VOLUME 1 Welding Metallurgy Carbon and Alloy Steels
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
View/Download PDF of This Issue, the File Size
E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine International Scientific-Technical and Production Journal Issue 06 2019 Published Monthly Since 2000 English translation of the monthly «Avtomaticheskaya Svarka» (Automatic Welding) journal published in Russian since 1948 EDITORIAL BOARD CONTENTS Editor-in-Chief B.E. Paton Plenary Papers for International Conference Scientists of PWI, Kyiv S.I. Kuchuk-Yatsenko (vice-chief ed.), «Consumables for Welding, Surfacing V.N. Lipodaev (vice-chief ed.), and Coating Deposition and 3D Technologies», Yu.S. Borisov, G.M. Grigorenko, A.T. Zelnichenko, V.V. Knysh, Kyiv, PWI, 4–5 June 2019 I.V. Krivtsun, Yu.N. Lankin, L.M. Lobanov, V.D. Poznyakov, Bonnel J.-M., Maurer M. and Rosert R. Submerged arc surfacing of high-alloy I.A. Ryabtsev, K.A. Yushchenko steels by flux-cored wires .................................................................................. 3 Scientists of Ukrainian Universities Golovko V.V., Stepanyuk S.N. and Ermolenko D.Yu. Dispersion modification V.V. Dmitrik, NTU «KhPI», Kharkov V.V. Kvasnitsky, NTUU «KPl», Kyiv of dendrite structure of weld metal .................................................................... 13 E.P. Chvertko, NTUU «KPl», Kyiv Yushchenko K.A., Gakh I.S., Zadery B.A., Zvyagintseva A.V. and Foreign Scientists Karasevskaya O.P. Repair surfacing of gas turbine engine blades from N.P. Alyoshin high-temperature nickel alloys with surface defects and damage ..................... 19 N.E. Bauman MSTU, Moscow, Russia Guan Qiao Goncharov I.O., Sudavtsova V.S., Mishchenko D.D., Duchenko A.M. and Beijing Aeronautical Institute, China M. Zinigrad Sokolsky V.E. Influence of refractory dispersed phases on physical-chemical Ariel University, Israel properties of slag metls of MgO–Al2O3–SiO2–CaF2 system .............................. -
General Disclaimer One Or More of the Following Statements May Affect This Document
General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) MASSACHUSETTS INSTITUTE OF TEC'.-INOLOGY DEPARTMENT OF OCEAN ENGINEERING SEP 83 CAMBRIDGE. MASS. 02139 RECEIVED FAVUV wrw STI DEPI- , FINAL REPORT "Wo Under Contract No. NASW-3740 (M.I.T. OSP #93589) ON FEASIBILITY OF REMOTELY MANIPULATED WELDING IN SPACE -A STEP IN THE DEVELOPMENT OF NOVEL JOINING TECHNOLOGIES- Submitted to Office of Space Science and Applications Innovative Utilization of the Space Station Program Code E NASA Headquarters Washington, D.C. 20546 September 1983 by Koichi Masubuchi John E. Agapakis Andrew DeBiccari Christopher von Alt (NASA-CR-1754371 ZEASIbILITY CF RZ,1JTL": Y `84-20857 MANIPJLATED WELLINu iN SPAI.E. A STEP IN THE Uc.Y1;LuPdENT OF NUVLL Ju1NING Tkk ;HNuLUGIES Final Peport (c;dssachu6etts Irist. or Tccli.) U11CIds ibJ p HC Al2/Mk AJ 1 CSCL 1jI G:i/.i7 OOb47 i i rACKNOWLEDGEMENT The authors wish to acknowledge the assistance provided by M.I.T. -
Mechanical Testing and Evaluation of High-Speed and Low
MECHANICAL TESTING AND EVALUATION OF HIGH-SPEED AND LOW- SPEED FRICTION STIR WELDS A Thesis by Nitin Banwasi Bachelor of Engineering, Bangalore University, Bangalore, India 2000 Submitted to the College of Engineering and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Master of Science Fall 2005 EXPERIMENTAL TESTING AND EVALUATION OF HIGH-SPEED AND LOW- SPEED FRICTION STIR WELDS I have examined the final copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Mechanical Engineering. George E. Talia, Committee Chair We have read this thesis and recommended its acceptance: Dr. Hamid M. Lankarani, Department Chair, Committee Member Dr. Krishna K. Krishnan, Committee Member ii DEDICATION To My Parents iii ACKNOWLEDGEMENTS I am grateful to all that are part of my efforts during my work both academically and personally. I am thankful to my committee chair, Dr.George E.Talia, for being not only supportive in my endeavors but also patient and informative. I appreciate the involvement of both Dr. Hamid M. Lankarani and Dr. Krishna K. Krishnan for their involvement in its fulfillment. I also want to remember fellow student’s help and suggestions in making it possible with gratitude. iv ABSTRACT The potential of the Friction Stir Welding (FSW) process is easily observed in the creation of defect free welds in almost all of the Aluminum alloys. The success and applicability of the process, however, will depend on the performance of the welds compared to other joining processes. -
The Right Tool for Every Job...Big Or Small
The right tool for every job.... big or small TRANSMIG MULTI-PROCESS WELDING INVERTERS The CIGWELD complete range of TRANSMIG multi-process MIG, Stick & TIG welding inverters, come loaded with features sure to satisfy any trade professional in any industry regardless of the welding application. 1300 654 674 I www.cigweld.com.au Sponsors Index Shindaiwa Structural Steel Standards 2 http://www.shindaiwa.com.au/ South Pacific Welding Group Pressure Equipment 6 http://www.spwgroup.com.au/home.asp Standards Smenco http://www.smenco.com.au Thermadyne – Transmig 9 Thermadyne - Cigweld Range www.thermadyne.com.au SafeTac Company Bio – Boston 11 http://www.safetac.com.au Engineering Bureau Veritas http://www.bureauveritas.com.au Smenco – Mining Spec 13 Southern Cross Industrial Welder Supplies http://www.scis.com.au 1300 Apprentice 15 Technoweld http://www.technoweld.com.au MSA - Australian Government 16 Hardface Technologys Skills Connect http://www.hardface.com.au 3834 Weld Management Letter to the Editor 18 [email protected] Welding Duplex – Lincoln 19 Cover Page Electric CIGWELD have released a complete family of six Transmig 3‐in‐1 MIG, STICK and TIG welding inverters to Progress Update 20 the market, ranging from 175 Amps right up to 550 Amps. In November 2011, the Transmig 200i and Transmig 250i single phase portable Multi‐Process Inverters with power factor correction (PFC) hit the market and created quite a stir, and now in early 2012 CIGWELD have realised the 3 phase versions to complete the Transmig inverter range. AWI operates this service for members. Information and comments in AWI publications are the opinions of specific individuals and companies, and may not reflect the position of AWI or its Directors. -
Welding Operations
WELDING OPERATIONS Date Initiated: February 1, 1993 Dates Modified / Updated: September 15, 1993 October 16, 1998 PROCESS DESCRIPTION: Many industrial and manufacturing facilities regularly use a variety of welding processes and materials. The processes include; - Gas Metal Arc Welding (GMAW) - a. k. a. Metal Inert Gas Welding (MIG), - Gas Tungsten Arc Welding (GTAW) - a. k. a. Tungsten Inert Gas Welding (TIG), - Shielded Metal Arc Welding (SMAW) - a. k. a. Manual Metal Arc Welding (MMA), - Flux Core Arc Welding (FCAW), - Submerged Arc Welding (SAW), - Arc Spot Welding, - Electrogas Welding, - Electrostag Welding, - Brazing, - Thermal Cutting, - Resistance Welding, - Plasma Arc Welding, - Electron Beam Welding, - Laser Beam Welding The majority of the common welding processes can be classified as either gas metal arc welding (GMAW) or shielded metal arc welding (SMAW). GMAW generally uses an electrical current to melt and apply a filler metal under a blanket of inert gas. SMAW traditionally uses an electrical current to melt specially coated electrodes which form a protective flux over the weld during application. Both processes use electrodes, filler metals, wire, coatings, and/or gases that may contain and emit several listed substances including NOx, CO, cadmium, cobalt, copper, chromium, manganese, nickel, lead, zinc, and fluorides. Welding operations release fumes and particulates with diameters of 0.001 to 100 microns. Previous studies of welding emissions have been primarily focused on worker exposure and safety. Many technical difficulties have been identified regarding proper sampling and analytical procedures due, in part, to the wide variety of processes, welding materials, and field conditions. The majority of existing test data which can be used to quantify welding emissions is based on studies performed by the American Welding Society (AWS). -
Welding Process Reference Guide
Welding Process Reference Guide gas arc welding…………………..GMAW -pulsed arc…………….……….GMAW-P atomic hydrogen welding……..AHW -short circuiting arc………..GMAW-S bare metal arc welding…………BMAW gas tungsten arc welding…….GTAW carbon arc welding……………….CAW -pulsed arc……………………….GTAW-P -gas……………………………………CAW-G plasma arc welding……………..PAW -shielded……………………………CAW-S shielded metal arc welding….SMAW -twin………………………………….CAW-T stud arc welding………………….SW electrogas welding……………….EGW submerged arc welding……….SAW Flux cord arc welding…………..FCAW -series………………………..…….SAW-S coextrusion welding……………...CEW Arc brazing……………………………..AB cold welding…………………………..CW Block brazing………………………….BB diffusion welding……………………DFW Diffusion brazing…………………….DFB explosion welding………………….EXW Dip brazing……………………………..DB forge welding…………………………FOW Flow brazing…………………………….FLB friction welding………………………FRW Furnace brazing……………………… FB hot pressure welding…………….HPW SOLID ARC Induction brazing…………………….IB STATE BRAZING WELDING Infrared brazing……………………….IRB roll welding…………………………….ROW WELDING (8) ultrasonic welding………………….USW (SSW) (AW) Resistance brazing…………………..RB Torch brazing……………………………TB Twin carbon arc brazing…………..TCAB dip soldering…………………………DS furnace soldering………………….FS WELDING OTHER electron beam welding………….EBW induction soldering……………….IS SOLDERING PROCESS WELDNG -high vacuum…………………….EBW-HV infrared soldering…………………IRS (S) -medium vacuum………………EBW-MV iron soldering……………………….INS -non-vacuum…………………….EBW-NV resistance soldering…………….RS electroslag welding……………….ESW torch soldering……………………..TS -
UNIT-IV Metal Joining Processes
Manufacturing Process - I UNIT –IV Metal Joining Processes Prepared By Prof. Shinde Vishal Vasant Assistant Professor Dept. of Mechanical Engg. NDMVP’S Karmaveer Baburao Thakare College of Engg. Nashik Contact No- 8928461713 E mail:- [email protected] Website:- www.vishalshindeblog.wordpress.com 06/09/2016 PROF.V.V.SHINDE NDMVP'S KBTCOE NASHIK JOINING PROCESSES • Joining includes welding, brazing, soldering, adhesive bonding of materials. • They produce permanent joint between the parts to be assembled. • They cannot be separated easily by application of forces. • They are mainly used to assemble many parts to make a system. • Welding is a metal joining process in which two or more parts are joined or coalesced at their contacting surfaces by suitable application of heat or/and pressure. • Some times, welding is done just by applying heat alone, with no pressure applied • In some cases, both heat and pressure are applied; and in other cases only pressure is applied, without any external heat. • In some welding processes a filler material is added to facilitate coalescence(Joining)06/09/2016 PROF.V.V.SHINDE NDMVP'S KBTCOE NASHIK Joining Processes: Welding, Brazing, Soldering 1. Brazing and Soldering: Melting of filler rod only • Brazing: higher temperature, ~brass filler, strong • Soldering: lower temp, ~tin-lead filler, weak 2. Welding: Melting of filler rod and base metals 06/09/2016 PROF.V.V.SHINDE NDMVP'S KBTCOE NASHIK Advantages of welding: • Welding provides a permanent joint. • Welded joint can be stronger than the parent materials if a proper filler metal is used that has strength properties better than that of parent base material and if defect less welding is done. -
Lecture: 3 Classification of Welding Processes II Apart from Technical
Lecture: 3 Classification of Welding Processes II Apart from technical factors, welding processes can also be classified on the fundamental approaches used for deposition of materials for developing a joint. This chapter presents the classification of welding processes as welding processes and allied process used for developing a joint Keywords: Welding and allied processes, approach of classification, cast weld, resistance weld, fusion weld, solid state weld 3.1 Classification of welding processes There is another way of classifying welding and allied processes which is commonly reported in literature. Various positive processes involving addition or deposition of metal are first broadly grouped as welding process and allied welding processes as under: 1. Welding processes i. Cast weld processes ii. Fusion weld processes iii. Resistance weld processes iv. Solid state weld processes 2. Allied welding processes i. Metal depositing processes ii. Soldering iii. Brazing iv. Adhesive bonding v. Weld surfacing vi. Metal spraying This approach of classifying the welding process is primarily based on the way metallic pieces are united together during welding such as Availability and solidification of molten weld metal between components being joined are similar to that of casting: Cast weld process. Fusion of faying surfaces for developing a weld: Fusion weld process Heating of metal only to plasticize then applying pressure to forge them together: Resistance weld process Use pressure to produce a weld joint in solid state only: Solid state weld process 3.2 Cast welding process Those welding processes in which either molten weld metal is supplied from external source or melted and solidified at very low rate during solidification like castings. -
The Effects of Heat Treatment on the Microstructure and Microhardness of Explosive Welding
Scientific Research and Essays Vol. 6(19), pp. 4141-4151, 8 September, 2011 Available online at http://www.academicjournals.org/SRE DOI: 10.5897/SRE11.1018 ISSN 1992-2248 ©2011 Academic Journals Full Length Research Paper The effects of heat treatment on the microstructure and microhardness of explosive welding 1,2 1 1 Fehim Findik *, Ramazan Yilmaz and Tolga somyurek 1Technical Education Faculty, Sakarya University, 54090 Esentepe Adapazari, Turkey. 2Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia-Herzegovina. Accepted 28 July, 2011 An AISI 304 type of austenitic stainless steel and low carbon steel were cladded by explosive welding in this study. Four explosive loading rates were used with the range of 1 and 2.0. Stand-of distance (s=t) was also used as a welding parameter. Cladded materials have been subjected to heat treatment at 250°C for times of ranging from 1 to 4 h. Effect of heat treatment on the microstructure and mechanical properties has been evaluated using optical and scanning electron microscopy, EDS analysis technique and hardness tests, respectively. The results indicate that straight and wavy structures of bonding at the interface were obtained according to the loading of explosive rate. The grain size of the cladded materials near the interface were increased with the duration of heat treatment. Hardness values at the interface of the cladded materials were decreased with the increment of heat treatment period. Key word: Explosive welding, hardness, microstructure, stainless steel, low carbon steel. INTRODUCTION Explosion welding is one of the joining methods steel has low corrosion resistance therefore, it may be consisting of a solid state welding process in which cladded with the materials such as aluminium, titanium controlled explosive donation on the surface of a metal. -
The Arup Journal
THE ARUP JOURNAL r - JULY 1983 I i • 1! B :- ; in* Vol. 18 No. 2 July 1983 Contents For the 90m x 60m factory for Adamswear at Published by Nuneaton (Job 9195) our client instructed us Ove Arup Partnership 13 Filzroy Street. London W1P 6BO to prepare a performance specification so THEARUP that subcontractors could use either portal frames or trusses. The grid for the 60m width Editor: Peter Hoggett is two spans of 30m with a 6m spacing down Art Editor: Desmond Wyeth FSIAD the length of the building. The truss design Assistant Editor: David Brown JOURNAL proved the most economical. The structural steelwork industry: 2 Trusses were also used for a 20m span tank A review, production shop for Joseph Ash and Sons by R. Haryott (Job 9580) and also for an awkward re• Fire protection, 5 development of an existing site for Samuel by M. Law Heath and Sons (Job 8567) which required some operational areas to be kept in Towers and flare stacks, 9 production while the new building was by J. Tyrrell completed around them. The use of plated steelwork in 12 a tension leg platform design, Figs. 4-5 by N. Prescott Factory for Adamswear The Central Electricity Workshops 15 at Nuneaton Johannesburg, Fig. 6 by B. Williams Joseph Ash and Sons Multi-storey steel-framed 18 tank production shop buildings in South Africa, by C. McMillan Architects: for both projects: Harper Fairley Partnership Local reports summary, 21 by J. Hannon Composite frame and 25 metal deck construction, by I. MacKenzie Precedent and intuition in design, 26 All the papers in this issue of by J. -
High-Speed Resistance Mash Seam Welding of Tinplate-Packaging Steels for Three-Piece Can Manufacture
High-speed resistance mash seam welding of tinplate-packaging steels for three-piece can manufacture − A Literature Review − Date: November 2006 By: Adriaan H. Blom Supervisor: Prof. Dr. Ian M. Richardson Delft University of Technology Materials Science and Enigineering Mekelweg 2 2628 CD Delft The Netherlands Abbreviations AC Alternating Current BA Batch Annealed CA Continuous Annealed CCT Continuous Cooling Transformation CHT Continuous Heating Transformation DC Direct Current DR Double Reduced DRD Drawn and Redrawn DWI Drawn and Wall-Ironed ECCS Electrolytic Chrome-Coated Steel FE Finite Element GTA Gas Tungsten Arc HAZ Heat-Affected Zone HSRW High Speed Resistance (mash seam) Welding HSS High Strength Steels LDR Limiting Drawing Ratio LSS Low Strength Steels LTS Low Tin Substrates MHD Maximum Heat Development PWM Pulse Width Modulation SR Single Reduced TFS Tin Free Steel TZM Titanium Zirconium Molybdenum WIMA WIre MAsh i Abstract Containers for food products, pressurised aerosols and general line goods are characterised by the use of high-speed resistance mash seam welding. This industrial application for fabricating the body of three-piece containers mostly uses double reduced tinplate material of around 0.2 mm thick. The can body is made from a rectangular piece of tinplate, formed into a cylinder, welded followed by insertion and double seaming of the end caps. Resistance mash seam welding is most commonly applied to the welding of the longitudinal cylinder seams, where the automated character of the process achieves speeds of 80 to 115 m/min. A good quality weld consists of intermittently repeated overlapping weld nuggets, which create a continuous gas tight welded seam along the total height of the can body. -
Review on Verious Type of Welding Process
International Journal For Technological Research In Engineering Volume 3, Issue 3, November-2015 ISSN (Online): 2347 - 4718 REVIEW ON VERIOUS TYPE OF WELDING PROCESS Onkar Patel1, Prakash Kumar Sen2, Gopal Sahu3, Ritesh Sharma4, Shailendra Bohidar5 1Student, Mechanical Engineering, Kirodimal Institute of Technology, Raigarh (C.G.) 2,3,4,5 Lecturer, Mechanical Engineering, Kirodimal Institute of Technology, Raigarh (C.G.) ABSTRACT: In manufacturing process two part are joint is Friction welding necessary where welding is generally use. Welding is a Cold presser welding permanent joint process in this paper discuss in welding Spot welding process there type and its defect and safety process. Seam welding Key word- welding pressure arc. Projection welding Upset but welding I. INTRODUCTION Flash but welding Welding often done by melting the work pieces and filler Percussion welding material is added to form a pool of molten material that cools to become a strong joint, with the pressure, sometimes used 2.2 Non presser welding (fusion welding)-in this type of in conjunction with heat, or by itself, to produce the weld. welding process of joining two piece of metal by application The history of joining metals goes back several millennia, of heat the two parts to be joined are placed together heated with the earliest examples of welding from the bronze Age to molten state often with the addition of filler metal until and the Iron Age in Europe and the Middle East [1]Welding they melt and solidify on cooling . in this welding , the technology which is a high productive and practical joining material at the joint is heated to molten state and then method is widely used in modern manufacturing industry allowed to solidify Such as shipbuilding, automobile, bridge, and pressure vessel Gas welding industry [2].