A Logic for Causal Inference in Time Series with Discrete and Continuous Variables

Total Page:16

File Type:pdf, Size:1020Kb

A Logic for Causal Inference in Time Series with Discrete and Continuous Variables A Logic for Causal Inference in Time Series with Discrete and Continuous Variables Samantha Kleinberg Columbia University New York, NY [email protected] Abstract windows of time. Similarly, Granger causality [1969] allows for only discrete lags between cause and effect and assumes Many applications of causal inference, such as find- that the relationships are between individual variables. Fi- ing the relationship between stock prices and news nally, prior work on inferring complex causal relationships reports, involve both discrete and continuous vari- represented as logical formulas identified factors that substan- ables observed over time. Inference with these tially impact the probability of the effect, but required that all complex sets of temporal data, though, has re- variables be discretized [Kleinberg and Mishra, 2009]. mained difficult and required a number of simplifi- In this work we address the problem of inference when we cations. We show that recent approaches for infer- are interested primarily in the level of the effect. We will ring temporal relationships (represented as logical show that instead of a difference in probability, a cause’s sig- formulas) can be adapted for inference with contin- nificance for an effect can be assessed using an average dif- uous valued effects. Building on advances in logic, ference in conditional expectation. By extending the under- PCTLc (an extension of PCTL with numerical con- lying logic used to represent the relationships, this approach straints) is introduced here to allow representation allows for structured representation and automated inference and inference of relationships with a mixture of of complex temporal relationships with discrete and contin- discrete and continuous components. Then, find- uous components. The result is a succinct representation of ing significant relationships in the continuous case the most significant relationships in a set of data. We evaluate can be done using the conditional expectation of an this approach empirically on both synthetic and actual finan- effect, rather than its conditional probability. We cial market data to validate it and assess its practical use. evaluate this approach on both synthetically gener- ated and actual financial market data, demonstrat- ing that it can allow us to answer different questions 2 Background than the discrete approach can. We begin by reviewing the causal inference framework being extended. Earlier work by Kleinberg et al. [2009] introduced 1 Introduction a method for causal inference based on probabilistic notions Relationships such as “smoking causes lung cancer” or “gene of causality, where the relationship between cause and effect A regulates gene B” can help us decide to quit smoking, or is described in a structured way using probabilistic computa- investigate a pathway during drug development, but in many tion tree logic (PCTL) formulas. To assess whether the for- cases it is useful to understand the relationship between the mulas satisfied by the data are significant, the average dif- magnitude of the cause and the probability of the effect or ference each cause makes to the probability of its effect is explore causes that produce the greatest level of the effect. computed and techniques for multiple hypothesis testing are We may want to know not only whether positive news about applied to determine the level at which a relationship should [ ] a company causes its price to increase, but how much of be considered statistically significant Efron, 2004 . an increase we can expect, when it will happen, and what other factors are needed. To do this we need to reason about 2.1 Probabilistic computation tree logic complex relationships that have qualitative, quantitative, and We briefly discuss PCTL and refer the reader to [Hansson and temporal components. Thus far, approaches to causal infer- Jonsson, 1994] for a more in depth description. Formulas in ence have focused on separate aspects of this problem, with the logic are defined relative to a probabilistic Kripke struc- none addressing all areas. Methods based on Bayesian net- ture (also called a discrete time Markov chain (DTMC)), con- works [Pearl, 2000] yield compact representations of sparse sisting of a set of states, S, a start state si, a total transition systems, but neither they nor their temporal extensions, dy- function T that gives the probability of transition between namic Bayesian networks [Murphy, 2002], allow for auto- all pairs of states and a labeling function L that indicates the mated representation of and reasoning about relationships propositions from the set of atomic propositions A that are more complex than one variable causing another, or involving true at each state. In the case of causal inference we do not normally have or infer these structures but instead test the re- average significance of each cause for its effect. The basic lationships directly in the data. premise of this approach is that when testing for spuriousness, There are two types of formulas in PCTL: state formulas one is trying to find whether there are better explanations for that describe properties of individual states, and path formu- the effect. With X being the set of all potential causes of e, las that describe properties along sequences of states. These the significance of a particular cause c for an effect e is: can be defined inductively as follows:1 X P (ejc ^ x) − P (ej:c ^ x) " (c; e) = (3) 1. Each atomic proposition is a state formula. avg jX n cj 2. If f and g are state formulas, so are :f and f ^ g. x2Xnc 3. If f and g are state formulas, 0 ≤ r ≤ s ≤ 1 and Note that the relationships between c and e, and x and e, have r 6= 1, fU ≥r;≤sg and fW ≥r;≤sg are path formulas. time windows associated with them (as in equation (2)), so the conjunctions in (3) refer to instances where e occurs such 4. If f is a path formula and 0 ≤ p ≤ 1, [f] and [f] ≥p >p that either c or x could have caused it (e.g. thinking of each are state formulas. time window as a constraint, both constraints on when e could The operators in item (2) have their usual meanings. Item have occurred are satisfied). This average significance score (3) describes until (U) and weak-until (W ) formulas. First, can be used to partition the potential causes. fU ≥r;≤sg, means that f must be true at every state along the Definition 2.2. A potential cause c of an effect e is an "- path until g becomes true, which must happen in between r insignificant cause of e if j" (c; e)j < ". and s time units. The weak-until formula is similar, but does avg not guarantee that g will ever hold. In that case, f must hold Definition 2.3. A potential cause c of an effect e that is not an for at least s time units. Finally, in (4) probabilities are added "-insignificant cause of e is an "-significant or just-so cause to path formulas to make state formulas. Then the sum of the of e. probabilities of the paths from the state where the path for- To determine an appropriate value of ", the problem is mula holds is at least p. One shorthand that will be useful for treated as one of multiple hypothesis testing, aiming to con- representing causal relationships is “leads-to”. The formula: trol the false discovery rate. Assuming many hypotheses are being tested and the proportion of true positives is small rel- f ;≥r;≤s g ≡ AG[f ! F ≥r;≤sg] (1) ≥p ≥p ative to this set, methods for empirically inferring the null means that for all paths, from all states, if f is true, then g hypothesis from the data can be applied [Efron, 2004] since will become true in between r and s time units with at least the values of "avg for large scale testing mostly follow a nor- probability p. This operator is defined differently relative to mal distribution, with significant (non-null) values deviating traces (where the problem is closer to runtime verification from this distribution [Kleinberg, 2010]. than model checking) as described in [Kleinberg, 2010] and the semantics here. 3 Inference of relationships with discrete and 2.2 Causes as logical formulas continuous components To use this logic for causal inference, Kleinberg et al. [2009] We now introduce an approach for inferring relationships assumed that the system has some underlying structure that is with continuous-valued effects, and explicitly representing not observed, where the temporal observations (such as stock the constraints on continuous valued causes as part of their price movements or longitudinal electronic health records) logical formulas. In the previous section we described evalu- can be thought of as observations of the sequence of states ating the significance of a cause for its effect using the aver- the system has occupied. In model checking, these sequences age difference in probability with each other possible cause of are referred to as traces. The standard probabilistic notion of the effect held fixed. When an effect is continuous, we instead causality, that a cause is earlier than and raises the probabil- want to determine the impact of a cause on the level of the ef- ity of its effect, can then be translated into PCTL to define fect, and can do this using the average difference in expected potential (prima facie) causes. value. For instance, we may want to determine the effect of medications on weight, where it may be difficult to discretize Definition 2.1. Where both c and e are PCTL formulas, c is a this effect of interest, though the potential causes are naturally potential cause of e if, relative to a finite trace (or set of traces) discrete variables.
Recommended publications
  • The Practice of Causal Inference in Cancer Epidemiology
    Vol. 5. 303-31 1, April 1996 Cancer Epidemiology, Biomarkers & Prevention 303 Review The Practice of Causal Inference in Cancer Epidemiology Douglas L. Weedt and Lester S. Gorelic causes lung cancer (3) and to guide causal inference for occu- Preventive Oncology Branch ID. L. W.l and Comprehensive Minority pational and environmental diseases (4). From 1965 to 1995, Biomedical Program IL. S. 0.1. National Cancer Institute, Bethesda, Maryland many associations have been examined in terms of the central 20892 questions of causal inference. Causal inference is often practiced in review articles and editorials. There, epidemiologists (and others) summarize evi- Abstract dence and consider the issues of causality and public health Causal inference is an important link between the recommendations for specific exposure-cancer associations. practice of cancer epidemiology and effective cancer The purpose of this paper is to take a first step toward system- prevention. Although many papers and epidemiology atically reviewing the practice of causal inference in cancer textbooks have vigorously debated theoretical issues in epidemiology. Techniques used to assess causation and to make causal inference, almost no attention has been paid to the public health recommendations are summarized for two asso- issue of how causal inference is practiced. In this paper, ciations: alcohol and breast cancer, and vasectomy and prostate we review two series of review papers published between cancer. The alcohol and breast cancer association is timely, 1985 and 1994 to find answers to the following questions: controversial, and in the public eye (5). It involves a common which studies and prior review papers were cited, which exposure and a common cancer and has a large body of em- causal criteria were used, and what causal conclusions pirical evidence; over 50 studies and over a dozen reviews have and public health recommendations ensued.
    [Show full text]
  • Statistics and Causal Inference (With Discussion)
    Applied Statistics Lecture Notes Kosuke Imai Department of Politics Princeton University February 2, 2008 Making statistical inferences means to learn about what you do not observe, which is called parameters, from what you do observe, which is called data. We learn the basic principles of statistical inference from a perspective of causal inference, which is a popular goal of political science research. Namely, we study statistics by learning how to make causal inferences with statistical methods. 1 Statistical Framework of Causal Inference What do we exactly mean when we say “An event A causes another event B”? Whether explicitly or implicitly, this question is asked and answered all the time in political science research. The most commonly used statistical framework of causality is based on the notion of counterfactuals (see Holland, 1986). That is, we ask the question “What would have happened if an event A were absent (or existent)?” The following example illustrates the fact that some causal questions are more difficult to answer than others. Example 1 (Counterfactual and Causality) Interpret each of the following statements as a causal statement. 1. A politician voted for the education bill because she is a democrat. 2. A politician voted for the education bill because she is liberal. 3. A politician voted for the education bill because she is a woman. In this framework, therefore, the fundamental problem of causal inference is that the coun- terfactual outcomes cannot be observed, and yet any causal inference requires both factual and counterfactual outcomes. This idea is formalized below using the potential outcomes notation.
    [Show full text]
  • Bayesian Causal Inference
    Bayesian Causal Inference Maximilian Kurthen Master’s Thesis Max Planck Institute for Astrophysics Within the Elite Master Program Theoretical and Mathematical Physics Ludwig Maximilian University of Munich Technical University of Munich Supervisor: PD Dr. Torsten Enßlin Munich, September 12, 2018 Abstract In this thesis we address the problem of two-variable causal inference. This task refers to inferring an existing causal relation between two random variables (i.e. X → Y or Y → X ) from purely observational data. We begin by outlining a few basic definitions in the context of causal discovery, following the widely used do-Calculus [Pea00]. We continue by briefly reviewing a number of state-of-the-art methods, including very recent ones such as CGNN [Gou+17] and KCDC [MST18]. The main contribution is the introduction of a novel inference model where we assume a Bayesian hierarchical model, pursuing the strategy of Bayesian model selection. In our model the distribution of the cause variable is given by a Poisson lognormal distribution, which allows to explicitly regard discretization effects. We assume Fourier diagonal covariance operators, where the values on the diagonal are given by power spectra. In the most shallow model these power spectra and the noise variance are fixed hyperparameters. In a deeper inference model we replace the noise variance as a given prior by expanding the inference over the noise variance itself, assuming only a smooth spatial structure of the noise variance. Finally, we make a similar expansion for the power spectra, replacing fixed power spectra as hyperparameters by an inference over those, where again smoothness enforcing priors are assumed.
    [Show full text]
  • Articles Causal Inference in Civil Rights Litigation
    VOLUME 122 DECEMBER 2008 NUMBER 2 © 2008 by The Harvard Law Review Association ARTICLES CAUSAL INFERENCE IN CIVIL RIGHTS LITIGATION D. James Greiner TABLE OF CONTENTS I. REGRESSION’S DIFFICULTIES AND THE ABSENCE OF A CAUSAL INFERENCE FRAMEWORK ...................................................540 A. What Is Regression? .........................................................................................................540 B. Problems with Regression: Bias, Ill-Posed Questions, and Specification Issues .....543 1. Bias of the Analyst......................................................................................................544 2. Ill-Posed Questions......................................................................................................544 3. Nature of the Model ...................................................................................................545 4. One Regression, or Two?............................................................................................555 C. The Fundamental Problem: Absence of a Causal Framework ....................................556 II. POTENTIAL OUTCOMES: DEFINING CAUSAL EFFECTS AND BEYOND .................557 A. Primitive Concepts: Treatment, Units, and the Fundamental Problem.....................558 B. Additional Units and the Non-Interference Assumption.............................................560 C. Donating Values: Filling in the Missing Counterfactuals ...........................................562 D. Randomization: Balance in Background Variables ......................................................563
    [Show full text]
  • Causation and Causal Inference in Epidemiology
    PUBLIC HEALTH MAnERS Causation and Causal Inference in Epidemiology Kenneth J. Rothman. DrPH. Sander Greenland. MA, MS, DrPH. C Stat fixed. In other words, a cause of a disease Concepts of cause and causal inference are largely self-taught from early learn- ing experiences. A model of causation that describes causes in terms of suffi- event is an event, condition, or characteristic cient causes and their component causes illuminates important principles such that preceded the disease event and without as multicausality, the dependence of the strength of component causes on the which the disease event either would not prevalence of complementary component causes, and interaction between com- have occun-ed at all or would not have oc- ponent causes. curred until some later time. Under this defi- Philosophers agree that causal propositions cannot be proved, and find flaws or nition it may be that no specific event, condi- practical limitations in all philosophies of causal inference. Hence, the role of logic, tion, or characteristic is sufiicient by itself to belief, and observation in evaluating causal propositions is not settled. Causal produce disease. This is not a definition, then, inference in epidemiology is better viewed as an exercise in measurement of an of a complete causal mechanism, but only a effect rather than as a criterion-guided process for deciding whether an effect is pres- component of it. A "sufficient cause," which ent or not. (4m JPub//cHea/f/i. 2005;95:S144-S150. doi:10.2105/AJPH.2004.059204) means a complete causal mechanism, can be defined as a set of minimal conditions and What do we mean by causation? Even among eral.
    [Show full text]
  • Experiments & Observational Studies: Causal Inference in Statistics
    Experiments & Observational Studies: Causal Inference in Statistics Paul R. Rosenbaum Department of Statistics University of Pennsylvania Philadelphia, PA 19104-6340 1 My Concept of a ‘Tutorial’ In the computer era, we often receive compressed • files, .zip. Minimize redundancy, minimize storage, at the expense of intelligibility. Sometimes scientific journals seemed to have been • compressed. Tutorial goal is: ‘uncompress’. Make it possible to • read a current article or use current software without going back to dozens of earlier articles. 2 A Causal Question At age 45, Ms. Smith is diagnosed with stage II • breast cancer. Her oncologist discusses with her two possible treat- • ments: (i) lumpectomy alone, or (ii) lumpectomy plus irradiation. They decide on (ii). Ten years later, Ms. Smith is alive and the tumor • has not recurred. Her surgeon, Steve, and her radiologist, Rachael de- • bate. Rachael says: “The irradiation prevented the recur- • rence – without it, the tumor would have recurred.” Steve says: “You can’t know that. It’s a fantasy – • you’re making it up. We’ll never know.” 3 Many Causal Questions Steve and Rachael have this debate all the time. • About Ms. Jones, who had lumpectomy alone. About Ms. Davis, whose tumor recurred after a year. Whenever a patient treated with irradiation remains • disease free, Rachael says: “It was the irradiation.” Steve says: “You can’t know that. It’s a fantasy. We’ll never know.” Rachael says: “Let’s keep score, add ’em up.” Steve • says: “You don’t know what would have happened to Ms. Smith, or Ms. Jones, or Ms Davis – you just made it all up, it’s all fantasy.
    [Show full text]
  • Elements of Causal Inference
    Elements of Causal Inference Foundations and Learning Algorithms Adaptive Computation and Machine Learning Francis Bach, Editor Christopher Bishop, David Heckerman, Michael Jordan, and Michael Kearns, As- sociate Editors A complete list of books published in The Adaptive Computation and Machine Learning series appears at the back of this book. Elements of Causal Inference Foundations and Learning Algorithms Jonas Peters, Dominik Janzing, and Bernhard Scholkopf¨ The MIT Press Cambridge, Massachusetts London, England c 2017 Massachusetts Institute of Technology This work is licensed to the public under a Creative Commons Attribution- Non- Commercial-NoDerivatives 4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/ All rights reserved except as licensed pursuant to the Creative Commons license identified above. Any reproduction or other use not licensed as above, by any electronic or mechanical means (including but not limited to photocopying, public distribution, online display, and digital information storage and retrieval) requires permission in writing from the publisher. This book was set in LaTeX by the authors. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Names: Peters, Jonas. j Janzing, Dominik. j Scholkopf,¨ Bernhard. Title: Elements of causal inference : foundations and learning algorithms / Jonas Peters, Dominik Janzing, and Bernhard Scholkopf.¨ Description: Cambridge, MA : MIT Press, 2017. j Series: Adaptive computation and machine learning series
    [Show full text]
  • Week 10: Causality with Measured Confounding
    Week 10: Causality with Measured Confounding Brandon Stewart1 Princeton November 28 and 30, 2016 1These slides are heavily influenced by Matt Blackwell, Jens Hainmueller, Erin Hartman, Kosuke Imai and Gary King. Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 1 / 176 Where We've Been and Where We're Going... Last Week I regression diagnostics This Week I Monday: F experimental Ideal F identification with measured confounding I Wednesday: F regression estimation Next Week I identification with unmeasured confounding I instrumental variables Long Run I causality with measured confounding ! unmeasured confounding ! repeated data Questions? Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 2 / 176 1 The Experimental Ideal 2 Assumption of No Unmeasured Confounding 3 Fun With Censorship 4 Regression Estimators 5 Agnostic Regression 6 Regression and Causality 7 Regression Under Heterogeneous Effects 8 Fun with Visualization, Replication and the NYT 9 Appendix Subclassification Identification under Random Assignment Estimation Under Random Assignment Blocking Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 3 / 176 1 The Experimental Ideal 2 Assumption of No Unmeasured Confounding 3 Fun With Censorship 4 Regression Estimators 5 Agnostic Regression 6 Regression and Causality 7 Regression Under Heterogeneous Effects 8 Fun with Visualization, Replication and the NYT 9 Appendix Subclassification Identification under Random Assignment Estimation Under Random Assignment Blocking Stewart
    [Show full text]
  • Editor's Comments
    EDITOR’S COMMENTS Opportunities and Challenges for Different Types of Online Experiments By: Elena Karahanna University of Georgia [email protected] Izak Benbasat University of British Columbia [email protected] Ravi Bapna University of Minnesota [email protected] Arun Rai Editor-in-Chief, MIS Quarterly Georgia State University [email protected] Motivation for and Objectives of the Editorial Experimental research has been an important research method in the Information Systems (IS) discipline. Recently, we have seen an expansion in the types of experiments conducted beyond traditional laboratory (lab) and field experiments. These new types of experiments, which leverage the online environment, provide new opportunities as well as new challenges for IS researchers. This diversity also creates the need for authors and reviewers to understand the respective strengths and limitations of various types of experi- mental research, and not mechanically apply the lens of their favorite type of experiment. The purpose of this editorial is to highlight the reasons that have propelled new types of experiments, categorize these along a set of dimensions, discuss their strengths and weaknesses, and highlight some new issues that emerge with these new opportunities for research. Our objective is not to be exhaustive in terms of the various types of experiments but to highlight opportunities and challenges that emerge for online variants that are more prominently seen in IS research. We, therefore, constrain our focus to lab, field, and natural experiments and their online variants.1 Changing Landscape of Experiments in IS Research Experiments have been a major research method in IS research since the origins of the field.
    [Show full text]
  • Natural Experiments and at the Same Time Distinguish Them from Randomized Controlled Experiments
    Natural Experiments∗ Roc´ıo Titiunik Professor of Politics Princeton University February 4, 2020 arXiv:2002.00202v1 [stat.ME] 1 Feb 2020 ∗Prepared for “Advances in Experimental Political Science”, edited by James Druckman and Donald Green, to be published by Cambridge University Press. I am grateful to Don Green and Jamie Druckman for their helpful feedback on multiple versions of this chapter, and to Marc Ratkovic and participants at the Advances in Experimental Political Science Conference held at Northwestern University in May 2019 for valuable comments and suggestions. I am also indebted to Alberto Abadie, Matias Cattaneo, Angus Deaton, and Guido Imbens for their insightful comments and criticisms, which not only improved the manuscript but also gave me much to think about for the future. Abstract The term natural experiment is used inconsistently. In one interpretation, it refers to an experiment where a treatment is randomly assigned by someone other than the researcher. In another interpretation, it refers to a study in which there is no controlled random assignment, but treatment is assigned by some external factor in a way that loosely resembles a randomized experiment—often described as an “as if random” as- signment. In yet another interpretation, it refers to any non-randomized study that compares a treatment to a control group, without any specific requirements on how the treatment is assigned. I introduce an alternative definition that seeks to clarify the integral features of natural experiments and at the same time distinguish them from randomized controlled experiments. I define a natural experiment as a research study where the treatment assignment mechanism (i) is neither designed nor implemented by the researcher, (ii) is unknown to the researcher, and (iii) is probabilistic by virtue of depending on an external factor.
    [Show full text]
  • Causal Inference in Statistics: an Overview∗†‡
    Statistics Surveys Vol. 3 (2009) 96–146 ISSN: 1935-7516 DOI: 10.1214/09-SS057 Causal inference in statistics: An overview∗†‡ Judea Pearl Computer Science Department University of California, Los Angeles, CA 90095 USA e-mail: [email protected] Abstract: This review presents empirical researcherswith recent advances in causal inference, and stresses the paradigmatic shifts that must be un- dertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that un- derly all causal inferences, the languages used in formulating those assump- tions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coher- ent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interven- tions, (also called “causal effects” or “policy evaluation”) (2) queries about probabilities of counterfactuals, (including assessment of “regret,” “attri- bution” or “causes of effects”) and (3) queries about direct and indirect effects (also known as “mediation”). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. Keywords and phrases: Structuralequation models, confounding,graph- ical methods, counterfactuals, causal effects, potential-outcome, mediation, policy evaluation, causes of effects.
    [Show full text]
  • Multiple Causal Inference with Latent Confounding
    Multiple Causal Inference with Latent Confounding Rajesh Ranganath 1 Adler Perotte 2 Abstract from observational data. Causal inference from obser- Causal inference from observational data re- vational data requires assumptions. These assumptions quires assumptions. These assumptions range include measurement of all confounders (Rosenbaum and from measuring confounders to identifying in- Rubin, 1983), the presence of external randomness that struments. Traditionally, causal inference as- partially controls treatment (Angrist et al., 1996), and sumptions have focused on estimation of ef- structural assumptions on the randomness (Hoyer et al., fects for a single treatment. In this work, we 2009). construct techniques for estimation with mul- tiple treatments in the presence of unobserved Though causal inference from observational data has been confounding. We develop two assumptions used in many domains, the assumptions that underlie based on shared confounding between treat- these inferences focus on estimation of a causal effect ments and independence of treatments given with a single treatment. But many real-world applications the confounder. Together, these assumptions consist of multiple treatments. For example, the effects lead to a confounder estimator regularized by of genetic variation on various phenotypes (Consortium mutual information. For this estimator, we de- et al., 2007) or the effects of medications from order sets velop a tractable lower bound. To recover treat- in clinical medicine (O’connor et al., 2009) consist of ment effects, we use the residual information in causal problems with multiple treatments rather than a the treatments independent of the confounder. single treatment. Considering multiple treatments make We validate on simulations and an example from new kinds of assumptions possible.
    [Show full text]