the normal physiology and behavior of the Although number of pod borers are reported to insects may change suddenly, thereby posing some cause damage, the field bean crop, the Indian bean limjtations in determining their effectiveness on par (Dolichos lab lab) variety, Hebbal avarai 3, was se­ with chemical pesticides.
    [Show full text]
  • Climate-Smart Agriculture Training Manual for Agricultural Extension Agents in Kenya
    In partnership with Ministry of Agriculture, Livestock and Fisheries Climate-Smart Agriculture Training Manual for Agricultural Extension Agents in Kenya Climate-Smart Agriculture | Training Manual for Agricultural Extension Agents in Kenya 1 Climate-Smart Agriculture | Training Manual for Agricultural Extension Agents in Kenya 2 CLIMATE-SMART AGRICULTURE TRAINING MANUAL FOR AGRICULTURAL EXTENSION AGENTS IN KENYA Author: BarrackO . Okoba MINISTRY OF AGRICULTURE LIVESTOCK AND FISHERIES FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS KENYA, 2018 Climate-Smart Agriculture | Training Manual for Agricultural Extension Agents in Kenya 3i Required Citation: FAO, Ministry of Agriculture, Livestock and Fisheries, 2018. Climate Smart Agriculture - Train- ing Manual for Extension Agents in Kenya. ISBN 978-92-5-130780-9 © FAO, 2018 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The designations employed and the presentation of material does not imply the expression of any opinion whatsoever on the part of FAO concerning the legal or constitutional status of any country, territory or sea area concerning the delimitation of frontiers,. FAO encourages the use, reproduction and dissemination of material in this information product.
    [Show full text]