The Arup Journal

Total Page:16

File Type:pdf, Size:1020Kb

The Arup Journal THE ARUP JOURNAL r - JULY 1983 I i • 1! B :- ; in* Vol. 18 No. 2 July 1983 Contents For the 90m x 60m factory for Adamswear at Published by Nuneaton (Job 9195) our client instructed us Ove Arup Partnership 13 Filzroy Street. London W1P 6BO to prepare a performance specification so THEARUP that subcontractors could use either portal frames or trusses. The grid for the 60m width Editor: Peter Hoggett is two spans of 30m with a 6m spacing down Art Editor: Desmond Wyeth FSIAD the length of the building. The truss design Assistant Editor: David Brown JOURNAL proved the most economical. The structural steelwork industry: 2 Trusses were also used for a 20m span tank A review, production shop for Joseph Ash and Sons by R. Haryott (Job 9580) and also for an awkward re• Fire protection, 5 development of an existing site for Samuel by M. Law Heath and Sons (Job 8567) which required some operational areas to be kept in Towers and flare stacks, 9 production while the new building was by J. Tyrrell completed around them. The use of plated steelwork in 12 a tension leg platform design, Figs. 4-5 by N. Prescott Factory for Adamswear The Central Electricity Workshops 15 at Nuneaton Johannesburg, Fig. 6 by B. Williams Joseph Ash and Sons Multi-storey steel-framed 18 tank production shop buildings in South Africa, by C. McMillan Architects: for both projects: Harper Fairley Partnership Local reports summary, 21 by J. Hannon Composite frame and 25 metal deck construction, by I. MacKenzie Precedent and intuition in design, 26 All the papers in this issue of by J. Roberts The Arup Journal have been taken from THE ARUP PARTNERSHIPS' Industrial building: 30 Structural Steelwork Seminar which was Report from Birmingham, held in London, 8-11 November 1982. by R. Greenwood and P. Handley Front cover: Victorian steel-the Forth Railway Bridge (Photo: Eric de Mare) Fig. 7 Samuel Heath and Sons, Back cover: The Papal Cross, Phoenix Park. Dublin (Photo: Harry Sowden) redevelopment of existing site. Architects: Kineton Design Group/ Bateman Associates (2) That in the eyes of many specifiers, against concrete. In recent times, for a The structural contractors and clients, there are many period of more than 20 years until around obstacles to the use of steel. These range 1975, demand for steel products exceeded steelwork industry: from long memories regarding supply steelmaking capacity in most parts of the Schemes on the drawing board at this problems, lack of understanding of the world, and certainly in Europe. One gets the moment include a further project at Coventry A review scope for savings in time or material, to impression that the most lucrative markets of a 30m span where a welded angle truss difficulties which exist in obtaining good for the steelmakers were the ones that took will be used and a 64m x 45m building where Richard Haryott advice on steel design. the biggest volume of simple steels, namely portal frames of 15m span have proved most (3) That designing in steel can only be ship building, the motor industry and heavy suitable. successfully accomplished if the task is engineering generally, and as a result supply Conclusions seen as a part of the whole: that is to say the of steel in the form of sections and other To summarize, our recent experience has Introduction contract procedures, the fabric and finishes structural shapes was never adequate. shown: Delays in steel supplies were certainly seen My task is to paint a general picture of the in relation to the structure, speed of con• (1) Buildings must be adaptable for future as the rule, rather than the exception. structural steelwork industry today. struction, fire protection and so on must all planning and flexible for future extension. I am going to concentrate on the situation be part of the evaluation. This may sound Sometime around 1975 the world supplies (2) Roofs must be strong enough to carry concerning the role of steel in the market obvious, but in fact it seems to me that much scene changed. The steelmakers, or the adequate services. place, and in the main I will also be concen• of industry is not tackling the task as a politicians, or both, appeared to get it wrong. (3) Truss or Portal? We will usually trating on those aspects relating to the use whole. In the UK for example, a grand expansion of of structural steelwork in multi-storey examine both schemes but trusses more A key must be education. There is nothing steelmaking capacity had been made, taking often offer the best solution. frames, in one-off special structures where magic about designing steel, but the capacity for production of liquid steel to (4) Bolted or welded trusses? Shop-welded reinforced concrete is a successful or even standard of education and training must be something in the region of 30m. tonnes per with site-bolted joints for almost all projects. dominant competitor. improved if excellence and value for money annum, and at that with no real changes in trusses had to be replaced with new with the universal columns/universal beams Clearly the review is made through the eyes are to be attained. Arups should examine productivity. In Europe capacity increased, monopitch trusses. Parallel lattice girders booms ideal for carrying local bending and (5) Grade 43 or Grade 50 steel? Most of an Arup engineer who is based mainly in what their role should be. and the new steelmaking plants were were used with structural T booms to which the tubular bracings efficient as long struts. schemes have used Grade 43 only but we London. In the time available it is obviously Background market conditions opened up all over the developing world. This angle bracings could readily be welded on To allow for transportation the truss is to be must bear in mind that the same mill delivery not possible to refer to all the many Steel sections have been used in all at a time when the post-OPEC price alternate sides. site bolted with Grade 8.8 bolts. of four to six weeks is offered. We should shocks were slowly reducing world demand therefore look for out places where Grade 50 differences in circumstances worldwide, but construction for over 100 years and for many Another form of truss construction we use We are finding that Grade 8.8 bolts have and helping to bring about major recession. can be used to advantage such as heavy nevertheless it seems to me that there are years the materials held a predominant has universal column or beam booms with largely replaced HSFG on most jobs as they loads on 'short' spans and for certain many areas of common experience and position in bridgework and in major building Suddenly world demand for steel products tubular bracing. The example is a 30m span are easier to use on site. Particularly with bracings. interest. frames. Competition from concrete and fell far short of capacity. Steelmakers in the with warren bracing. overseas jobs we avoid having two bolts of One of the purposes is to propose to you the other materials gradually reduced its market USA are working at less than 40% of their This same principle has been used for the the same size but different grades. Some (6) Grade 4.6 or Grades 8.8 bolts? Almost following main points or themes: share, but nonetheless the industry as a capacity, and in Europe the average output is boiler house at Telford District General trusses for Africa (Job 8399) were all M16 bolts are Grade 4.6 but M20 and M24 (1) That market forces are now such that whole did not seem to run into a feeling of around 60% of capacity. In the UK the BSC is Hospital (Job 4623) of 16m span and 9m transported in containers as individual angle in Grade 8.8 are frequently used for major steelwork is once again a sensible and decline until comparatively recently. currently producing around 10m. tonnes, and high. The initial design for a portal frame members and completely site bolted. The structural connections. economic alternative in many of our 'main• Steelmakers worldwide found themselves in the private sector production brings the total was abandoned when 10 tonne coal hoppers M20 and M24 bolts were grade 8.8 with the (7) Bracing members angle, rod or square stream' structures in areas where concrete a sellers' market for a considerable period of to around 14m. tonnes - pretty much in line had to be carried from the roof and a full M16 bolts in grade 4.6 to avoid any possible hollow sections? All are used with the has perhaps been dominant for the past two time, even if parts of the market, such as the with the capacity/demand situation for the height walkway above the hoppers. The confusion on site and we try to follow this advantage taken of square hollow sections or three decades. construction industry, were losing a battle EEC as a whole. welded steel truss met these requirements procedure in the United Kingdom. for long slender bracings. Industrial building: Fig. 1 - -10 Employment in the EEC steel industry Report from W. Germany Fig. 2 Birmingham Potential UK steel production capacity against actual UK steel production 150 Robert Greenwood potential production - Peter Handley * • France 100 Introduction Italy Birmingham Office has been involved in a actual production large number of single storey industrial buildings. These have ranged from small Britain extensions of 200m2 for family-owned Black Country businesses to a 20,000m2 ware• -12 house at Coventry.
Recommended publications
  • General Disclaimer One Or More of the Following Statements May Affect This Document
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) MASSACHUSETTS INSTITUTE OF TEC'.-INOLOGY DEPARTMENT OF OCEAN ENGINEERING SEP 83 CAMBRIDGE. MASS. 02139 RECEIVED FAVUV wrw STI DEPI- , FINAL REPORT "Wo Under Contract No. NASW-3740 (M.I.T. OSP #93589) ON FEASIBILITY OF REMOTELY MANIPULATED WELDING IN SPACE -A STEP IN THE DEVELOPMENT OF NOVEL JOINING TECHNOLOGIES- Submitted to Office of Space Science and Applications Innovative Utilization of the Space Station Program Code E NASA Headquarters Washington, D.C. 20546 September 1983 by Koichi Masubuchi John E. Agapakis Andrew DeBiccari Christopher von Alt (NASA-CR-1754371 ZEASIbILITY CF RZ,1JTL": Y `84-20857 MANIPJLATED WELLINu iN SPAI.E. A STEP IN THE Uc.Y1;LuPdENT OF NUVLL Ju1NING Tkk ;HNuLUGIES Final Peport (c;dssachu6etts Irist. or Tccli.) U11CIds ibJ p HC Al2/Mk AJ 1 CSCL 1jI G:i/.i7 OOb47 i i rACKNOWLEDGEMENT The authors wish to acknowledge the assistance provided by M.I.T.
    [Show full text]
  • RESEARCH PROJECT No. 40
    Ductile Iron Society RESEARCH PROJECT No. 40 Survey of Greensand Properties of Member Foundries Mary Beth Krysiak Sand Technology Co. LLC, New Hudson MI Dr. Hathibelagal Roshan K & S Data Services LLC, Fox Point WI DUCTILE IRON SOCIETY Issued by the Ductile Iron Society for the use of its Member Companies – Not for General Distribution DUCTILE IRON SOCIETY 15400 Pearl Road, Suite 234 Strongsville, Ohio 44136 (440) 665-3686 SEPTEMBER 2007 Research Report Project #40 2007 Survey of Greensand Properties of Member Foundries A Cooperative Project of Ductile Iron Society And Member Foundries Reported by Mary Beth Krysiak Dr. Hathibelagal Roshan Ductile Iron Society Issued by the Ductile Iron Society Located at 15400 Pearl Road, Suite 234; Strongsville, Ohio 44136 Contents 1, Executive Summary - pdf 2. Survey report Part A - pdf 3. Survey report Part B pdf 4. Correlations - pdf 5. Sand data sheet for collecting info - pdf 6. Sand grain photos - pdf 7. Test data - XL 8. Sand tests and guide to controls – chart - pdf 9. Sand tests and guide to controls – chart - Word Sand Survey Report Executive Summary 1. The sand tests were done in one laboratory known to have many years of expertise in sand testing. During transport, regardless of how well samples are sealed, the samples age and while moisture content remains fairly stable, compactability drops as the moisture is absorbed further into the clay. In addition, the sands cool from the temperature at which they were in use at foundry. While the cooling effect could not be negated on a practical level, the sands were retempered or conditioned, prior to testing, to the reported target compactability at the foundry.
    [Show full text]
  • Metal Casting Process
    Sand Casting Sand Mold Making Procedure The first step in making mold is to place the pattern on the molding board. The drag is placed on the board Dry facing sand is sprinkled over the board and pattern to provide a non sticky layer. Molding sand is then riddled in to cover the pattern with the fingers; then the drag is completely filled. The sand is then firmly packed in the drag by means of hand rammers. The ramming must be proper i.e. it must neither be too hard or soft. After the ramming is over, the excess sand is leveled off with a straight bar known as a strike rod. With the help of vent rod, vent holes are made in the drag to the full depth of the flask as well as to the pattern to facilitate the removal of gases during pouring and solidification. The finished drag flask is now rolled over to the bottom board exposing the pattern. Cope half of the pattern is then placed over the drag pattern with the help of locating pins. The cope flask on the drag is located aligning again with the help of pins The dry parting sand is sprinkled all over the drag and on the pattern. A sprue pin for making the sprue passage is located at a small distance from the pattern. Also, riser pin, is placed at an appropriate place. The operation of filling, ramming and venting of the cope proceed in the same manner as performed in the drag. The sprue and riser pins are removed first and a pouring basin is scooped out at the top to pour the liquid metal.
    [Show full text]
  • Welding Process Reference Guide
    Welding Process Reference Guide gas arc welding…………………..GMAW -pulsed arc…………….……….GMAW-P atomic hydrogen welding……..AHW -short circuiting arc………..GMAW-S bare metal arc welding…………BMAW gas tungsten arc welding…….GTAW carbon arc welding……………….CAW -pulsed arc……………………….GTAW-P -gas……………………………………CAW-G plasma arc welding……………..PAW -shielded……………………………CAW-S shielded metal arc welding….SMAW -twin………………………………….CAW-T stud arc welding………………….SW electrogas welding……………….EGW submerged arc welding……….SAW Flux cord arc welding…………..FCAW -series………………………..…….SAW-S coextrusion welding……………...CEW Arc brazing……………………………..AB cold welding…………………………..CW Block brazing………………………….BB diffusion welding……………………DFW Diffusion brazing…………………….DFB explosion welding………………….EXW Dip brazing……………………………..DB forge welding…………………………FOW Flow brazing…………………………….FLB friction welding………………………FRW Furnace brazing……………………… FB hot pressure welding…………….HPW SOLID ARC Induction brazing…………………….IB STATE BRAZING WELDING Infrared brazing……………………….IRB roll welding…………………………….ROW WELDING (8) ultrasonic welding………………….USW (SSW) (AW) Resistance brazing…………………..RB Torch brazing……………………………TB Twin carbon arc brazing…………..TCAB dip soldering…………………………DS furnace soldering………………….FS WELDING OTHER electron beam welding………….EBW induction soldering……………….IS SOLDERING PROCESS WELDNG -high vacuum…………………….EBW-HV infrared soldering…………………IRS (S) -medium vacuum………………EBW-MV iron soldering……………………….INS -non-vacuum…………………….EBW-NV resistance soldering…………….RS electroslag welding……………….ESW torch soldering……………………..TS
    [Show full text]
  • UNIT-IV Metal Joining Processes
    Manufacturing Process - I UNIT –IV Metal Joining Processes Prepared By Prof. Shinde Vishal Vasant Assistant Professor Dept. of Mechanical Engg. NDMVP’S Karmaveer Baburao Thakare College of Engg. Nashik Contact No- 8928461713 E mail:- [email protected] Website:- www.vishalshindeblog.wordpress.com 06/09/2016 PROF.V.V.SHINDE NDMVP'S KBTCOE NASHIK JOINING PROCESSES • Joining includes welding, brazing, soldering, adhesive bonding of materials. • They produce permanent joint between the parts to be assembled. • They cannot be separated easily by application of forces. • They are mainly used to assemble many parts to make a system. • Welding is a metal joining process in which two or more parts are joined or coalesced at their contacting surfaces by suitable application of heat or/and pressure. • Some times, welding is done just by applying heat alone, with no pressure applied • In some cases, both heat and pressure are applied; and in other cases only pressure is applied, without any external heat. • In some welding processes a filler material is added to facilitate coalescence(Joining)06/09/2016 PROF.V.V.SHINDE NDMVP'S KBTCOE NASHIK Joining Processes: Welding, Brazing, Soldering 1. Brazing and Soldering: Melting of filler rod only • Brazing: higher temperature, ~brass filler, strong • Soldering: lower temp, ~tin-lead filler, weak 2. Welding: Melting of filler rod and base metals 06/09/2016 PROF.V.V.SHINDE NDMVP'S KBTCOE NASHIK Advantages of welding: • Welding provides a permanent joint. • Welded joint can be stronger than the parent materials if a proper filler metal is used that has strength properties better than that of parent base material and if defect less welding is done.
    [Show full text]
  • VOLUME 1 Welding Metallurgy Carbon and Alloy Steels
    VOLUME 1 Welding Metallurgy Carbon and Alloy Steels Volume I Fundamentals George E. Linnert GML Publications Hilton Head Island, South Carolina, USA Fourth Edition Published by the American Welding Society Miami, Florida, USA Contents Contents Chapter One: Background to Welding Metallurgy 1 MILESTONES IN WELDING HISTORY 1 THE FUTURE OF WELDING 4 WHAT IS WELDING METALLURGY? 6 PUTTING WELDING METALLURGY TO USE 12 WELDING TECHNOLOGY RESOURCES 12 SUGGESTED READING 15 Chapter Two: The Structure of Metals 18 ATOMS 18 Elementary Particles 20 Electrons 22 Positrons 26 Atomic Nuclei 26 Protons 27 Neutrons 28 Atom Construction 32 Isotopes of Elements 33 Isobars 34 Atomic Weight 34 Atomic Mass 34 Atom Valency 35 lonization 36 Radioactivity 37 Atom Size or Diameter 38 THE ELEMENTS 39 AGGREGATES OF ATOMS 41 The Solid State 45 The Crystalline Solids 45 Amorphous Solids 47 The Liquid State 48 The Gaseous State 49 FUNDAMENTALS OF CRYSTALS 50 Identification of Planes and Directions in Crystals 56 Basic Types of Crystals 56 vi Welding Metallurgy Inert Gas Crystals 58 Ionic Crystals 58 Covalent Crystals 59 Metallic Crystals 59 THE CRYSTALLINE STRUCTURE OF METALS 61 How Does a Crystal Grow from the Melt? 64 The Formation of Dendrites 66 The Formation of Grains 68 The Shape of Grains 71 The Size of Grains 72 Undercooling 72 THE IMPORTANCE OF A CRYSTALLINE STRUCTURE 74 Allotropic Transformation 75 Solubility in the Solid State 76 Plasticity in Metallic Crystals 77 Slip in Crystalline Structures 77 Slip and Lattice Orientation 78 Slip in Polycrystalline Metals
    [Show full text]
  • Some Interesting Projects in Foundry
    Central Washington University ScholarWorks@CWU All Master's Theses Master's Theses 1953 Some Interesting Projects in Foundry Paul M. Paulson Central Washington University Follow this and additional works at: https://digitalcommons.cwu.edu/etd Part of the Art Education Commons, and the Teacher Education and Professional Development Commons Recommended Citation Paulson, Paul M., "Some Interesting Projects in Foundry" (1953). All Master's Theses. 112. https://digitalcommons.cwu.edu/etd/112 This Thesis is brought to you for free and open access by the Master's Theses at ScholarWorks@CWU. It has been accepted for inclusion in All Master's Theses by an authorized administrator of ScholarWorks@CWU. For more information, please contact [email protected]. -.. SOME INTERESTING PROJECTS IN FOUNDRY by Paul M. Paul son A paper submitted in partial fulfillment of the requirements for the degree of Master of Education, in the Graduate School of the Central Washington College of Education TABLE OF CONTENTS CHAP'rER PAGE I. INTRODUCTION . ' . l The purpose of the problem • . 1 II. RELATED INFORMATION. • • • • • . 3 III. SELECTED PROJECTS ••• • • . 10 How to cast a flower frog. • • • . 10 How to cast a book end • • • . • . • • • 15 How to cast a screwdriver handle . • . • • • 20 How to cast fireplace accessories. • . • . 27 How to cast house numbers. • . • . • 37 How to ca.st cane handles . • . 43 IV. SUMMARY AND CONCLUSIONS •. 48 Summary ••••• . 48 Conclusions. 49 BIBLIOGRAPffY • . 51 APPENDIX A •• . 54 CHAPTER I INTRODUCTION AND PURPOSE OF THE STUDY Foundry work is one of the largest branches of the metal working industries but still it is ignored by many of our schools today.
    [Show full text]
  • Metal Casting Terms and Definitions
    Metal Casting Terms and Definitions Table of Contents A .................................................................................................................................................................... 2 B .................................................................................................................................................................... 2 C .................................................................................................................................................................... 2 D .................................................................................................................................................................... 4 E .................................................................................................................................................................... 5 F ..................................................................................................................................................................... 5 G .................................................................................................................................................................... 5 H .................................................................................................................................................................... 6 I ....................................................................................................................................................................
    [Show full text]
  • High-Speed Resistance Mash Seam Welding of Tinplate-Packaging Steels for Three-Piece Can Manufacture
    High-speed resistance mash seam welding of tinplate-packaging steels for three-piece can manufacture − A Literature Review − Date: November 2006 By: Adriaan H. Blom Supervisor: Prof. Dr. Ian M. Richardson Delft University of Technology Materials Science and Enigineering Mekelweg 2 2628 CD Delft The Netherlands Abbreviations AC Alternating Current BA Batch Annealed CA Continuous Annealed CCT Continuous Cooling Transformation CHT Continuous Heating Transformation DC Direct Current DR Double Reduced DRD Drawn and Redrawn DWI Drawn and Wall-Ironed ECCS Electrolytic Chrome-Coated Steel FE Finite Element GTA Gas Tungsten Arc HAZ Heat-Affected Zone HSRW High Speed Resistance (mash seam) Welding HSS High Strength Steels LDR Limiting Drawing Ratio LSS Low Strength Steels LTS Low Tin Substrates MHD Maximum Heat Development PWM Pulse Width Modulation SR Single Reduced TFS Tin Free Steel TZM Titanium Zirconium Molybdenum WIMA WIre MAsh i Abstract Containers for food products, pressurised aerosols and general line goods are characterised by the use of high-speed resistance mash seam welding. This industrial application for fabricating the body of three-piece containers mostly uses double reduced tinplate material of around 0.2 mm thick. The can body is made from a rectangular piece of tinplate, formed into a cylinder, welded followed by insertion and double seaming of the end caps. Resistance mash seam welding is most commonly applied to the welding of the longitudinal cylinder seams, where the automated character of the process achieves speeds of 80 to 115 m/min. A good quality weld consists of intermittently repeated overlapping weld nuggets, which create a continuous gas tight welded seam along the total height of the can body.
    [Show full text]
  • Review on Verious Type of Welding Process
    International Journal For Technological Research In Engineering Volume 3, Issue 3, November-2015 ISSN (Online): 2347 - 4718 REVIEW ON VERIOUS TYPE OF WELDING PROCESS Onkar Patel1, Prakash Kumar Sen2, Gopal Sahu3, Ritesh Sharma4, Shailendra Bohidar5 1Student, Mechanical Engineering, Kirodimal Institute of Technology, Raigarh (C.G.) 2,3,4,5 Lecturer, Mechanical Engineering, Kirodimal Institute of Technology, Raigarh (C.G.) ABSTRACT: In manufacturing process two part are joint is Friction welding necessary where welding is generally use. Welding is a Cold presser welding permanent joint process in this paper discuss in welding Spot welding process there type and its defect and safety process. Seam welding Key word- welding pressure arc. Projection welding Upset but welding I. INTRODUCTION Flash but welding Welding often done by melting the work pieces and filler Percussion welding material is added to form a pool of molten material that cools to become a strong joint, with the pressure, sometimes used 2.2 Non presser welding (fusion welding)-in this type of in conjunction with heat, or by itself, to produce the weld. welding process of joining two piece of metal by application The history of joining metals goes back several millennia, of heat the two parts to be joined are placed together heated with the earliest examples of welding from the bronze Age to molten state often with the addition of filler metal until and the Iron Age in Europe and the Middle East [1]Welding they melt and solidify on cooling . in this welding , the technology which is a high productive and practical joining material at the joint is heated to molten state and then method is widely used in modern manufacturing industry allowed to solidify Such as shipbuilding, automobile, bridge, and pressure vessel Gas welding industry [2].
    [Show full text]
  • Manufacturing Technology I Unit I Metal Casting
    MANUFACTURING TECHNOLOGY I UNIT I METAL CASTING PROCESSES Sand casting – Sand moulds - Type of patterns – Pattern materials – Pattern allowances – Types of Moulding sand – Properties – Core making – Methods of Sand testing – Moulding machines – Types of moulding machines - Melting furnaces – Working principle of Special casting processes – Shell – investment casting – Ceramic mould – Lost Wax process – Pressure die casting – Centrifugal casting – CO2 process – Sand Casting defects. UNIT II JOINING PROCESSES Fusion welding processes – Types of Gas welding – Equipments used – Flame characteristics – Filler and Flux materials - Arc welding equipments - Electrodes – Coating and specifications – Principles of Resistance welding – Spot/butt – Seam – Projection welding – Percusion welding – GS metal arc welding – Flux cored – Submerged arc welding – Electro slag welding – TIG welding – Principle and application of special welding processes – Plasma arc welding – Thermit welding – Electron beam welding – Friction welding – Diffusion welding – Weld defects – Brazing – Soldering process – Methods and process capabilities – Filler materials and fluxes – Types of Adhesive bonding. UNIT III BULK DEFORMATION PROCESSES Hot working and cold working of metals – Forging processes – Open impression and closed die forging – Characteristics of the process – Types of Forging Machines – Typical forging operations – Rolling of metals – Types of Rolling mills – Flat strip rolling – Shape rolling operations – Defects in rolled parts – Principle of rod and wire drawing – Tube drawing – Principles of Extrusion – Types of Extrusion – Hot and Cold extrusion – Equipments used. UNIT IV SHEET METAL PROCESSES Sheet metal characteristics – Typical shearing operations – Bending – Drawing operations – Stretch forming operations –– Formability of sheet metal – Test methods – Working principle and application of special forming processes – Hydro forming – Rubber pad forming – Metal spinning – Introduction to Explosive forming – Magnetic pulse forming – Peen forming – Super plastic forming.
    [Show full text]
  • An Example in Steel Casting the One Person Hitch Housing for the 2 ½ and 5 Ton Trucks
    An Example in Steel Casting The One Person Hitch Housing for the 2 ½ and 5 Ton Trucks The Application – The one person hitch housing is part of an improved hitch/frame design for the military’s 2½ and 5 ton trucks, used for towing weapons systems, cargo trailers, and other payloads. The hitch housing acts as an alignment and locking fixture for connecting the trailer tow hook to the truck tow bar. Through a redesign of the housing to provide lateral motion to the tow bar during hook-up, the new hitch permits one-person operation, reduces hitch-up time, and provides for safer handling. Hitch Housing Description The hitch housing assembly is attached to the truck frame. The towing draw bar moves within the assembly during hook-up, which permits the draw bar to “swing” laterally to align with the trailer tow bar. After the trailer is connected, the draw bar self-aligns and locks in the hitch housing for towing. 1 The Challenge The hitch housing has a plate geometry with vertical alignment bars and rib stiffeners. It weighs approximately 60 lbs with nominal dimensions of 18” x 20” x 5”. The housing is made with SC 8630 steel and sees loads as high at 15,000 lbs (for the 5 ton truck). The first prototypes of the hitch housing were fabricated steel assemblies, consisting of more than 35 pieces bolted and welded together. The assembly required 4-6 hours of alignment effort during installation. The projected production cost of the steel fabrication assembly was $5000 per unit.
    [Show full text]