How to Find a Habitable Planet

Total Page:16

File Type:pdf, Size:1020Kb

How to Find a Habitable Planet Pathways Towards Habitable Planets ASP Conference Series, Vol. 430, 2010 Vincent Coud´e du Foresto, Dawn M. Gelino, and Ignasi Ribas, eds. How to Find a Habitable Planet J. F. Kasting Department of Geosciences, The Pennsylvania State University, University Park, PA, USA Abstract. Over 400 extrasolar planets have now been discovered by ground- based methods, especially the radial velocity (RV) method. Most of these planets are much bigger than Earth, and only a handful of them are rocky planets that could conceivably harbor life. Within the next few years, we may be able to identify Earth-sized planets within the habitable zones around M stars by looking for transits, and RV techniques may even enable us to find Earths around more Sun-like (F-G-K) stars. To characterize these planets, though, we are likely to need new space-based telescopes that operate either in the visible/near-infrared or in the thermal-IR. Some conceptions of what these telescopes might look like and what we might learn from them are discussed. 1. Introduction To date (December 2009), some 405 extrasolar planets have been reported (http://exoplanet.eu/), with most of them found around nearby stars us- ing the radial velocity (RV) method. That is the good news for planet hunters and astrobiologists. The bad news is that nearly all of these planets are thought to be gas or ice giants that lack solid or liquid surfaces on which life might origi- nate and evolve. Although Carl Sagan once suggested that bubble-like creatures might hover in Jupiter’s clouds, originating life in such an unstable environment would be difficult, if not impossible. Rocky planets like Earth are much more likely abodes for life. A second requirement for detectable life is that it must be able to modify a planet’s atmosphere in ways that might be observed remotely. Earth provides an example of such a planet: Organisms, specifically photosynthetic algae, plants, and cyanobacteria, have created an atmosphere rich in O2 that is very differ- ent from the predominantly CO2 atmospheres on neighboring Mars and Venus. What allows this to happen on Earth is the presence of abundant liquid water on its surface, which provides a home for photosynthetic organisms. Liquid water is also an essential requirement for life as we know it. Clever biochemists have speculated that life might develop in other types of fluids, e.g., liquid CH4 (NRC 2007). Even if this is possible, though, such life would be so different from us that we might not be able to recognize its existence from afar. For this reason, we henceforth limit our discussion to the conventional circumstellar habitable zone (HZ), the region around a star within which a planet can maintain liquid water on its surface. Although this might seem overly restrictive, planets falling into this category may exist around many, or even most, stars. So, making 3 4 Kasting this assumption should not seriously impede our search for life elsewhere in the Galaxy. 2. Habitable Zones around Stars The concept of the circumstellar HZ was introduced by Shapley (1953), Strughold (1953), and Huang (1959). Hart (1978, 1979) extended this idea by defining the continuously habitable zone (or CHZ) as the region that remains habitable for some finite period of time as the star evolves and increases in luminosity. Hart attempted to estimate the width of both the HZ and the CHZ around the Sun and other stars. He did so by performing time-dependent numerical simulations of Earth-like planets at different orbital distances around their parent stars. Hart’s conclusions were extremely pessimistic. He found that the 4.6-Gyr CHZ around the Sun was itself rather narrow, 0.95-1.01 AU, and that CHZs around other main sequence stars were either narrower or completely nonexistent. If this conclusion was correct, Earth might be the only habitable planet in the entire Galaxy. Theories of the habitable zone evolved, partly as a consequence of studies of the so-called “faint young Sun” problem on Earth. The Sun was roughly 30 percent less luminous when the Solar System formed 4.6 billion years (b.y.) ago (Gough 1981); yet Earth has had life since ∼3.5 b.y. ago and liquid water since 4.4 b.y. ago (Valley et al. 2002). At least part of the solution to this problem is that early Earth probably had a much larger atmospheric greenhouse effect, caused by the presence of high concentrations of CO2 (Walker et al. 1981) and perhaps CH4, as well (Kiehl & Dickinson 1987; Haqq-Misra et al. 2008). CO2 concentrations would have been enhanced because of a strong negative feedback in the carbonate-silicate cycle, which controls atmospheric CO2 concentrations over long time scales. As Earth’s surface cools, silicate weathering slows down, thereby reducing the rate at which CO2 can be sequestered into carbonate rocks. Steady state can be achieved only when liquid water is present, thereby ensuring that early Earth remained within the liquid water regime. This same feedback implies that if Earth had formed further from the Sun, it should have developed a dense CO2 atmosphere that would have kept its surface warm. Thus, the outer edge of the habitable zone should be farther out than Hart calculated, probably somewhere around 1.7–2.0 AU (Kasting et al. 1993; Forget & Pierrehumbert 1997). Hence, the HZ should be relatively wide, and the 4.6-Gyr CHZ around the Sun should extend from ∼0.95 AU to ∼1.4 AU. If terrestrial planets around other stars exist, and if they are distributed in orbital distance as they are in our own Solar System, the chances of finding another habitable planet appear to be pretty good. 3. The Gliese 581 System Although none of the exoplanets discovered so far is thought to be habitable, two candidates have come extremely close. Both of them orbit the star Gliese 581. Gliese 581 is an M3V star with 0.31 times the mass of the Sun and 0.0135 times its luminosity. It has 4 known planets, b-e, whose properties are listed in Table 1. These planets were all discovered using the RV method (Udry et al. How to Find a Habitable Planet 5 Table 1. The Gliese 581 system Planet Mass (M⊕) Semi-major axis (AU) b 30.4 ≥ M ≥ 15.65 0.04 c 10.4 ≥ M ≥ 5.36 0.07 d 13.8 ≥ M ≥ 7.09 0.22 e 3.1 ≥ M ≥ 1.94 0.03 2007), and so the lower limits on planetary mass (in Earth masses) are derived in the usual manner. The upper mass limits are derived from considerations of orbital stability (Mayor et al. 2009). The two planets that are closest to being within the habitable zone are Gliese 581c and d. Planet c is most likely rocky, given that its mass is between 5 and 10 Earth masses. But the flux incident on planet c is about 30 percent greater than that hitting Venus today (von Bloh et al. 2007; Selsis et al. 2007), so planet c is unlikely to be habitable. Planet d is a better candidate, although it may or may not be rocky, as its upper mass limit is close to that of Uranus (about 14 Earth masses). Its estimated semi-major axis, 0.22 AU, has come down somewhat since it was first reported; hence, the stellar flux available at the planet’s orbit has increased to about 28 percent of that hitting the Earth (1365 W/m2). This is slightly higher than the “maximum greenhouse” limit for a slightly bluer M0 star (Kasting et al. 1993, Table III); hence, it could very well be habitable if it is indeed a rocky planet. 4. Searching for Habitable Planets by using Transits The discovery of the Gliese 581 system has demonstrated that it should already be possible to search for potentially habitable planets around M stars. One may be able to do this using the RV technique, particularly if that technique can be extended to the near-IR, where M stars are at their brightest. But the most promising technique is to look for transits (Deming et al. 2009). Finding potentially habitable planets around M stars is much easier than finding them around F-G-K stars because the stars themselves are smaller, allowing a tran- siting Earth-sized planet to produce a strong signal, and because the HZ is close to the star, increasing the probability that a transit will occur. (The transit probability is equal to the radius of the star divided by the radius of the planet’s orbit.) The odds of seeing Earth around the Sun are only 1 in 200. For a late M star, the HZ is at ∼0.03 AU and the stellar diameter is about 0.1 times that of the Sun; hence, the transit probability increases to about 1 in 60. If transiting M-star planets can be located within the next few years, it may be possible to study their atmospheres spectroscopically with the James Webb Space Telecope (JWST), scheduled for launch in 2014. The idea would be to employ secondary eclipse spectroscopy, as has been done already for hot Jupiter-type exoplanets using the Spitzer Space Telescope. In this technique, one measures the infrared emission from the combined star plus planet while the planet is visible, then subtracts the spectrum obtained when the planet is behind 6 Kasting the star. Whether or not this can yield useful information about terrestrial type planets around M stars remains to be seen, but it is an intriguing possibility.
Recommended publications
  • Book Review1.Fm
    Meteoritics & Planetary Science 42, Nr 9, 1695–1696 (2007) http://meteoritics.org Book Review Protostars and planets V, edited by Reipurth B, Jewitt D., and Keil K. Tucson, Arizona: The University of Arizona Press, 2007, 1024 p., cloth (ISBN 978-0-8165-2654-3). Some thirty years ago, planetary science and the study of star formation were different scientific fields with different practitioners who rarely interacted with one another. Planetary scientists, mostly geochemists and geophysicists, resided in geology departments whereas star formation was the domain of astronomers. All this has changed starting with Tom Gehrels who organized the first Protostars and Planets conference in January 1978 in Tucson. In the book that followed this conference, which was edited by Gehrels, he expressed the hope “to develop the interface between studies of star formation and those of the origin of the solar system.” This hope has been fulfilled beyond expectations. The first volume has been followed by four more in intervals of about seven years. Each book was preceded by a conference. The Protostars and Planets V Conference took place at the Hilton Waikoloa Village on the Big Island of Hawai‘i on October 24–28, 2005. The subsequent book appeared early this year. As its forerunners, it is part of the University of Arizona The arrangement of the chapters roughly follows the Space Science Series, which is devoted to different aspects of inferred prehistory of our own solar system. In the dense core solar system science. of a molecular cloud, gravity overcomes thermal and The rapid growth of this new interdisciplinary field magnetic pressures, leading to the formation of a star, in most between astronomy and planetary science is demonstrated by case actually of a binary star system.
    [Show full text]
  • ET First Extract
    May 2018 Evangelical TIMES 23 What is man (1): Are we alone in the universe? The first of three edited extracts from Edgar Andrews’ new book, What is Man? Adam, alien or ape? Prof Edgar Andrews It’s easy to confuse SETI with YETI because both relate to are more likely to swallow small bugs than little green men. the National Science Foundation, Ohio State University began creatures that probably don’t exist. The Yeti is a proverbial I should make it clear that the planet’s discoverers said constructing a radio observatory called ‘Big Ear’ — which beast that inhabits the Himalayas and walks upright like a nothing about bugs — that was an invention by the BBC. later undertook the world’s first continuous SETI program. human, but leaves huge footprints in the snow and strikes But their claim that Gliese 581c is a rocky planet like Earth On 15 August 1977, Jerry Ehman, a project volunteer at fear into the local populace. Related to America’s Bigfoot, it and has liquid water on its surface is itself based on a string the observatory, observed a strong signal and wrote ‘Wow!’ is sometimes called the Abominable Snowman (apparently of assumptions. on the recorded trace. Unsurprisingly known as the Wow! due to a mistranslation of its Nepalese name). An informed website respondent commented: ‘You must signal, some enthusiasts consider it the best candidate to date SETI, on the other hand, stands for ‘the search for extra- remember that neither the mass nor the radius of this planet for a cosmic radio signal from an artificial source.
    [Show full text]
  • Habitability of Super-Earths: Gliese 581C & 581D
    Exoplanets: Detection, Formation and Dynamics Proceedings IAU Symposium No. 249, 2007 c 2008 International Astronomical Union Y.-S. Sun, S. Ferraz-Mello and J.-L. Zhou, eds. doi:10.1017/S1743921308017031 Habitability of super-Earths: Gliese 581c & 581d W. von Bloh1, C. Bounama1,M.Cuntz2 and S. Franck1 1 Potsdam Institute for Climate Impact Research, P.O. Box 601203, Potsdam, Germany, email: [email protected], [email protected], [email protected] 2 University of Texas at Arlington, P.O. Box 19059, Arlington, TX 76019, USA email: [email protected] Abstract. The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses smaller than 10 Earth masses. Unlike the larger exoplanets previously found, these smaller planets are more likely to have similar chemical and mineralogical composition to the Earth. We present a thermal evolution model for super-Earth planets to identify the sources and sinks of atmospheric carbon dioxide. The photosynthesis-sustaining habitable zone (pHZ) is determined by the limits of biological productivity on the planetary surface. We apply our model to calculate the habitability of the two super-Earths in the Gliese 581 system. The super-Earth Gl 581c is clearly outside the pHZ, while Gl 581d is at the outer edge of the pHZ. Therefore, it could at least harbor some primitive forms of life. Keywords. Astrobiology, planetary systems, stars: individual (Gliese 581) 1. Introduction Very recently, Udry et al. (2007) announced the detection of two super-Earth planets in the Gliese 581 system; namely, Gl 581c with a mass of 5.06 M⊕ and a semi-major axis of 0.073 AU, and Gl 581d with 8.3 M⊕ and 0.25 AU.
    [Show full text]
  • Habitable Planets Around the Star Gl 581? Franck Selsis, J
    Habitable planets around the star Gl 581? Franck Selsis, J. F. Kasting, B. Levrard, J. Paillet, I. Ribas, X. Delfosse To cite this version: Franck Selsis, J. F. Kasting, B. Levrard, J. Paillet, I. Ribas, et al.. Habitable planets around the star Gl 581?. Astronomy and Astrophysics - A&A, EDP Sciences, 2007, accepted for publication. hal-00182743v1 HAL Id: hal-00182743 https://hal.archives-ouvertes.fr/hal-00182743v1 Submitted on 27 Oct 2007 (v1), last revised 21 Nov 2007 (v3) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Astronomy & Astrophysics manuscript no. Selsis˙Gl581.hyper26490 c ESO 2007 October 28, 2007 Habitable planets around the star Gl 581? F. Selsis1,2, J. F. Kasting3, B. Levrard4,1 J. Paillet5, I. Ribas6, and X. Delfosse7 1 CRAL: Centre de Recherche Astrophysique de Lyon (CNRS; Universit´ede Lyon; Ecole Normale Sup´erieure de Lyon), 46 all´ee d’Italie, F-69007, Lyon, France, e-mail: [email protected] 2 LAB: Laboratoire d’Astrophysique de Bordeaux (CNRS; Universit´eBordeaux I), BP 89, F-33270 Floirac, France 3 Dept. of Geosciences,
    [Show full text]
  • Habitability of Super-Earths: Gliese 581C and 581D
    Exoplanets: Detection, Formation & Dynamics Proceedings IAU Symposium No. 249, 2008 c 2008 International Astronomical Union A.C. Editor, B.D. Editor & C.E. Editor, eds. DOI: 00.0000/X000000000000000X Habitability of super-Earths: Gliese 581c & 581d W. von Bloh1, C. Bounama1, M. Cuntz2 and S. Franck1 1 Potsdam Institute for Climate Impact Research, P.O. Box 601203, Potsdam, Germany, email: [email protected], [email protected], [email protected] 2 University of Texas at Arlington, P.O. Box 19059, Arlington, TX 76019, USA email: [email protected] Abstract. The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses smaller than 10 Earth masses. Unlike the larger exoplanets previously found, these smaller planets are more likely to have similar chemical and mineralogical composition to the Earth. We present a thermal evolution model for super-Earth planets to identify the sources and sinks of atmospheric carbon dioxide. The photosynthesis-sustaining habitable zone (pHZ) is determined by the limits of biological productivity on the planetary surface. We apply our model to calculate the habitability of the two super-Earths in the Gliese 581 system. The super-Earth Gl 581c is clearly outside the pHZ, while Gl 581d is at the outer edge of the pHZ. Therefore, it could at least harbor some primitive forms of life. Keywords. Astrobiology, planetary systems, stars: individual (Gliese 581) 1. Introduction Very recently, Udry et al. (2007) announced the detection of two super-Earth planets in the Gliese 581 system; namely, Gl 581c with a mass of 5.06 M⊕ and a semi-major axis of 0.073 AU, and Gl 581d with 8.3 M⊕ and 0.25 AU.
    [Show full text]
  • SIG #1:Towards a Much Needed Consensus in the Exoplanet Community
    SIG #1:Towards A much Needed Consensus in the Exoplanet Community 1.0 Sun M0 M1 • O M2 M / 10 M 5 M 10 M M3 E at K = 3 m/s E at K = 10 m/s E at K = 3 m/s M5 0.1 0.1 1.0 10.0 Distance (AU) Figure 1 The Habitable Zone around main sequence stars, and the velocity semi-amplitude of the Doppler wobble induced by 5 and 10 Earth-mass planets on the star. Venus, Earth and Mars are shown as colored dots. wobble caused by a terrestrial-mass planet. RV studies have uncovered planetary systems around 20 M dwarfs to date, including the low mass planetary system around GJ581,3 and KOI-961.4 These observations⇠ suggest that, while hot Jupiters may be rare in M star systems,5 lower mass planets do exist around M stars and may be rather common. Theoretical work based on core-accretion models and simulations also predicts that short period Neptune mass planets should be common around M stars.6 Climate simulations of planets in the HZ around M stars7 show that tidal locking does not necessarily lead to atmospheric collapse The habitability of terrestrial planets around M stars has also been explored by many groups8 As seen in Figure 1, a 10 Earth-mass planets in the HZ are already detectable at more than 3σ with a velocity precision of 3m/s, and an instrument capable of 1-3m/s precision will have the sensitivity to discover terrestrial mass planets around the majority of mid-late M dwarfs.
    [Show full text]
  • Mathematics for Input Space Probes in the Atmosphere of Gliese 581D
    Parana Journal of Science and Education, v.2, n.5, (6-13) July 14, 2016 PJSE, ISSN 2447-6153, c 2015-2016 https://sites.google.com/site/pjsciencea/ Mathematics for input space probes in the atmosphere of Gliese 581d R. Gobato1, A. Gobato2 and D. F. G. Fedrigo3 Abstract The work is a mathematical approach to the entry of an aerospace vehicle, as a probe or capsule in the atmosphere of the planet Gliese 581d, using data collected from the results of atmospheric models of the planet. GJ581d was the first planet candidate of a few Earth masses reported in the circum-stellar habitable zone of another star. It is located in the Gliese 581 star system, is a star red dwarf about 20 light years away from Earth in the constellation Libra. Its estimated mass is about a third of that of the Sun. It has been suggested that the recently discovered exoplanet GJ581d might be able to support liquid water due to its relatively low mass and orbital distance. However, GJ581d receives 35% less stellar energy than the planet Mars and is probably locked in tidal resonance, with extremely low insolation at the poles and possibly a permanent night side. The climate that demonstrate GJ581d will have a stable atmosphere and surface liquid water for a wide range of plausible cases, making it the first confirmed super-Earth (2-10 Earth masses) in the habitable zone. According to the general principle of relativity, “All systems of reference are equivalent with respect to the formulation of the fundamental laws of physics.” In this case all the equations studied apply to the exoplanet Gliese 581d.
    [Show full text]
  • Art on Mars: a Foundation for Exoart
    THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF CANBERRA AUSTRALIA by TREVOR JOHN RODWELL Bachelor of Design (Hons), University of South Australia Graduate Diploma (Business Enterprise), The University of Adelaide ART ON MARS: A FOUNDATION FOR EXOART May 2011 ABSTRACT ART ON MARS: A FOUNDATION FOR EXOART It could be claimed that human space exploration started when the former Soviet Union (USSR) launched cosmonaut Yuri Gagarin into Earth orbit on 12 April 1961. Since that time there have been numerous human space missions taking American astronauts to the Moon and international crews to orbiting space stations. Several space agencies are now working towards the next major space objective which is to send astronauts to Mars. This will undoubtedly be the most complex and far-reaching human space mission ever undertaken. Because of its large scale and potentially high cost it is inevitable that such a mission will be an international collaborative venture with a profile that will be world- wide. Although science, technology and engineering have made considerable contributions to human space missions and will be very much involved with a human Mars mission, there has been scant regard for artistic and cultural involvement in these missions. Space agencies have, however, realised the influence of public perception on space funding outcomes and for some time have strived to engage the public in these space missions. This has provided an opportunity for an art and cultural involvement, but there is a problem for art engaging with space missions as currently there is no artform specific to understanding and tackling the issues of art beyond our planet.
    [Show full text]
  • Lebenslauf Von Kathrin Altwegg
    techno scope 3/07 Raumfahrt Von Raketen, Sonden und Astronauten Raumfahrt Als Raumfahrt bezeichnet man Reisen oder Transporte in oder durch den Weltraum. Der Übergang zwischen Erde und Weltraum ist fließend und wurde auf eine Grenzhöhe von 100 Kilometern festgelegt. Man unterscheidet • bemannte Raumfahrt, bei der Menschen die Reise in den Weltraum antreten – dazu sind zurzeit die USA, Russland und China in der Lage. • unbemannte Raumfahrt, die Satelliten und Sonden in den Weltraum befördert und dort betreibt. Zu unbemann- ten Starts von eigenen Trägerraketen sind derzeit etwa zehn Länder und die Europäische Weltraumorganisation Claude Nicollier in der Raumfähre Discovery ESA fähig. über dem Zürichsee. Bild SpaceCenter EPFL «Ich versuche meinen Kindern drei Werte zu ver- Vor 50 Jahren, am 4. Oktober 1957, erschütterte ein zaghaftes Der geniale Sergei Koroljev, den man nur den «Chef- mitteln: Neugier, ohne die Piepsen die Menschen auf der ganzen Welt. Ein 83 kg schwerer ingenieur» nannte, war verantwortlich für das russische wir nichts Neues wagen künstlicher Begleiter (russisch: Sputnik) umkreiste zum Raketenprogramm von Sputnik bis Sojus, und sein amerika- würden; Hartnäckigkeit, ersten Mal unsere Erde: Die Weltraumfahrt war geboren. nischer Gegenspieler Wernher von Braun war der Vater des ohne die unsere Ziele zum Schlag auf Schlag folgten die Entwicklungen. Ebenfalls 1957 Apollo-Mondlandeprogramms. Ganze Teams von Ingenieuren Scheitern verurteilt wären; umkreiste das erste Lebewesen, die Hündin Laika, unseren arbeiten auch heute weltweit an stärkeren, zuverlässigeren Respekt, ohne den unsere Planeten. 1961 folgte mit Yuri Gagarin der erste Mensch. Raketen, an neuen Antriebssystemen, an Raumschiffen, die Erfolge sinnlos wären.» 1959 landete die erste Sonde auf dem Mond, 1965 auf der immer weiter in den Weltraum vorstossen können, und an Bertrand Piccard Venus.
    [Show full text]
  • Planets Galore
    physicsworld.com Feature: Exoplanets Detlev van Ravenswaay/Science Photo Library Planets galore With almost 1700 planets beyond our solar system having been discovered, climatologists are beginning to sketch out what these alien worlds might look like, as David Appell reports And so you must confess Jupiters, black Jupiters or puffy Jupiters; there are David Appell is a That sky and earth and sun and all that comes to be hot Neptunes and mini-Neptunes; exo-Earths, science writer living Are not unique but rather countless examples of a super-Earths and eyeball Earths. There are planets in Salem, Oregon, class. that orbit pulsars, or dim red dwarf stars, or binary US, www. Lucretius, Roman poet and philosopher, from star systems. davidappell.com De Rerum Natura, Book II Astronomers are in heaven and planetary scien- tists have an entirely new zoo to explore. “This is the The only thing more astonishing than their diver- best time to be an exoplanetary astronomer,” says sity is their number. We’re talking exoplanets exoplanetary astronomer Jason Wright of Pennsyl- – planets around stars other than our Sun. And vania State University. “Things have really exploded they’re being discovered in Star Trek quantities: recently.” Proving the point is that a third of all 1692 as this article goes to press, and another 3845 abstracts at a recent meeting of the American Astro- unconfirmed candidates. nomical Society were related to exoplanets. The menagerie includes planets that are pink, This explosion is largely thanks to the Kepler space blue, brown or black. Some have been labelled hot observatory.
    [Show full text]
  • Habitability of the Goldilocks Planet Gliese 581G: Results from Geodynamic Models
    Astronomy & Astrophysics manuscript no. final c ESO 2021 August 23, 2021 Habitability of the Goldilocks planet Gliese 581g: Results from geodynamic models (Research Note) W. von Bloh1, M. Cuntz2, S. Franck1, and C. Bounama1 1 Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, 14412 Potsdam, Germany e-mail: [email protected] 2 Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX 76019, USA Received ¡date¿ / Accepted ¡date¿ ABSTRACT Aims. In 2010, detailed observations have been published that seem to indicate another super-Earth planet in the system of Gliese 581 located in the midst of the stellar climatological habitable zone. The mass of the planet, known as Gl 581g, has been estimated to be between 3.1 and 4.3 M⊕. In this study, we investigate the habitability of Gl 581g based on a previously used concept that explores its long-term possibility of photosynthetic biomass production, which has already been used to gauge the principal possibility of life regarding the super-Earths Gl 581c and Gl 581d. Methods. A thermal evolution model for super-Earths is used to calculate the sources and sinks of atmospheric carbon dioxide. The habitable zone is determined by the limits of photosynthetic biological productivity on the planetary surface. Models with different ratios of land / ocean coverage are pursued. Results. The maximum time span for habitable conditions is attained for water worlds at a position of about 0.14 ± 0.015 AU, which deviates by just a few percent (depending on the adopted stellar luminosity) from the actual position of Gl 581g, an estimate that does however not reflect systematic uncertainties inherent in our model.
    [Show full text]
  • An Earth-Sized Planet in the Habitable Zone of a Cool Star Authors: Elisa V
    Title: An Earth-sized Planet in the Habitable Zone of a Cool Star Authors: Elisa V. Quintana1,2*, Thomas Barclay2,3, Sean N. Raymond4,5, Jason F. Rowe1,2, Emeline Bolmont4,5, Douglas A. Caldwell1,2, Steve B. Howell2, Stephen R. Kane6, Daniel Huber1,2, Justin R. Crepp7, Jack J. Lissauer2, David R. Ciardi8, Jeffrey L. Coughlin1,2, Mark E. Everett9, Christopher E. Henze2, Elliott Horch10, Howard Isaacson11, Eric B. Ford12,13, Fred C. Adams14,15, Martin Still3, Roger C. Hunter2, Billy Quarles2, Franck Selsis4,5 Affiliations: 1SETI Institute, 189 Bernardo Ave, Suite 100, Mountain View, CA 94043, USA. 2NASA Ames Research Center, Moffett Field, CA 94035, USA. 3Bay Area Environmental Research Institute, 596 1st St West Sonoma, CA 95476, USA. 4Univ. Bordeaux, Laboratoire d'Astrophysique de Bordeaux, UMR 5804, F-33270, Floirac, France. 5CNRS, Laboratoire d'Astrophysique de Bordeaux, UMR 5804, F-33270, Floirac, France. 6San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA. 7University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA. 8NASA Exoplanet Science Institute, California Institute of Technology, 770 South Wilson Avenue Pasadena, CA 91125, USA. 9National Optical Astronomy Observatory, 950 N. Cherry Ave, Tucson, AZ 85719 10Southern Connecticut State University, New Haven, CT 06515 11University of California, Berkeley, CA, 94720, USA. 12Center for Exoplanets and Habitable Worlds, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA 13Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA 14Michigan Center for Theoretical Physics, Physics Department, University of Michigan, Ann Arbor, MI 48109, USA 15Astronomy Department, University of Michigan, Ann Arbor, MI 48109, USA *Correspondence to: [email protected] ! ! ! ! ! ! ! Abstract: The quest for Earth-like planets represents a major focus of current exoplanet research.
    [Show full text]