Causation and Causal Inference in Epidemiology

Total Page:16

File Type:pdf, Size:1020Kb

Causation and Causal Inference in Epidemiology PUBLIC HEALTH MAnERS Causation and Causal Inference in Epidemiology Kenneth J. Rothman. DrPH. Sander Greenland. MA, MS, DrPH. C Stat fixed. In other words, a cause of a disease Concepts of cause and causal inference are largely self-taught from early learn- ing experiences. A model of causation that describes causes in terms of suffi- event is an event, condition, or characteristic cient causes and their component causes illuminates important principles such that preceded the disease event and without as multicausality, the dependence of the strength of component causes on the which the disease event either would not prevalence of complementary component causes, and interaction between com- have occun-ed at all or would not have oc- ponent causes. curred until some later time. Under this defi- Philosophers agree that causal propositions cannot be proved, and find flaws or nition it may be that no specific event, condi- practical limitations in all philosophies of causal inference. Hence, the role of logic, tion, or characteristic is sufiicient by itself to belief, and observation in evaluating causal propositions is not settled. Causal produce disease. This is not a definition, then, inference in epidemiology is better viewed as an exercise in measurement of an of a complete causal mechanism, but only a effect rather than as a criterion-guided process for deciding whether an effect is pres- component of it. A "sufficient cause," which ent or not. (4m JPub//cHea/f/i. 2005;95:S144-S150. doi:10.2105/AJPH.2004.059204) means a complete causal mechanism, can be defined as a set of minimal conditions and What do we mean by causation? Even among eral. The tendency to identify the switch as events that inevitably pT'oduce ciisease; "mini- those who study causation as the object of their the unique cause stems from its usual i-ote as mal" implies that all ofthe conditions or work, the concept is largely self-taught, cob- the final factor that acts in the causal mecha- events are necessar}' to tliat occurrence. In bled together fioni early experiences. As a nism. The wiring can be considered part of disease etiology, the completion of a sufficient youngster, each person develops and tests an the causal mechanism, but once it is put in cause may be considered equivalent to the inventory of causal explanations that brings place, it seldom warrants further attention. onset of disease. (Onset here refers to the meaning to perceived events and Ihat ulti- The switch, however, is often the only part of onset of the earliest stage of the disease pro- mately leads to more control of those events. the mechanism that needs to be activated to cess, rather than the onset of signs or symp- toms,) For biological effects, most and some- Because our first appreciation ofthe con- obtam the effect of turning on the light. The times all of the components of a sufficient cept of causation is based on our own direct effect usually occurs immediately after turn- cause are unknown.' observations, the resulting concept is limited ing on the switch, and as a result we slip into by the .scope of those obsei-vations. We typi- the fi^ame of thinking in which we identify the For example, tobacco smoking Ls a cause of cally observe causes with effects that are im- switch as a unique cause. The inadequacy of lung cancer, but by itself it is not a sufficient mediately apparent. For example, when one this assumption is emphasized when the bulb cause. First the term smoking is too imprecise turns a light switch to the "on" position, one goes bad and needs to he replaced, 'lliese to be used in a causal description. One must normally sees the instant efTect of the light concepts of causation that are established specify the type of smoke (e.g., cigarette. going on. Nevertheless, the causal mechanism empirically early in life are too rudimentary cigar, pipe), whether it is filtered or unfiltered, for getting a light to shine involves more to serve well as the basis for scientific theo- the manner and frequency of inhalation, and than turning a light switch to "on." Suppose ries. To enlarge upon them, we need a more the onset and duration of smoking. More im- a storm has downed the electric lines to the general conceptual model that can serve as a portantly, smoking, even defined explicitly, building, or the witnng is faulty, or the bulb common stalling point in discussions of will not cause cancer in everyone. Appar- is burned out—in any of these cases, turning causal theories. ently, there are some people who, by virtue the switch on wili have no efFect One cause of their genetic makeup or previous experi- ofthe light going on is having the switch in SUFFICIENT AND COMPONENT ence, are susceptible to the effects of smok- the proper position, but along with it we CAUSES ing, and others who are not. These suscepti- must have a supply of power to the circuit, hiWty factors are other components in the good wiring, and a working bulb. When all The concept and definition of causation various causa] mechanisms through which other factors are in place, turning the switch engender continuing debate among philoso- smoking causes lung cancer. will cause the light to go on, but if one or phers. Nevertheless, researchers interested in Figure 1 provides a schematic diagram of more of the other factors is lacking, the light causal phenomena must adopt a working defi- sufficient causes in a hypothetical individual, will not go on. nition. We can define a cause of a specific dis- Kach constellation of component causes rep- Despite the tendency to consider a switch ease event as an antecedent event, condition, resented in Figure 1 is minimally sufficient to as the unique cause of turning on a light, the or characteristic that was necessary for the produce the disease: that is, there is no redun- complete causal mechanism is more intricate, occun'ence of the disease at the moment it dant or extraneous component cause. Kach and the switch is only one component of sev- occun-ed, given that other conditions are one is a necessary part of that specific causal S144 I Public Health Matters ( Peer Reviewed I Rothman and Greenland American Journai of Public Heaith | Supplement 1, 2005. Vol 95, No, SI PUBLIC HEALTH MAHERS disease frequency produced by introducing tbe factor into a population. Tbis cbange may be measured in absolute or relative terms. In eitber case, tlie strength of an effect may bave tremendous public health significance, bul it may have little biological signili :ance. Tbe reason is that given a spedfic causal mechanism, any ol' the component causes can have strong or weak efTects. Tbe aetua! iden- tity of tbe constituent components of tbe causal mecbanism amounts to the biology of causation. In contrast, the strengtb of a fac- One Causal Mechanism Single Component Cause tor's effect depends on the time-specific distri- bution of its causal complements in the popu- FIGURE l-Three sufficient causes of disease. lation. Over a span of time, tbe strengtb of tbe effect of a given factor on the occurrence of a given disease may change, because tbe prevalence of its causal complements in vari- mechanism. A specific component cause may sertion tbat tbere are nearly always some ous causal mechanisms may also cbange. play a role in one, two, or all three of the genetic and some environmental component The causal mechanisms in which the factor causal mechanisms pictured. causes in every causa! mecbanism, Tbus, and its complements act could remain un- even an event sucb as a fall on an icy patb changed, however. MULTiCAUSAUTY leading to a broken bip is part of a compli- cated causal mecbanism tbat involves many The model of causation implied by component causes. INTERACTION AMONG CAUSES Figure 1 illuminates several important princi- Tbe importance of multicausality is tbat ples regaRJiiig causes. Perhaps the most im- most identified causes are neitber necessar}' Tbe causal pie model posits tbat several portant of these principles is self-evident from nor sufficient to produce disease, Nevertbe- causal components act in concert to produce the model: A given disease can be caused by less, a cause need not be eitber necessary or an effect. "Acting in concert" does not neces- more than one causal mechanism, and ever}' sufficient for its removal to result in disease sarily imply that factors must act at tbe same causal mechanism involves tbe joint action of prevention. If a component cause tbat is nei- dme. Consider tbe example above of tbe per- a multitude of component causes. Consider tber necessary nor sufficient is blocked, a sub- son wbo sustained trauma to the head that as an example the cause of a broken bip. Sup- stantial amount of disease may be prevented, resulted in an equilibrium disturbance, pose tbat someone experiences a naumatie Tbat tbe cause is not necessary implies tbat wbieh led, years later, to a fall on an icy injury to the bead tbal leads to a permanent some disease may still occur after tbe cause path. Tbe earlier head trauma played a disturbance in equilibrium. Many years later, is blocked, but a component cause wili never- causal role in tbe later hip fracture: so did the faulty equilibrium plays a causal role in a theless be a necessary cause for some of the the weatber conditions on the day of tbe fall tbat occui"s wbile tbe person is walking cases tbat occur, Tbat tbe component cause is fracture. If both of tbese factors played a on an icy patb.
Recommended publications
  • The Practice of Causal Inference in Cancer Epidemiology
    Vol. 5. 303-31 1, April 1996 Cancer Epidemiology, Biomarkers & Prevention 303 Review The Practice of Causal Inference in Cancer Epidemiology Douglas L. Weedt and Lester S. Gorelic causes lung cancer (3) and to guide causal inference for occu- Preventive Oncology Branch ID. L. W.l and Comprehensive Minority pational and environmental diseases (4). From 1965 to 1995, Biomedical Program IL. S. 0.1. National Cancer Institute, Bethesda, Maryland many associations have been examined in terms of the central 20892 questions of causal inference. Causal inference is often practiced in review articles and editorials. There, epidemiologists (and others) summarize evi- Abstract dence and consider the issues of causality and public health Causal inference is an important link between the recommendations for specific exposure-cancer associations. practice of cancer epidemiology and effective cancer The purpose of this paper is to take a first step toward system- prevention. Although many papers and epidemiology atically reviewing the practice of causal inference in cancer textbooks have vigorously debated theoretical issues in epidemiology. Techniques used to assess causation and to make causal inference, almost no attention has been paid to the public health recommendations are summarized for two asso- issue of how causal inference is practiced. In this paper, ciations: alcohol and breast cancer, and vasectomy and prostate we review two series of review papers published between cancer. The alcohol and breast cancer association is timely, 1985 and 1994 to find answers to the following questions: controversial, and in the public eye (5). It involves a common which studies and prior review papers were cited, which exposure and a common cancer and has a large body of em- causal criteria were used, and what causal conclusions pirical evidence; over 50 studies and over a dozen reviews have and public health recommendations ensued.
    [Show full text]
  • Statistics and Causal Inference (With Discussion)
    Applied Statistics Lecture Notes Kosuke Imai Department of Politics Princeton University February 2, 2008 Making statistical inferences means to learn about what you do not observe, which is called parameters, from what you do observe, which is called data. We learn the basic principles of statistical inference from a perspective of causal inference, which is a popular goal of political science research. Namely, we study statistics by learning how to make causal inferences with statistical methods. 1 Statistical Framework of Causal Inference What do we exactly mean when we say “An event A causes another event B”? Whether explicitly or implicitly, this question is asked and answered all the time in political science research. The most commonly used statistical framework of causality is based on the notion of counterfactuals (see Holland, 1986). That is, we ask the question “What would have happened if an event A were absent (or existent)?” The following example illustrates the fact that some causal questions are more difficult to answer than others. Example 1 (Counterfactual and Causality) Interpret each of the following statements as a causal statement. 1. A politician voted for the education bill because she is a democrat. 2. A politician voted for the education bill because she is liberal. 3. A politician voted for the education bill because she is a woman. In this framework, therefore, the fundamental problem of causal inference is that the coun- terfactual outcomes cannot be observed, and yet any causal inference requires both factual and counterfactual outcomes. This idea is formalized below using the potential outcomes notation.
    [Show full text]
  • Bayesian Causal Inference
    Bayesian Causal Inference Maximilian Kurthen Master’s Thesis Max Planck Institute for Astrophysics Within the Elite Master Program Theoretical and Mathematical Physics Ludwig Maximilian University of Munich Technical University of Munich Supervisor: PD Dr. Torsten Enßlin Munich, September 12, 2018 Abstract In this thesis we address the problem of two-variable causal inference. This task refers to inferring an existing causal relation between two random variables (i.e. X → Y or Y → X ) from purely observational data. We begin by outlining a few basic definitions in the context of causal discovery, following the widely used do-Calculus [Pea00]. We continue by briefly reviewing a number of state-of-the-art methods, including very recent ones such as CGNN [Gou+17] and KCDC [MST18]. The main contribution is the introduction of a novel inference model where we assume a Bayesian hierarchical model, pursuing the strategy of Bayesian model selection. In our model the distribution of the cause variable is given by a Poisson lognormal distribution, which allows to explicitly regard discretization effects. We assume Fourier diagonal covariance operators, where the values on the diagonal are given by power spectra. In the most shallow model these power spectra and the noise variance are fixed hyperparameters. In a deeper inference model we replace the noise variance as a given prior by expanding the inference over the noise variance itself, assuming only a smooth spatial structure of the noise variance. Finally, we make a similar expansion for the power spectra, replacing fixed power spectra as hyperparameters by an inference over those, where again smoothness enforcing priors are assumed.
    [Show full text]
  • Articles Causal Inference in Civil Rights Litigation
    VOLUME 122 DECEMBER 2008 NUMBER 2 © 2008 by The Harvard Law Review Association ARTICLES CAUSAL INFERENCE IN CIVIL RIGHTS LITIGATION D. James Greiner TABLE OF CONTENTS I. REGRESSION’S DIFFICULTIES AND THE ABSENCE OF A CAUSAL INFERENCE FRAMEWORK ...................................................540 A. What Is Regression? .........................................................................................................540 B. Problems with Regression: Bias, Ill-Posed Questions, and Specification Issues .....543 1. Bias of the Analyst......................................................................................................544 2. Ill-Posed Questions......................................................................................................544 3. Nature of the Model ...................................................................................................545 4. One Regression, or Two?............................................................................................555 C. The Fundamental Problem: Absence of a Causal Framework ....................................556 II. POTENTIAL OUTCOMES: DEFINING CAUSAL EFFECTS AND BEYOND .................557 A. Primitive Concepts: Treatment, Units, and the Fundamental Problem.....................558 B. Additional Units and the Non-Interference Assumption.............................................560 C. Donating Values: Filling in the Missing Counterfactuals ...........................................562 D. Randomization: Balance in Background Variables ......................................................563
    [Show full text]
  • Experiments & Observational Studies: Causal Inference in Statistics
    Experiments & Observational Studies: Causal Inference in Statistics Paul R. Rosenbaum Department of Statistics University of Pennsylvania Philadelphia, PA 19104-6340 1 My Concept of a ‘Tutorial’ In the computer era, we often receive compressed • files, .zip. Minimize redundancy, minimize storage, at the expense of intelligibility. Sometimes scientific journals seemed to have been • compressed. Tutorial goal is: ‘uncompress’. Make it possible to • read a current article or use current software without going back to dozens of earlier articles. 2 A Causal Question At age 45, Ms. Smith is diagnosed with stage II • breast cancer. Her oncologist discusses with her two possible treat- • ments: (i) lumpectomy alone, or (ii) lumpectomy plus irradiation. They decide on (ii). Ten years later, Ms. Smith is alive and the tumor • has not recurred. Her surgeon, Steve, and her radiologist, Rachael de- • bate. Rachael says: “The irradiation prevented the recur- • rence – without it, the tumor would have recurred.” Steve says: “You can’t know that. It’s a fantasy – • you’re making it up. We’ll never know.” 3 Many Causal Questions Steve and Rachael have this debate all the time. • About Ms. Jones, who had lumpectomy alone. About Ms. Davis, whose tumor recurred after a year. Whenever a patient treated with irradiation remains • disease free, Rachael says: “It was the irradiation.” Steve says: “You can’t know that. It’s a fantasy. We’ll never know.” Rachael says: “Let’s keep score, add ’em up.” Steve • says: “You don’t know what would have happened to Ms. Smith, or Ms. Jones, or Ms Davis – you just made it all up, it’s all fantasy.
    [Show full text]
  • Elements of Causal Inference
    Elements of Causal Inference Foundations and Learning Algorithms Adaptive Computation and Machine Learning Francis Bach, Editor Christopher Bishop, David Heckerman, Michael Jordan, and Michael Kearns, As- sociate Editors A complete list of books published in The Adaptive Computation and Machine Learning series appears at the back of this book. Elements of Causal Inference Foundations and Learning Algorithms Jonas Peters, Dominik Janzing, and Bernhard Scholkopf¨ The MIT Press Cambridge, Massachusetts London, England c 2017 Massachusetts Institute of Technology This work is licensed to the public under a Creative Commons Attribution- Non- Commercial-NoDerivatives 4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/ All rights reserved except as licensed pursuant to the Creative Commons license identified above. Any reproduction or other use not licensed as above, by any electronic or mechanical means (including but not limited to photocopying, public distribution, online display, and digital information storage and retrieval) requires permission in writing from the publisher. This book was set in LaTeX by the authors. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Names: Peters, Jonas. j Janzing, Dominik. j Scholkopf,¨ Bernhard. Title: Elements of causal inference : foundations and learning algorithms / Jonas Peters, Dominik Janzing, and Bernhard Scholkopf.¨ Description: Cambridge, MA : MIT Press, 2017. j Series: Adaptive computation and machine learning series
    [Show full text]
  • A Logic for Causal Inference in Time Series with Discrete and Continuous Variables
    A Logic for Causal Inference in Time Series with Discrete and Continuous Variables Samantha Kleinberg Columbia University New York, NY [email protected] Abstract windows of time. Similarly, Granger causality [1969] allows for only discrete lags between cause and effect and assumes Many applications of causal inference, such as find- that the relationships are between individual variables. Fi- ing the relationship between stock prices and news nally, prior work on inferring complex causal relationships reports, involve both discrete and continuous vari- represented as logical formulas identified factors that substan- ables observed over time. Inference with these tially impact the probability of the effect, but required that all complex sets of temporal data, though, has re- variables be discretized [Kleinberg and Mishra, 2009]. mained difficult and required a number of simplifi- In this work we address the problem of inference when we cations. We show that recent approaches for infer- are interested primarily in the level of the effect. We will ring temporal relationships (represented as logical show that instead of a difference in probability, a cause’s sig- formulas) can be adapted for inference with contin- nificance for an effect can be assessed using an average dif- uous valued effects. Building on advances in logic, ference in conditional expectation. By extending the under- PCTLc (an extension of PCTL with numerical con- lying logic used to represent the relationships, this approach straints) is introduced here to allow representation allows for structured representation and automated inference and inference of relationships with a mixture of of complex temporal relationships with discrete and contin- discrete and continuous components.
    [Show full text]
  • Week 10: Causality with Measured Confounding
    Week 10: Causality with Measured Confounding Brandon Stewart1 Princeton November 28 and 30, 2016 1These slides are heavily influenced by Matt Blackwell, Jens Hainmueller, Erin Hartman, Kosuke Imai and Gary King. Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 1 / 176 Where We've Been and Where We're Going... Last Week I regression diagnostics This Week I Monday: F experimental Ideal F identification with measured confounding I Wednesday: F regression estimation Next Week I identification with unmeasured confounding I instrumental variables Long Run I causality with measured confounding ! unmeasured confounding ! repeated data Questions? Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 2 / 176 1 The Experimental Ideal 2 Assumption of No Unmeasured Confounding 3 Fun With Censorship 4 Regression Estimators 5 Agnostic Regression 6 Regression and Causality 7 Regression Under Heterogeneous Effects 8 Fun with Visualization, Replication and the NYT 9 Appendix Subclassification Identification under Random Assignment Estimation Under Random Assignment Blocking Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 3 / 176 1 The Experimental Ideal 2 Assumption of No Unmeasured Confounding 3 Fun With Censorship 4 Regression Estimators 5 Agnostic Regression 6 Regression and Causality 7 Regression Under Heterogeneous Effects 8 Fun with Visualization, Replication and the NYT 9 Appendix Subclassification Identification under Random Assignment Estimation Under Random Assignment Blocking Stewart
    [Show full text]
  • Editor's Comments
    EDITOR’S COMMENTS Opportunities and Challenges for Different Types of Online Experiments By: Elena Karahanna University of Georgia [email protected] Izak Benbasat University of British Columbia [email protected] Ravi Bapna University of Minnesota [email protected] Arun Rai Editor-in-Chief, MIS Quarterly Georgia State University [email protected] Motivation for and Objectives of the Editorial Experimental research has been an important research method in the Information Systems (IS) discipline. Recently, we have seen an expansion in the types of experiments conducted beyond traditional laboratory (lab) and field experiments. These new types of experiments, which leverage the online environment, provide new opportunities as well as new challenges for IS researchers. This diversity also creates the need for authors and reviewers to understand the respective strengths and limitations of various types of experi- mental research, and not mechanically apply the lens of their favorite type of experiment. The purpose of this editorial is to highlight the reasons that have propelled new types of experiments, categorize these along a set of dimensions, discuss their strengths and weaknesses, and highlight some new issues that emerge with these new opportunities for research. Our objective is not to be exhaustive in terms of the various types of experiments but to highlight opportunities and challenges that emerge for online variants that are more prominently seen in IS research. We, therefore, constrain our focus to lab, field, and natural experiments and their online variants.1 Changing Landscape of Experiments in IS Research Experiments have been a major research method in IS research since the origins of the field.
    [Show full text]
  • Natural Experiments and at the Same Time Distinguish Them from Randomized Controlled Experiments
    Natural Experiments∗ Roc´ıo Titiunik Professor of Politics Princeton University February 4, 2020 arXiv:2002.00202v1 [stat.ME] 1 Feb 2020 ∗Prepared for “Advances in Experimental Political Science”, edited by James Druckman and Donald Green, to be published by Cambridge University Press. I am grateful to Don Green and Jamie Druckman for their helpful feedback on multiple versions of this chapter, and to Marc Ratkovic and participants at the Advances in Experimental Political Science Conference held at Northwestern University in May 2019 for valuable comments and suggestions. I am also indebted to Alberto Abadie, Matias Cattaneo, Angus Deaton, and Guido Imbens for their insightful comments and criticisms, which not only improved the manuscript but also gave me much to think about for the future. Abstract The term natural experiment is used inconsistently. In one interpretation, it refers to an experiment where a treatment is randomly assigned by someone other than the researcher. In another interpretation, it refers to a study in which there is no controlled random assignment, but treatment is assigned by some external factor in a way that loosely resembles a randomized experiment—often described as an “as if random” as- signment. In yet another interpretation, it refers to any non-randomized study that compares a treatment to a control group, without any specific requirements on how the treatment is assigned. I introduce an alternative definition that seeks to clarify the integral features of natural experiments and at the same time distinguish them from randomized controlled experiments. I define a natural experiment as a research study where the treatment assignment mechanism (i) is neither designed nor implemented by the researcher, (ii) is unknown to the researcher, and (iii) is probabilistic by virtue of depending on an external factor.
    [Show full text]
  • Causal Inference in Statistics: an Overview∗†‡
    Statistics Surveys Vol. 3 (2009) 96–146 ISSN: 1935-7516 DOI: 10.1214/09-SS057 Causal inference in statistics: An overview∗†‡ Judea Pearl Computer Science Department University of California, Los Angeles, CA 90095 USA e-mail: [email protected] Abstract: This review presents empirical researcherswith recent advances in causal inference, and stresses the paradigmatic shifts that must be un- dertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that un- derly all causal inferences, the languages used in formulating those assump- tions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coher- ent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interven- tions, (also called “causal effects” or “policy evaluation”) (2) queries about probabilities of counterfactuals, (including assessment of “regret,” “attri- bution” or “causes of effects”) and (3) queries about direct and indirect effects (also known as “mediation”). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. Keywords and phrases: Structuralequation models, confounding,graph- ical methods, counterfactuals, causal effects, potential-outcome, mediation, policy evaluation, causes of effects.
    [Show full text]
  • Multiple Causal Inference with Latent Confounding
    Multiple Causal Inference with Latent Confounding Rajesh Ranganath 1 Adler Perotte 2 Abstract from observational data. Causal inference from obser- Causal inference from observational data re- vational data requires assumptions. These assumptions quires assumptions. These assumptions range include measurement of all confounders (Rosenbaum and from measuring confounders to identifying in- Rubin, 1983), the presence of external randomness that struments. Traditionally, causal inference as- partially controls treatment (Angrist et al., 1996), and sumptions have focused on estimation of ef- structural assumptions on the randomness (Hoyer et al., fects for a single treatment. In this work, we 2009). construct techniques for estimation with mul- tiple treatments in the presence of unobserved Though causal inference from observational data has been confounding. We develop two assumptions used in many domains, the assumptions that underlie based on shared confounding between treat- these inferences focus on estimation of a causal effect ments and independence of treatments given with a single treatment. But many real-world applications the confounder. Together, these assumptions consist of multiple treatments. For example, the effects lead to a confounder estimator regularized by of genetic variation on various phenotypes (Consortium mutual information. For this estimator, we de- et al., 2007) or the effects of medications from order sets velop a tractable lower bound. To recover treat- in clinical medicine (O’connor et al., 2009) consist of ment effects, we use the residual information in causal problems with multiple treatments rather than a the treatments independent of the confounder. single treatment. Considering multiple treatments make We validate on simulations and an example from new kinds of assumptions possible.
    [Show full text]