Causal Inference in Observational Studies and Experiments: Theory and Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Practice of Causal Inference in Cancer Epidemiology
Vol. 5. 303-31 1, April 1996 Cancer Epidemiology, Biomarkers & Prevention 303 Review The Practice of Causal Inference in Cancer Epidemiology Douglas L. Weedt and Lester S. Gorelic causes lung cancer (3) and to guide causal inference for occu- Preventive Oncology Branch ID. L. W.l and Comprehensive Minority pational and environmental diseases (4). From 1965 to 1995, Biomedical Program IL. S. 0.1. National Cancer Institute, Bethesda, Maryland many associations have been examined in terms of the central 20892 questions of causal inference. Causal inference is often practiced in review articles and editorials. There, epidemiologists (and others) summarize evi- Abstract dence and consider the issues of causality and public health Causal inference is an important link between the recommendations for specific exposure-cancer associations. practice of cancer epidemiology and effective cancer The purpose of this paper is to take a first step toward system- prevention. Although many papers and epidemiology atically reviewing the practice of causal inference in cancer textbooks have vigorously debated theoretical issues in epidemiology. Techniques used to assess causation and to make causal inference, almost no attention has been paid to the public health recommendations are summarized for two asso- issue of how causal inference is practiced. In this paper, ciations: alcohol and breast cancer, and vasectomy and prostate we review two series of review papers published between cancer. The alcohol and breast cancer association is timely, 1985 and 1994 to find answers to the following questions: controversial, and in the public eye (5). It involves a common which studies and prior review papers were cited, which exposure and a common cancer and has a large body of em- causal criteria were used, and what causal conclusions pirical evidence; over 50 studies and over a dozen reviews have and public health recommendations ensued. -
A Difference-Making Account of Causation1
A difference-making account of causation1 Wolfgang Pietsch2, Munich Center for Technology in Society, Technische Universität München, Arcisstr. 21, 80333 München, Germany A difference-making account of causality is proposed that is based on a counterfactual definition, but differs from traditional counterfactual approaches to causation in a number of crucial respects: (i) it introduces a notion of causal irrelevance; (ii) it evaluates the truth-value of counterfactual statements in terms of difference-making; (iii) it renders causal statements background-dependent. On the basis of the fundamental notions ‘causal relevance’ and ‘causal irrelevance’, further causal concepts are defined including causal factors, alternative causes, and importantly inus-conditions. Problems and advantages of the proposed account are discussed. Finally, it is shown how the account can shed new light on three classic problems in epistemology, the problem of induction, the logic of analogy, and the framing of eliminative induction. 1. Introduction ......................................................................................................................................................... 2 2. The difference-making account ........................................................................................................................... 3 2a. Causal relevance and causal irrelevance ....................................................................................................... 4 2b. A difference-making account of causal counterfactuals -
Statistics and Causal Inference (With Discussion)
Applied Statistics Lecture Notes Kosuke Imai Department of Politics Princeton University February 2, 2008 Making statistical inferences means to learn about what you do not observe, which is called parameters, from what you do observe, which is called data. We learn the basic principles of statistical inference from a perspective of causal inference, which is a popular goal of political science research. Namely, we study statistics by learning how to make causal inferences with statistical methods. 1 Statistical Framework of Causal Inference What do we exactly mean when we say “An event A causes another event B”? Whether explicitly or implicitly, this question is asked and answered all the time in political science research. The most commonly used statistical framework of causality is based on the notion of counterfactuals (see Holland, 1986). That is, we ask the question “What would have happened if an event A were absent (or existent)?” The following example illustrates the fact that some causal questions are more difficult to answer than others. Example 1 (Counterfactual and Causality) Interpret each of the following statements as a causal statement. 1. A politician voted for the education bill because she is a democrat. 2. A politician voted for the education bill because she is liberal. 3. A politician voted for the education bill because she is a woman. In this framework, therefore, the fundamental problem of causal inference is that the coun- terfactual outcomes cannot be observed, and yet any causal inference requires both factual and counterfactual outcomes. This idea is formalized below using the potential outcomes notation. -
Bayesian Causal Inference
Bayesian Causal Inference Maximilian Kurthen Master’s Thesis Max Planck Institute for Astrophysics Within the Elite Master Program Theoretical and Mathematical Physics Ludwig Maximilian University of Munich Technical University of Munich Supervisor: PD Dr. Torsten Enßlin Munich, September 12, 2018 Abstract In this thesis we address the problem of two-variable causal inference. This task refers to inferring an existing causal relation between two random variables (i.e. X → Y or Y → X ) from purely observational data. We begin by outlining a few basic definitions in the context of causal discovery, following the widely used do-Calculus [Pea00]. We continue by briefly reviewing a number of state-of-the-art methods, including very recent ones such as CGNN [Gou+17] and KCDC [MST18]. The main contribution is the introduction of a novel inference model where we assume a Bayesian hierarchical model, pursuing the strategy of Bayesian model selection. In our model the distribution of the cause variable is given by a Poisson lognormal distribution, which allows to explicitly regard discretization effects. We assume Fourier diagonal covariance operators, where the values on the diagonal are given by power spectra. In the most shallow model these power spectra and the noise variance are fixed hyperparameters. In a deeper inference model we replace the noise variance as a given prior by expanding the inference over the noise variance itself, assuming only a smooth spatial structure of the noise variance. Finally, we make a similar expansion for the power spectra, replacing fixed power spectra as hyperparameters by an inference over those, where again smoothness enforcing priors are assumed. -
Articles Causal Inference in Civil Rights Litigation
VOLUME 122 DECEMBER 2008 NUMBER 2 © 2008 by The Harvard Law Review Association ARTICLES CAUSAL INFERENCE IN CIVIL RIGHTS LITIGATION D. James Greiner TABLE OF CONTENTS I. REGRESSION’S DIFFICULTIES AND THE ABSENCE OF A CAUSAL INFERENCE FRAMEWORK ...................................................540 A. What Is Regression? .........................................................................................................540 B. Problems with Regression: Bias, Ill-Posed Questions, and Specification Issues .....543 1. Bias of the Analyst......................................................................................................544 2. Ill-Posed Questions......................................................................................................544 3. Nature of the Model ...................................................................................................545 4. One Regression, or Two?............................................................................................555 C. The Fundamental Problem: Absence of a Causal Framework ....................................556 II. POTENTIAL OUTCOMES: DEFINING CAUSAL EFFECTS AND BEYOND .................557 A. Primitive Concepts: Treatment, Units, and the Fundamental Problem.....................558 B. Additional Units and the Non-Interference Assumption.............................................560 C. Donating Values: Filling in the Missing Counterfactuals ...........................................562 D. Randomization: Balance in Background Variables ......................................................563 -
A Visual Analytics Approach for Exploratory Causal Analysis: Exploration, Validation, and Applications
A Visual Analytics Approach for Exploratory Causal Analysis: Exploration, Validation, and Applications Xiao Xie, Fan Du, and Yingcai Wu Fig. 1. The user interface of Causality Explorer demonstrated with a real-world audiology dataset that consists of 200 rows and 24 dimensions [18]. (a) A scalable causal graph layout that can handle high-dimensional data. (b) Histograms of all dimensions for comparative analyses of the distributions. (c) Clicking on a histogram will display the detailed data in the table view. (b) and (c) are coordinated to support what-if analyses. In the causal graph, each node is represented by a pie chart (d) and the causal direction (e) is from the upper node (cause) to the lower node (result). The thickness of a link encodes the uncertainty (f). Nodes without descendants are placed on the left side of each layer to improve readability (g). Users can double-click on a node to show its causality subgraph (h). Abstract—Using causal relations to guide decision making has become an essential analytical task across various domains, from marketing and medicine to education and social science. While powerful statistical models have been developed for inferring causal relations from data, domain practitioners still lack effective visual interface for interpreting the causal relations and applying them in their decision-making process. Through interview studies with domain experts, we characterize their current decision-making workflows, challenges, and needs. Through an iterative design process, we developed a visualization tool that allows analysts to explore, validate, arXiv:2009.02458v1 [cs.HC] 5 Sep 2020 and apply causal relations in real-world decision-making scenarios. -
Causal Inference for Process Understanding in Earth Sciences
Causal inference for process understanding in Earth sciences Adam Massmann,* Pierre Gentine, Jakob Runge May 4, 2021 Abstract There is growing interest in the study of causal methods in the Earth sciences. However, most applications have focused on causal discovery, i.e. inferring the causal relationships and causal structure from data. This paper instead examines causality through the lens of causal inference and how expert-defined causal graphs, a fundamental from causal theory, can be used to clarify assumptions, identify tractable problems, and aid interpretation of results and their causality in Earth science research. We apply causal theory to generic graphs of the Earth sys- tem to identify where causal inference may be most tractable and useful to address problems in Earth science, and avoid potentially incorrect conclusions. Specifically, causal inference may be useful when: (1) the effect of interest is only causally affected by the observed por- tion of the state space; or: (2) the cause of interest can be assumed to be independent of the evolution of the system’s state; or: (3) the state space of the system is reconstructable from lagged observations of the system. However, we also highlight through examples that causal graphs can be used to explicitly define and communicate assumptions and hypotheses, and help to structure analyses, even if causal inference is ultimately challenging given the data availability, limitations and uncertainties. Note: We will update this manuscript as our understanding of causality’s role in Earth sci- ence research evolves. Comments, feedback, and edits are enthusiastically encouraged, and we arXiv:2105.00912v1 [physics.ao-ph] 3 May 2021 will add acknowledgments and/or coauthors as we receive community contributions. -
Causation and Causal Inference in Epidemiology
PUBLIC HEALTH MAnERS Causation and Causal Inference in Epidemiology Kenneth J. Rothman. DrPH. Sander Greenland. MA, MS, DrPH. C Stat fixed. In other words, a cause of a disease Concepts of cause and causal inference are largely self-taught from early learn- ing experiences. A model of causation that describes causes in terms of suffi- event is an event, condition, or characteristic cient causes and their component causes illuminates important principles such that preceded the disease event and without as multicausality, the dependence of the strength of component causes on the which the disease event either would not prevalence of complementary component causes, and interaction between com- have occun-ed at all or would not have oc- ponent causes. curred until some later time. Under this defi- Philosophers agree that causal propositions cannot be proved, and find flaws or nition it may be that no specific event, condi- practical limitations in all philosophies of causal inference. Hence, the role of logic, tion, or characteristic is sufiicient by itself to belief, and observation in evaluating causal propositions is not settled. Causal produce disease. This is not a definition, then, inference in epidemiology is better viewed as an exercise in measurement of an of a complete causal mechanism, but only a effect rather than as a criterion-guided process for deciding whether an effect is pres- component of it. A "sufficient cause," which ent or not. (4m JPub//cHea/f/i. 2005;95:S144-S150. doi:10.2105/AJPH.2004.059204) means a complete causal mechanism, can be defined as a set of minimal conditions and What do we mean by causation? Even among eral. -
Experiments & Observational Studies: Causal Inference in Statistics
Experiments & Observational Studies: Causal Inference in Statistics Paul R. Rosenbaum Department of Statistics University of Pennsylvania Philadelphia, PA 19104-6340 1 My Concept of a ‘Tutorial’ In the computer era, we often receive compressed • files, .zip. Minimize redundancy, minimize storage, at the expense of intelligibility. Sometimes scientific journals seemed to have been • compressed. Tutorial goal is: ‘uncompress’. Make it possible to • read a current article or use current software without going back to dozens of earlier articles. 2 A Causal Question At age 45, Ms. Smith is diagnosed with stage II • breast cancer. Her oncologist discusses with her two possible treat- • ments: (i) lumpectomy alone, or (ii) lumpectomy plus irradiation. They decide on (ii). Ten years later, Ms. Smith is alive and the tumor • has not recurred. Her surgeon, Steve, and her radiologist, Rachael de- • bate. Rachael says: “The irradiation prevented the recur- • rence – without it, the tumor would have recurred.” Steve says: “You can’t know that. It’s a fantasy – • you’re making it up. We’ll never know.” 3 Many Causal Questions Steve and Rachael have this debate all the time. • About Ms. Jones, who had lumpectomy alone. About Ms. Davis, whose tumor recurred after a year. Whenever a patient treated with irradiation remains • disease free, Rachael says: “It was the irradiation.” Steve says: “You can’t know that. It’s a fantasy. We’ll never know.” Rachael says: “Let’s keep score, add ’em up.” Steve • says: “You don’t know what would have happened to Ms. Smith, or Ms. Jones, or Ms Davis – you just made it all up, it’s all fantasy. -
Equations Are Effects: Using Causal Contrasts to Support Algebra Learning
Equations are Effects: Using Causal Contrasts to Support Algebra Learning Jessica M. Walker ([email protected]) Patricia W. Cheng ([email protected]) James W. Stigler ([email protected]) Department of Psychology, University of California, Los Angeles, CA 90095-1563 USA Abstract disappointed to discover that your digital video recorder (DVR) failed to record a special television show last night U.S. students consistently score poorly on international mathematics assessments. One reason is their tendency to (your goal). You would probably think back to occasions on approach mathematics learning by memorizing steps in a which your DVR successfully recorded, and compare them solution procedure, without understanding the purpose of to the failed attempt. If a presetting to record a regular show each step. As a result, students are often unable to flexibly is the only feature that differs between your failed and transfer their knowledge to novel problems. Whereas successful attempts, you would readily determine the cause mathematics is traditionally taught using explicit instruction of the failure -- the presetting interfered with your new to convey analytic knowledge, here we propose the causal contrast approach, an instructional method that recruits an setting. This process enables you to discover a new causal implicit empirical-learning process to help students discover relation and better understand how your DVR works. the reasons underlying mathematical procedures. For a topic Causal induction is the process whereby we come to in high-school algebra, we tested the causal contrast approach know how the empirical world works; it is what allows us to against an enhanced traditional approach, controlling for predict, diagnose, and intervene on the world to achieve an conceptual information conveyed, feedback, and practice. -
Judea's Reply
Causal Analysis in Theory and Practice On Mediation, counterfactuals and manipulations Filed under: Discussion, Opinion — moderator @ 9:00 pm , 05/03/2010 Judea Pearl's reply: 1. As to the which counterfactuals are "well defined", my position is that counterfactuals attain their "definition" from the laws of physics and, therefore, they are "well defined" before one even contemplates any specific intervention. Newton concluded that tides are DUE to lunar attraction without thinking about manipulating the moon's position; he merely envisioned how water would react to gravitaional force in general. In fact, counterfactuals (e.g., f=ma) earn their usefulness precisely because they are not tide to specific manipulation, but can serve a vast variety of future inteventions, whose details we do not know in advance; it is the duty of the intervenor to make precise how each anticipated manipulation fits into our store of counterfactual knowledge, also known as "scientific theories". 2. Regarding identifiability of mediation, I have two comments to make; ' one related to your Minimal Causal Models (MCM) and one related to the role of structural equations models (SEM) as the logical basis of counterfactual analysis. In my previous posting in this discussion I have falsely assumed that MCM is identical to the one I called "Causal Bayesian Network" (CBM) in Causality Chapter 1, which is the midlevel in the three-tier hierarchy: probability-intervention-counterfactuals? A Causal Bayesian Network is defined by three conditions (page 24), each invoking probabilities -
Causal Analysis of COVID-19 Observational Data in German Districts Reveals Effects of Mobility, Awareness, and Temperature
medRxiv preprint doi: https://doi.org/10.1101/2020.07.15.20154476; this version posted July 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license . Causal analysis of COVID-19 observational data in German districts reveals effects of mobility, awareness, and temperature Edgar Steigera, Tobias Mußgnuga, Lars Eric Krolla aCentral Research Institute of Ambulatory Health Care in Germany (Zi), Salzufer 8, D-10587 Berlin, Germany Abstract Mobility, awareness, and weather are suspected to be causal drivers for new cases of COVID-19 infection. Correcting for possible confounders, we estimated their causal effects on reported case numbers. To this end, we used a directed acyclic graph (DAG) as a graphical representation of the hypothesized causal effects of the aforementioned determinants on new reported cases of COVID-19. Based on this, we computed valid adjustment sets of the possible confounding factors. We collected data for Germany from publicly available sources (e.g. Robert Koch Institute, Germany’s National Meteorological Service, Google) for 401 German districts over the period of 15 February to 8 July 2020, and estimated total causal effects based on our DAG analysis by negative binomial regression. Our analysis revealed favorable causal effects of increasing temperature, increased public mobility for essential shopping (grocery and pharmacy), and awareness measured by COVID-19 burden, all of them reducing the outcome of newly reported COVID-19 cases. Conversely, we saw adverse effects of public mobility in retail and recreational areas, awareness measured by searches for “corona” in Google, and higher rainfall, leading to an increase in new COVID-19 cases.