2019 National Plant Biosecurity Status Report

Total Page:16

File Type:pdf, Size:1020Kb

2019 National Plant Biosecurity Status Report The National Plant Biosecurity Status Report 2019 Contents Foreword 7 Cotton 82 INTRODUCTION 9 Dried fruits (grapes) 83 Australia's plant resources 10 Forestry 84 Features of 2019 12 Ginger 86 Growing threats of plant health 13 Grains 88 Plant biosecurity highlights in 2019 14 Hazelnuts 90 CHAPTER 1: AUSTRALIA'S PLANT BIOSECURITY SYSTEM 17 Honey bees 92 Lychees 94 Australia's plant biosecurity system 18 Macadamias 95 Plant biosecurity framework and legislation 20 Mangoes 96 The Intergovernmental Agreement on Biosecurity 20 Melons 98 The National Plant Biosecurity Strategy 20 Olives 99 National committees 21 Onions 100 Biosecurity legislation 23 Passionfruit 101 Biosecurity emergency response agreements 23 Pineapples 102 Plant biosecurity statutory levies 24 Pistachios 103 Government roles 24 Processing tomatoes 104 The Australian Government 24 Production nurseries 106 State and territory governments 28 Rice 108 Non-government roles 34 Rubus 109 Plant Health Australia 34 Stone fruit 110 Peak plant industry bodies 36 Strawberries 111 Private sector 36 Sugarcane 112 Research funders and providers 37 Sweetpotatoes 114 The community 37 Table grapes 115 CHAPTER 2: PROTECTING AUSTRALIA'S PLANT RESOURCES 39 Tea tree 116 Protecting Australia's plant resources 40 Truffles 117 National priority pests 41 Vegetables (including potatoes) 118 National Priority Plant Pests 41 Walnuts 122 National action plans 43 Wine grapes 123 National Priority List of Exotic Environmental Pests, Weeds and Diseases 44 CHAPTER 4: PRE-BORDER AND BORDER BIOSECURITY 125 Plant industry biosecurity preparedness 45 Biosecurity planning for plant industries 45 Pre-border and border biosecurity 126 Contingency planning 56 Pre-border biosecurity 127 Environmental biosecurity preparedness 57 Obligations under international trade agreements 127 CHAPTER 3: PLANT INDUSTRY PROFILES 65 Pre-border activities to mitigate the risks from imports 129 Regulating imports to manage risk 130 Almonds 68 Other international activities 134 Apples and pears 70 Ensuring Australian exports meet required standards 135 Avocados 72 Border biosecurity 143 Bananas 74 Collaborations to reduce border biosecurity risks 143 Blueberries 76 Government screening and inspection 144 Canned fruits 77 National border surveillance program 146 Cherries 78 Protecting our northern coastline 146 Chestnuts 79 Post-entry plant quarantine 147 Citrus 80 CHAPTER 5: PLANT PEST SURVEILLANCE AND DIAGNOSTICS 149 Community involvement in domestic quarantine 204 The biosecurity obligations of all Australians 204 Post border biosecurity – plant pest surveillance and diagnostics 150 The role of local government 204 Plant pest surveillance 151 On-farm biosecurity 205 Oversight of plant pest surveillance 151 Biosecurity extension and engagement programs 206 Government surveillance programs 153 Biosecurity manuals for producers 209 Industry surveillance strategies and programs 154 Managing pests on farm 210 General surveillance programs 156 Australia’s weed biosecurity system 211 Plant pest surveillance programs in 2019 158 Coordination of weed management 212 Diagnostics – identifying plant pests and diseases 166 Preventing the entry of new weeds 212 Oversight of national plant biosecurity diagnostics 166 Weed surveillance 213 National Diagnostic protocols 168 Eradication and containment of weeds 214 Diagnostic services in Australia 172 Managing established weeds 214 National reference collections 172 Handbook for the Identification of Fruit Flies 178 CHAPTER 8: PLANT BIOSECURITY RD&E 217 Online systems supporting plant biosecurity 179 Plant biosecurity research, development and extension 218 AUSPestCheck 179 National Plant Biosecurity RD&E Strategy 219 CHAPTER 6: POST-BORDER BIOSECURITY – ERADICATING NEW Australian Government agencies and statutory authorities 219 Australian Centre for International Agricultural Research 219 PLANT PESTS 181 Australian Research Council 220 Post-border biosecurity – managing plant biosecurity emergencies 182 Commonwealth Scientific and Industrial Research Organisation 220 National plant biosecurity response arrangements 183 Plant Innovation Centre @ Post-entry Quarantine (pic@peq) 220 Emergency Plant Pest Response Deed 183 Research and development corporations 222 PLANTPLAN 184 Agrifutures Australia 222 National Environmental Biosecurity Response Agreement 184 Cotton Research and Development Corporation 223 Preparing for plant biosecurity incidents 185 Forest and Wood Products Australia 223 Reporting a plant pest or disease 185 Grains Research and Development Corporation 223 Biosecurity Incident Management System 185 Hort Innovation 224 National Biosecurity Response Team 186 Sugar Research Australia 224 National communication arrangements 186 Wine Australia 225 Training in biosecurity emergency responses 187 The Plant Biosecurity Research Initiative 225 Notifications and responses in 2019 189 State and territory governments 226 National response plans 189 University and private research institutes 226 Other plant pest notifications 189 Collaborative research arrangements 226 Centre for Crop and Disease Management 227 CHAPTER 7: POST-BORDER BIOSECURITY – CONTROLLING Centre for Fruit Fly Biosecurity Innovation 228 PESTS AND WEEDS 195 Centre of Excellence for Biosecurity Risk Analysis 228 Australian Plant Biosecurity Science Foundation 228 Post-border biosecurity – controlling plant pests and weeds 196 Cooperative Research Centre for Honey Bee Products 228 Domestic quarantine 197 Plant biosecurity RD&E projects in 2019 230 Subcommittee on Domestic Quarantine and Market Access 197 Restrictions on interstate travellers carrying produce 197 APPENDICES 265 Restrictions on interstate movement of commercial consignments 198 Organisation contact details 266 Official control of quarantine plant pests to protect overseas trade 199 Glossary 268 Australia’s regionalised pests 199 Acronyms 270 Preventing the spread of fruit flies 203 INDEX 273 Figures Tables Figure 1. Australia’s varied climatic zones 10 Table 1. Plant and environmental biosecurity legislation across Australia 23 Figure 2. Gross value of plant and animal production industries in Australia, Table 2. Plant Health Australia members 35 1972-2019 11 Table 3. Australia’s National Priority Plant Pests 41 Figure 3. 2019 annual rainfall compared to historical rainfall observations 12 Table 4. The top 10 National Priority Plant Pests 42 Figure 4. 2019 annual mean temperatures compared to historical temperature Table 5. Current biosecurity plans covering Australia's plant industries 45 observations 12 Table 6. High Priority Pest threats 46 Figure 5. Key components of Australia’s plant biosecurity system 19 Table 7. Contingency plans 58 Figure 6. National government biosecurity committees and working groups Table 8–46 Inductry specific High Priority Pest lists 68 with a plant focus 22 Table 47. Australian Government import policy advice, final and in progress 131 Figure 7 Comparative value of Australia’s plant production industries, based on Table 48. Australia's export legislation, administered by the gross value of production, 2017–18 67 Department of Agriculture 135 Figure 8–87. Industry production data 69 Table 49. Market access achievements for pollinator and plant product exports Figure 88. Entity responsibility for biosecurity risks, first points of entry (ports) 144 from Australia since 2000 138 Figure 89. Biosecurity risk pathways regulated by NAQS 146 Table 50. Australia's post-entry plant quarantine facilities 147 Figure 90. National Plant Biosecurity Surveillance System framework 152 Table 51. Australia's plant biosecurity surveillance programs 158 Figure 91. Surveillance programs by target host 158 Table 52. National Diagnostic Protocols 169 Figure 92. Surveillance programs by target pest type 158 Table 53. Australia’s diagnostic services, their capabilities, accreditations and Figure 93. National Diagnostic Protocol endorsement process 168 collections 173 Figure 94. RD&E projects by pest type 230 Table 54. Responses to plant pests under EPPRD arrangements 190 Figure 95. RD&E projects by research type or location 230 Table 55. Plant Pest detections notified under the EPPRD in 2019 192 Figure 96. RD&E projects by project value 230 Table 56. Australia’s regionalised pests 199 Figure 97. RD&E projects by biosecurity areas 231 Table 57. Biosecurity manuals for producers 209 Figure 98. RD&E projects by crop type 231 Table 58. Sales of plant chemicals in Australia, 2016–19 210 Table 59. Plant biosecurity RD&E projects 232 Case studies Introduction International Year of Plant Health 13 Chapter 1 Primary representatives and advisors for plant and environmental biosecurity 25 National Biosecurity Statement 27 Chapter 2 National workshop prioritises action on Khapra beetle 43 New program to prepare for Xylella fastidiosa 44 Preparedness for vegetable leafminer 46 Review of environmental risk management 56 Chapter 4 Regulating bulk grain imports to safeguard Australia’s biosecurity status 134 New measures to stop the arrival of unwanted pests with cut flower imports 136 Visit by biosecurity partners from the Pacific 137 Chapter 5 Annual Surveillance Workshop 2019 152 Citrus Surveillance and Pest Triage Workshop 153 Forest pest surveillance in NSW 154 Biosecurity Pathways and Surveillance Strategy Workshop 156 Botanic Gardens Biosecurity Network 157 Building skills through the Diagnostic Residential Program 166 Annual Diagnosticians’ Workshop 2019 167 Chapter 6 Exercise Crown and Anchor 185 Exercise Blueprint for the cotton industry 187 Workshop
Recommended publications
  • Relatives of Temperate Fruits) of the Book Series, "Wild Crop Relatives: Genetic, Genomic and Breeding Resources Ed C
    Volume 6 (Relatives of Temperate Fruits) of the book series, "Wild Crop Relatives: Genetic, Genomic and Breeding Resources ed C. Kole 2011 p179-197 9 Rubus J. Graham* and M. Woodhead Scottish Crop Research Institute, Dundee, DD2 5DA, UK *Corresponding author: [email protected] Abstract The Rosaceae family consists of around 3, 000 species of which 500 belong to the genus Rubus. Ploidy levels range from diploid to dodecaploid with a genomic number of 7, and members can be difficult to classify into distinct species due to hybridization and apomixes. Species are distributed widely across Asia, Europe, North and South America with the center of diversity now considered to be in China, where there are 250-700 species of Rubus depending on the taxonomists. Rubus species are an important horticultural source of income and labor being produced for the fresh and processing markets for their health benefits. Blackberries and raspberries have a relatively short history of less than a century as cultivated crops that have been enhanced through plant breeding and they are only a few generations removed from their wild progenitor species. Rubus sp. are typically found as early colonizers of disturbed sites such as pastures, along forest edges, in forest clearings and along roadsides. Blackberries are typically much more tolerant of drought, flooding and high temperatures, while red raspberries are more tolerant of cold winters. Additionally, they exhibit vigorous vegetative reproduction by either tip layering or root suckering, permitting Rubus genotypes to cover large areas. The attractiveness of the fruits to frugivores, especially birds, means that seed dispersal can be widespread with the result that Rubus genotypes can very easily be spread to new sites and are very effective, high-speed invaders.
    [Show full text]
  • THE ERIOPHYID MITES of CALIFORNIA (Acarina: Eriophyidae) by H
    BULLETIN OF THE CALIFORNIA INSECT SURVEY VOLUME 2, NO. 1 THE ERIOPHYID MITES OF CALIFORNIA (Acarina: Eriophyidae) BY H. H. KEIFER (California Scare Department of Agriculture) UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES 1352 BULLETIN OF THE CALIFORNIA INSECT SURVEY Editors: E. 0. Essig, S. B. Freeborn, E. G. Linsley, R. L. Usinger Volume 2, No. 1, pp. 1-128, plates 1-39 Submitted by Editors, May 6, 1952 Issued December 12, 1952 Price $2.00 UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES CALIFORNIA CAMBRIDGE UNIVERSITY PRESS LONDON, ENGLAND PRINTED BY OFFSET IN THE UNITED STATBS OF AMERICA Contents Page Introduction .......................... 1 Hostlist ........................... 5 Keys to Genera. Species. and higher Groups ...........11 Discussion of Species ..................... 20 Bib 1iography .......................... 62 Host index ........................... 64 List of comn names ...................... 67 Index to mites. Genera. Species. etc .............. 08 Plate symbols ......................... 71 List of plates ......................... 72 Plates ............................. 74 THE ERIOPHYID MITES OF CALIFORNIA Introduction ’IhisBulletin is the result of fifteen years would classify these mites at the present, faces of intermittent exploration of California for the prospect of a growing number of species in the Friophyid mites. hhen the work began in 1937 the large genera, and of broad revisions to come. But principal species recognized were the relatively I believe the average type of Eriophyid to have al- few economic species. ‘Ihis situation not only left ready been pretty well defined, since these mites an opportunity to discover and describe new spe- are widespread, and ancient in origin. cies, it also demanded that as many new Eriophyids As we now know these tiny creatures, they con- as possible be put in print in order to erect a stitute a closed group, structurally pointing to taxonomic framework.
    [Show full text]
  • Biosecurity Plan for the Vegetable Industry
    Biosecurity Plan for the Vegetable Industry A shared responsibility between government and industry Version 3.0 May 2018 Plant Health AUSTRALIA Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2018 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2018) Biosecurity Plan for the Vegetable Industry (Version 3.0 – 2018) Plant Health Australia, Canberra, ACT. This project has been funded by Hort Innovation, using the vegetable research and development levy and contributions from the Australian Government. Hort Innovation is the grower-owned, not for profit research and development corporation for Australian horticulture Disclaimer: The material contained in this publication is produced for general information only.
    [Show full text]
  • Lista De Plantas Hospedantes De Ptinidae (Coleoptera: Bostrichoidea) De Chile
    www.biotaxa.org/rce. ISSN 0718-8994 (online) Revista Chilena de Entomología (2020) 46 (2): 333-344. Artículo Científico Lista de plantas hospedantes de Ptinidae (Coleoptera: Bostrichoidea) de Chile List of host plants of Ptinidae (Coleoptera: Bostrichoidea) from Chile Alfredo Lüer1 1Panguilemo N° 261, Quilicura, Santiago, Chile. E-mail: [email protected] ZooBank: urn:lsid:zoobank.org:pub: 2FC25622-B93B-4E6E-85ED-555EB2DA2C51 https://doi.org/10.35249/rche.46.2.20.26 Resumen. A partir de antecedentes publicados y la revisión de colecciones entomológicas nacionales, se entrega una lista de plantas hospedantes de Ptinidae (Coleoptera: Bostrichoidea) presentes en Chile. Para la mayoría de las especies en estado larval se constatan hábitos polífagos y la madera muerta resulta ser el sustrato más utilizado. Palabras clave: Larva, madera muerta, nuevos registros, polifagia. Abstract. A list of host plants of Ptinidae (Coleoptera: Bostrichoidea) present in Chile is provided, based on the published information and the review of national entomological collections. For most species in the larval stage, polyphagous habits are confirmed and dead wood turns to be the most used substrate. Key words: Dead wood, larva, new records, polyphagy. Introducción La familia Ptinidae Latreille, 1802 (Coleoptera: Bostrichoidea) está compuesta a nivel mundial por cerca de 2.900 especies agrupadas en 259 géneros (Zahradník y Háva 2014), siendo las regiones templadas las que presentan la mayor cantidad de especies descritas (Philips y Bell 2010). En Chile, este taxón esta representado por 36 géneros y 110 especies, distribuidas en territorio continental e insular (Pic 1950; Hatch 1933; Blackwelder 1945; White 1974, 1979, 1980; Español 1989, 1995; González 1989; Español y Blas 1991; Barriga et al.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Apiaceae (Pimp
    Živné rostliny Druh vlnovníka, jeho bionomie Poznámka Živné rostliny polyfágních druhů Miříkovité – Apiaceae T Eriophyes peucedani (Pimpinella, Selinum aj.) Brukvovité – Brassicaceae T Aceria drabae (Cardaria, Capsella, Lepidium aj.) Lipnicovité – Poaceae K Aceria tenuis (Avena, Bromus, Dactylis aj.) Živné rostliny ostatních (steno- a monofágních) druhů jedle K Trisetacus floricolus (Abies) javor E Aceria carinifex, P Aceria cephalonea, O Aceria heteronyx, (Acer) P Aceria macrochela, E Aceria macrocheluserinea, P Aceria macrorhyncha, P Aceria myriadeum, E Aceria platanoidea, E Aceria pseudoplatani, A Aceria vermicularis, E Aculops aceris, P Aculops acericola, E Cecidophyes gymnaspis řebříček T Aceria kiefferi (Achillea) jírovec E Aculus hippocastani (Aesculus) zběhovec T Aceria ajugae (Ajuga) česnek N Aceria tulipae (Allium) olše E Acalitus brevitarsus, P Acalitus phyllereus, (Alnus) P Acaricalus trinotus, T Aceria longirostris, E Aceria nalepai, P Eriophyes alniincanae, E Eriophyes euryporus, P Eriophyes inangulis, P Eriophyes laevis pilát K Anthocoptes aspidophorus (Anchusa) pelyněk T Aceria artemisiae, T Aceria horrida, T Aceria subtilis (Artemisia) bukvice T Aceria solida (Betonica) bříza V Acalitus calycophthirus, E Acalitus longisetosus, (Betula) P Acalitus notolius, E Acalitus rudis, P Cecidophyopsis betulae, E Eriophyes leionotus, P Eriophyes lissonotus sveřep K Aculodes dubius (Bromus) zimostráz V Eriophyes canestrinii, P Eriophyes hypophyllus (Buxus) zvonek P Aceria campanulae, T Aculus schmardae (Campanula) habr E Aceria tenella,
    [Show full text]
  • Occurrence of Ditylenchus Destructorthorne, 1945 on a Sand
    Journal of Plant Protection Research ISSN 1427-4345 ORIGINAL ARTICLE Occurrence of Ditylenchus destructor Thorne, 1945 on a sand dune of the Baltic Sea Renata Dobosz1*, Katarzyna Rybarczyk-Mydłowska2, Grażyna Winiszewska2 1 Entomology and Animal Pests, Institute of Plant Protection – National Research Institute, Poznan, Poland 2 Nematological Diagnostic and Training Centre, Museum and Institute of Zoology Polish Academy of Sciences, Warsaw, Poland Vol. 60, No. 1: 31–40, 2020 Abstract DOI: 10.24425/jppr.2020.132206 Ditylenchus destructor is a serious pest of numerous economically important plants world- wide. The population of this nematode species was isolated from the root zone of Ammo- Received: July 11, 2019 phila arenaria on a Baltic Sea sand dune. This population’s morphological and morphomet- Accepted: September 27, 2019 rical characteristics corresponded to D. destructor data provided so far, except for the stylet knobs’ height (2.1–2.9 vs 1.3–1.8) and their arrangement (laterally vs slightly posteriorly *Corresponding address: sloping), the length of a hyaline part on the tail end (0.8–1.8 vs 1–2.9), the pharyngeal gland [email protected] arrangement in relation to the intestine (dorsal or ventral vs dorsal, ventral or lateral) and the appearance of vulval lips (smooth vs annulated). Ribosomal DNA sequence analysis confirmed the identity of D. destructor from a coastal dune. Keywords: Ammophila arenaria, internal transcribed spacer (ITS), potato rot nematode, 18S, 28S rDNA Introduction Nematodes from the genus Ditylenchus Filipjev, 1936, arachis Zhang et al., 2014, both of which are pests of are found in soil, in the root zone of arable and wild- peanut (Arachis hypogaea L.), Ditylenchus destruc- -growing plants, and occasionally in the tissues of un- tor Thorne, 1945 which feeds on potato (Solanum tu- derground or aboveground parts (Brzeski 1998).
    [Show full text]
  • Multi-Copy Alpha-Amylase Genes Are Crucial for Ditylenchus Destructor to Parasitize the Plant Host
    PLOS ONE RESEARCH ARTICLE Multi-copy alpha-amylase genes are crucial for Ditylenchus destructor to parasitize the plant host Ling ChenID, Mengci Xu, Chunxiao Wang, Jinshui Zheng, Guoqiang Huang, Feng Chen, Donghai Peng, Ming Sun* State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract Ditylenchus destructor is a migratory plant-parasitic nematode that causes huge damage to global root and tuber production annually. The main plant hosts of D. destructor contain plenty of starch, which makes the parasitic environment of D. destructor to be different from OPEN ACCESS those of most other plant-parasitic nematodes. It is speculated that D. destructor may harbor Citation: Chen L, Xu M, Wang C, Zheng J, Huang some unique pathogenesis-related genes to parasitize the starch-rich hosts. Herein, we G, Chen F, et al. (2020) Multi-copy alpha-amylase focused on the multi-copy alpha-amylase genes in D. destructor, which encode a key genes are crucial for Ditylenchus destructor to parasitize the plant host. PLoS ONE 15(10): starch-catalyzing enzyme. Our previously published D. destructor genome showed that it e0240805. https://doi.org/10.1371/journal. has three alpha-amylase encoding genes, Dd_02440, Dd_11154, and Dd_13225. Compar- pone.0240805 ative analysis of alpha-amylases from different species demonstrated that the other plant- Editor: Sumita Acharjee, Assam Agricultural parasitic nematodes, even Ditylenchus dipsaci in the same genus, harbor only one or no University Faculty of Agriculture, INDIA alpha-amylase gene, and the three genes from D.
    [Show full text]
  • A Review of the Eriophyoid Mites (Acari: Eriophyoidea) on Rubus Spp. in Britain, with a New Species (Diptilomiopidae) and Two New Records
    Zootaxa 2677: 15–26 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) A review of the eriophyoid mites (Acari: Eriophyoidea) on Rubus spp. in Britain, with a new species (Diptilomiopidae) and two new records DANIEL R. L. PYE1 & ENRICO DE LILLO2 ¹The Food and Environment Research Agency, Sand Hutton, York, YO41 1LZ, United Kingdom. E-mail: [email protected] ²Dipartimento di Biologia e Chimica Agroforestale e Ambientale, sez. Entomologia e Zoologia, via Amendola, 165/a, 70126 Bari, Italy. E-mail: [email protected] Abstract A new vagrant species of eriophyoid mite, Asetadiptacus acarubri n. sp., is described and illustrated from Rubus fruticosus (Rosaceae) in Britain, a key to the world species of Asetadiptacus is provided, and Anthocoptes rubicolens Roivainen and Trimeroptes rubi Bagdasarian are recorded from Britain for the first time. In addition, Acalitus essigi (Hassan) and Phyllocoptes gracilis (Nalepa) are reported from R. fruticosus and Rubus sp., respectively. Collection details, distribution and host plant symptoms are provided, together with digital micrographs of the prodorsal shield and coxigenital region of a female from each species discussed. A review of the other eriophyoid mite species hitherto recorded in Britain from Rubus is also provided. Key words: Eriophyoidea, Eriophyidae, Diptilomiopidae, red berry disease, blackberry, taxonomy, pest, key Introduction The Food and Environment Research Agency (Fera) provides an identification service for plant pests and diseases for both the Department for Environment, Food and Rural Affairs (Defra) and commercial customers. During 2009, eleven samples of Rubus spp.
    [Show full text]
  • Biosecurity in Australia: a Working Partnership and Shared Responsibility
    Biosecurity in Australia: a working partnership and shared responsibility Dennis Bittisnich Biosecurity Services Group Outline • Australian agriculture in context • Biosecurity control in Australia: a brief background • PPPs in Australian biosecurity: a shared responsibility • Observations: key factors in Australian biosecurity PPPs Australian Agriculture in Context • Geographically isolated; unique flora and fauna; many climatic zones • Political federation of 8 state and territory governments under a commonwealth government • Only 10% land area is arable • 0.3% global population • 3% of global agricultural trade • Beef, wheat, wine, wool, lamb, feed, dairy Australian Agriculture in Context • Historically Australian economy “rode on the sheep’s back”; significant wool, lamb and cereal exporter • Ag nearly 30% of national GDP at peak (now 5% GDP; 60% is exported; 5:1 export:import) • Premium for “clean green” credentials; esp. from favourable animal/plant disease status • Biosecurity threats were thus high on industry, political, and trade agenda Australian Agriculture in Context • In last 10-15 years: exports levelled off; drought & international competition • Agri-food imports doubled; mostly from developing countries • International passengers and cargo doubled - globalization • Emerging/altered spread of disease • ALSO: Trading partner requirements/SPS disciplines more rigorously applied Biosecurity control in Australia • Historically public management of biosecurity (also food safety; ag R&D) seen as a government “public good” (beneficiaries
    [Show full text]
  • Economic Cost of Invasive Non-Native Species on Great Britain F
    The Economic Cost of Invasive Non-Native Species on Great Britain F. Williams, R. Eschen, A. Harris, D. Djeddour, C. Pratt, R.S. Shaw, S. Varia, J. Lamontagne-Godwin, S.E. Thomas, S.T. Murphy CAB/001/09 November 2010 www.cabi.org 1 KNOWLEDGE FOR LIFE The Economic Cost of Invasive Non-Native Species on Great Britain Acknowledgements This report would not have been possible without the input of many people from Great Britain and abroad. We thank all the people who have taken the time to respond to the questionnaire or to provide information over the phone or otherwise. Front Cover Photo – Courtesy of T. Renals Sponsors The Scottish Government Department of Environment, Food and Rural Affairs, UK Government Department for the Economy and Transport, Welsh Assembly Government FE Williams, R Eschen, A Harris, DH Djeddour, CF Pratt, RS Shaw, S Varia, JD Lamontagne-Godwin, SE Thomas, ST Murphy CABI Head Office Nosworthy Way Wallingford OX10 8DE UK and CABI Europe - UK Bakeham Lane Egham Surrey TW20 9TY UK CABI Project No. VM10066 2 The Economic Cost of Invasive Non-Native Species on Great Britain Executive Summary The impact of Invasive Non-Native Species (INNS) can be manifold, ranging from loss of crops, damaged buildings, and additional production costs to the loss of livelihoods and ecosystem services. INNS are increasingly abundant in Great Britain and in Europe generally and their impact is rising. Hence, INNS are the subject of considerable concern in Great Britain, prompting the development of a Non-Native Species Strategy and the formation of the GB Non-Native Species Programme Board and Secretariat.
    [Show full text]
  • The National Plant Biosecurity Status Report
    The National Plant Biosecurity Status Report 2014 © Plant Health Australia 2015 Disclaimer: This publication is published by Plant Health Australia for information purposes only. Information in the document is drawn from a variety of sources outside This work is copyright. Apart from any use as Plant Health Australia. Although reasonable care was taken in its preparation, Plant Health permitted under the Copyright Act 1968, no part Australia does not warrant the accuracy, reliability, completeness or currency of the may be reproduced by any process without prior information, or its usefulness in achieving any purpose. permission from Plant Health Australia. Given that there are continuous changes in trade patterns, pest distributions, control Requests and enquiries concerning reproduction measures and agricultural practices, this report can only provide a snapshot in time. and rights should be addressed to: Therefore, all information contained in this report has been collected for the 12 month period from 1 January 2014 to 31 December 2014, and should be validated and Communications Manager confirmed with the relevant organisations/authorities before being used. A list of Plant Health Australia contact details (including websites) is provided in the Appendices. 1/1 Phipps Close DEAKIN ACT 2600 To the fullest extent permitted by law, Plant Health Australia will not be liable for any loss, damage, cost or expense incurred in or arising by reason of any person relying on the ISSN 1838-8116 information in this publication. Readers should make and rely on their own assessment An electronic version of this report is available for and enquiries to verify the accuracy of the information provided.
    [Show full text]