Multiple Causal Inference with Latent Confounding

Total Page:16

File Type:pdf, Size:1020Kb

Multiple Causal Inference with Latent Confounding Multiple Causal Inference with Latent Confounding Rajesh Ranganath 1 Adler Perotte 2 Abstract from observational data. Causal inference from obser- Causal inference from observational data re- vational data requires assumptions. These assumptions quires assumptions. These assumptions range include measurement of all confounders (Rosenbaum and from measuring confounders to identifying in- Rubin, 1983), the presence of external randomness that struments. Traditionally, causal inference as- partially controls treatment (Angrist et al., 1996), and sumptions have focused on estimation of ef- structural assumptions on the randomness (Hoyer et al., fects for a single treatment. In this work, we 2009). construct techniques for estimation with mul- tiple treatments in the presence of unobserved Though causal inference from observational data has been confounding. We develop two assumptions used in many domains, the assumptions that underlie based on shared confounding between treat- these inferences focus on estimation of a causal effect ments and independence of treatments given with a single treatment. But many real-world applications the confounder. Together, these assumptions consist of multiple treatments. For example, the effects lead to a confounder estimator regularized by of genetic variation on various phenotypes (Consortium mutual information. For this estimator, we de- et al., 2007) or the effects of medications from order sets velop a tractable lower bound. To recover treat- in clinical medicine (O’connor et al., 2009) consist of ment effects, we use the residual information in causal problems with multiple treatments rather than a the treatments independent of the confounder. single treatment. Considering multiple treatments make We validate on simulations and an example from new kinds of assumptions possible. clinical medicine. We formalize multiple causal inference, a collection of causal inference problems with multiple treatments and 1. Introduction a single outcome. We develop a set of assumptions under which causal effects can be estimated when confounders Causal inference aims to estimate the effect one variable are unmeasured. Two assumptions form the starting has on another. Causal inferences form the heart of in- point: that the treatments share confounders, and that quiry in many domains, including estimating the value of given the shared confounder, all of the treatments are giving a medication to a patient, understanding the influ- independent. This kind of shared confounding structure ence of genetic variations on phenotypes, and measuring can be found in many domains such as genetics. the impact of job training programs on income. One class of estimators for unobserved confounders take Assumption-free causal inferences rely on randomized in treatments and output a noisy estimate of the unmea- experimentation (Cook et al., 2002; Pearl et al., 2009). sured confounders. Estimators for multiple causal infer- Randomized experiments break the relationship between arXiv:1805.08273v3 [stat.ML] 1 Mar 2019 ence should respect the assumptions of the problem. To the intervention variable (the treatment) and variables respect shared confounding, the information between that could alter both the treatment and the outcome— the confounder and a treatment given the rest of the confounders. Though powerful, randomized experimen- treatments should be minimal. However, forcing this in- tation fails to make use of large collections of non- formation to zero makes the confounder independent randomized observational data (like electronic health of the treatments. This can violate the assumption of records in medicine) and is inapplicable where broad independence given the shared confounder. This ten- experimentation is infeasible (like in human genetics). sion parallels that between underfitting and overfitting. The counterpart to experimentation is causal inference Confounders with low information underfit, while con- 1New York University 2Columbia University. Correspondence founders with high information memorize the treatments and overfit. to: Rajesh Ranganath <[email protected]>, Adler Perotte <[email protected]>. To resolve the tension between the two assumptions, we develop a regularizer based on the additional mutual in- Multiple Causal Inference with Latent Confounding formation each treatment contributes to the estimated et al.(2017) develop estimators with theoretical guaran- confounder given the rest of the treatments. We develop tees by building representations that penalize differences an algorithm that estimates the confounder by simulta- in confounder distributions between the treated and un- neously minimizing the reconstruction error of the treat- treated. ments, while regularizing the additional mutual informa- The above approaches focus on building estimators for tion. The stochastic confounder estimator can include single treatments, where either the confounder or a non- complex nonlinear transformations of the treatments. In treatment proxy is measured. In contrast, computational practice, we use neural networks. The additional mutual genetics has developed a variety of methods to control information is intractable, so we build a lower bound for unmeasured confounding in genome-wide associa- called the multiple causal lower bound (MCLBO). tion studies (GWAS). Genome-wide association studies The last step in building a causal estimator is to build the have multiple treatments in the form of genetic variations outcome model. Traditional outcome models regress the across multiple sites. Yu et al.(2006); Kang et al.(2010); confounders and treatments to the outcome (Morgan and Lippert et al.(2011) estimate kinship matrices between Winship, 2014). However, since the confounder estimate individuals using a subset of the genetic variations, then is a stochastic function of the treatments, it contains no fit a LMM where the kinship provides the covariance for new information about the response over the treatments— random effects. Song et al.(2015) adjust for confounding a regression on both the estimated confounder and treat- via factor analysis on discrete variables and use inverse ments can ignore the estimated confounder. Instead, we regression to estimate individual treatment effects. Tran build regression models using the residual information and Blei(2017) build implicit models for genome-wide in the treatments and develop an estimator to compute association studies and describe general implicit causal these residuals. We call the entire causal estimation pro- models in the same vein as Kocaoglu et al.(2017). A cess multiple causal estimation via information (MCEI). formulation of multiple causal inference was also pro- Under technical conditions, we show that the causal esti- posed by (Wang and Blei, 2018); they take a model-based mates converge to the true causal effects as the number approach in the potential outcomes framework that lever- of treatments and examples grow. The assumptions we ages predictive checks. develop strengthen the foundation for existing causal es- timation with unobserved confounders such as causal Our grounding for multiple causal inference complements this earlier work. We develop the two assumptions of estimation with linear mixed models (LMMs) (Kang et al., 2010; Lippert et al., 2011). shared confounding and of independence given shared confounders. We introduce a mutual information based We demonstrate MCEI on a large simulation study. Though regularizer that trades off between these assumptions. traditional methods like principal component analysis Earlier work estimates confounders by choosing their di- (PCA) adjustment (Yu et al., 2006) closely approximate mensionality (e.g., number of PCA components) to not the family of techniques we describe, we find that our overfit. This matches the flavor of the estimator we de- approach more accurately estimates the causal effects, velop. Lastly, we describe how residual information must even when the confounder dimensionality is misspecified. be used to fit complex outcome models. Finally, we apply the MCLBO to control for confounders in a medical prediction problem on health records from the 2. Multiple Causal Inference Multiparameter Intelligent Monitoring in Intensive Care (MIMIC III) clinical database (Johnson et al., 2016). We The trouble with causal inference from observational data show the recovered effects match the literature. lies in confounders, variables that affect both treatments and outcome. The problem is that the observed statistical Related Work. Causal inference has a long history in relationship between the treatment and outcome may many disciplines including statistics, computer science, be partially or completely due to the confounder. Ran- and econometrics. A full review is outside of the scope domizing the treatment breaks the relationship between of this article, however, we highlight some of recent ad- the treatment and confounder, rendering the observed vances in building flexible causal models. Wager and statistical relationship causal. But the lack of randomized Athey(2017) develop random forests to capture variabil- data necessitates assumptions to control for potential con- ity in treatment effects (Wager and Athey, 2017). Hill founders. These assumptions have focused on causal (2011) uses Bayesian nonparametric methods to model estimation with a single treatment and a single outcome. the outcome response. Louizos et al.(2017) build flexible In real-world settings such as in genetics and medicine,
Recommended publications
  • An Overview of Probabilistic Latent Variable Models with an Application to the Deep Unsupervised Learning of Chromatin States
    An Overview of Probabilistic Latent Variable Models with an Application to the Deep Unsupervised Learning of Chromatin States Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Tarek Farouni, B.A., M.A., M.S. Graduate Program in Psychology The Ohio State University 2017 Dissertation Committee: Robert Cudeck, Advisor Paul DeBoeck Zhong-Lin Lu Ewy Mathe´ c Copyright by Tarek Farouni 2017 Abstract The following dissertation consists of two parts. The first part presents an overview of latent variable models from a probabilistic perspective. The main goal of the overview is to give a birds-eye view of the topographic structure of the space of latent variable models in light of recent developments in statistics and machine learning that show how seemingly unrelated models and methods are in fact intimately related to each other. In the second part of the dissertation, we apply a Deep Latent Gaussian Model (DLGM) to high-dimensional, high-throughput functional epigenomics datasets with the goal of learning a latent representation of functional regions of the genome, both across DNA sequence and across cell-types. In the latter half of the dissertation, we first demonstrate that the trained generative model is able to learn a compressed two-dimensional latent rep- resentation of the data. We then show how the learned latent space is able to capture the most salient patterns of dependencies in the observations such that synthetic samples sim- ulated from the latent manifold are able to reconstruct the same patterns of dependencies we observe in data samples.
    [Show full text]
  • The Implementation of Nonlinear Principal Component Analysis to Acquire the Demography of Latent Variable Data (A Study Case on Brawijaya University Students)
    Mathematics and Statistics 8(4): 437-442, 2020 http://www.hrpub.org DOI: 10.13189/ms.2020.080410 The Implementation of Nonlinear Principal Component Analysis to Acquire the Demography of Latent Variable Data (A Study Case on Brawijaya University Students) Solimun*, Adji Achmad Rinaldo Fernandes, Retno Ayu Cahyoningtyas Department of Statistics, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia Received March 22, 2020; Revised April 24, 2020; Accepted May 3, 2020 Copyright©2020 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract Nonlinear principal component analysis is that simultaneously analyzes multiple variables on an used for data that has a mixed scale. This study uses a individual or object [1]. By using the multivariate analysis, formative measurement model by combining metric and the influence of several variables toward other variables nonmetric data scales. The variable used in this study is the can be done simultaneously for each object of research [5]. demographic variable. This study aims to obtain the Based on the measurement process, variables can be principal component of the latent demographic variable categorized into manifest variables (observable) and latent and to identify the strongest indicators of demographic variables (unobservable) [2][3]. Generally, latent variables formers with mixed scales using samples of students of are defined by the variables that cannot be measured Brawijaya University based on predetermined indicators. directly, yet those variables must be through the indicator The data used in this study are primary data with research that reflects and constructs it [11].
    [Show full text]
  • The Practice of Causal Inference in Cancer Epidemiology
    Vol. 5. 303-31 1, April 1996 Cancer Epidemiology, Biomarkers & Prevention 303 Review The Practice of Causal Inference in Cancer Epidemiology Douglas L. Weedt and Lester S. Gorelic causes lung cancer (3) and to guide causal inference for occu- Preventive Oncology Branch ID. L. W.l and Comprehensive Minority pational and environmental diseases (4). From 1965 to 1995, Biomedical Program IL. S. 0.1. National Cancer Institute, Bethesda, Maryland many associations have been examined in terms of the central 20892 questions of causal inference. Causal inference is often practiced in review articles and editorials. There, epidemiologists (and others) summarize evi- Abstract dence and consider the issues of causality and public health Causal inference is an important link between the recommendations for specific exposure-cancer associations. practice of cancer epidemiology and effective cancer The purpose of this paper is to take a first step toward system- prevention. Although many papers and epidemiology atically reviewing the practice of causal inference in cancer textbooks have vigorously debated theoretical issues in epidemiology. Techniques used to assess causation and to make causal inference, almost no attention has been paid to the public health recommendations are summarized for two asso- issue of how causal inference is practiced. In this paper, ciations: alcohol and breast cancer, and vasectomy and prostate we review two series of review papers published between cancer. The alcohol and breast cancer association is timely, 1985 and 1994 to find answers to the following questions: controversial, and in the public eye (5). It involves a common which studies and prior review papers were cited, which exposure and a common cancer and has a large body of em- causal criteria were used, and what causal conclusions pirical evidence; over 50 studies and over a dozen reviews have and public health recommendations ensued.
    [Show full text]
  • Statistics and Causal Inference (With Discussion)
    Applied Statistics Lecture Notes Kosuke Imai Department of Politics Princeton University February 2, 2008 Making statistical inferences means to learn about what you do not observe, which is called parameters, from what you do observe, which is called data. We learn the basic principles of statistical inference from a perspective of causal inference, which is a popular goal of political science research. Namely, we study statistics by learning how to make causal inferences with statistical methods. 1 Statistical Framework of Causal Inference What do we exactly mean when we say “An event A causes another event B”? Whether explicitly or implicitly, this question is asked and answered all the time in political science research. The most commonly used statistical framework of causality is based on the notion of counterfactuals (see Holland, 1986). That is, we ask the question “What would have happened if an event A were absent (or existent)?” The following example illustrates the fact that some causal questions are more difficult to answer than others. Example 1 (Counterfactual and Causality) Interpret each of the following statements as a causal statement. 1. A politician voted for the education bill because she is a democrat. 2. A politician voted for the education bill because she is liberal. 3. A politician voted for the education bill because she is a woman. In this framework, therefore, the fundamental problem of causal inference is that the coun- terfactual outcomes cannot be observed, and yet any causal inference requires both factual and counterfactual outcomes. This idea is formalized below using the potential outcomes notation.
    [Show full text]
  • Equivalence Between Minimal Generative Model Graphs and Directed Information Graphs
    Equivalence Between Minimal Generative Model Graphs and Directed Information Graphs Christopher J. Quinn Negar Kiyavash Todd P. Coleman Department of Electrical and Department of Industrial and Department of Electrical and Computer Engineering Enterprise Systems Engineering Computer Engineering University of Illinois University of Illinois University of Illinois Urbana, Illinois 61801 Urbana, Illinois 61801 Urbana, Illinois 61801 Email: [email protected] Email: [email protected] Email: [email protected] Abstract—We propose a new type of probabilistic graphical own past [4], [5]. This improvement is measured in terms of model, based on directed information, to represent the causal average reduction in the encoding length of the information. dynamics between processes in a stochastic system. We show the Clearly such a definition of causality has the notion of timing practical significance of such graphs by proving their equivalence to generative model graphs which succinctly summarize interde- ingrained in it. Therefore, we expect a graphical model defined pendencies for causal dynamical systems under mild assumptions. based on directed information to deal with processes as its This equivalence means that directed information graphs may be nodes. used for causal inference and learning tasks in the same manner In this work, we formally define directed information Bayesian networks are used for correlative statistical inference graphs, an alternative type of graphical model. In these graphs, and learning. nodes represent processes, and directed edges correspond to whether there is directed information from one process to I. INTRODUCTION another. To demonstrate the practical significance of directed Graphical models facilitate design and analysis of interact- information graphs, we validate their ability to capture causal ing multivariate probabilistic complex systems that arise in interdependencies for a class of interacting processes corre- numerous fields such as statistics, information theory, machine sponding to a causal dynamical system.
    [Show full text]
  • Bayesian Causal Inference
    Bayesian Causal Inference Maximilian Kurthen Master’s Thesis Max Planck Institute for Astrophysics Within the Elite Master Program Theoretical and Mathematical Physics Ludwig Maximilian University of Munich Technical University of Munich Supervisor: PD Dr. Torsten Enßlin Munich, September 12, 2018 Abstract In this thesis we address the problem of two-variable causal inference. This task refers to inferring an existing causal relation between two random variables (i.e. X → Y or Y → X ) from purely observational data. We begin by outlining a few basic definitions in the context of causal discovery, following the widely used do-Calculus [Pea00]. We continue by briefly reviewing a number of state-of-the-art methods, including very recent ones such as CGNN [Gou+17] and KCDC [MST18]. The main contribution is the introduction of a novel inference model where we assume a Bayesian hierarchical model, pursuing the strategy of Bayesian model selection. In our model the distribution of the cause variable is given by a Poisson lognormal distribution, which allows to explicitly regard discretization effects. We assume Fourier diagonal covariance operators, where the values on the diagonal are given by power spectra. In the most shallow model these power spectra and the noise variance are fixed hyperparameters. In a deeper inference model we replace the noise variance as a given prior by expanding the inference over the noise variance itself, assuming only a smooth spatial structure of the noise variance. Finally, we make a similar expansion for the power spectra, replacing fixed power spectra as hyperparameters by an inference over those, where again smoothness enforcing priors are assumed.
    [Show full text]
  • Removing Hidden Confounding by Experimental Grounding
    Removing Hidden Confounding by Experimental Grounding Nathan Kallus Aahlad Manas Puli Uri Shalit Cornell University and Cornell Tech New York University Technion New York, NY New York, NY Haifa, Israel [email protected] [email protected] [email protected] Abstract Observational data is increasingly used as a means for making individual-level causal predictions and intervention recommendations. The foremost challenge of causal inference from observational data is hidden confounding, whose presence cannot be tested in data and can invalidate any causal conclusion. Experimental data does not suffer from confounding but is usually limited in both scope and scale. We introduce a novel method of using limited experimental data to correct the hidden confounding in causal effect models trained on larger observational data, even if the observational data does not fully overlap with the experimental data. Our method makes strictly weaker assumptions than existing approaches, and we prove conditions under which it yields a consistent estimator. We demonstrate our method’s efficacy using real-world data from a large educational experiment. 1 Introduction In domains such as healthcare, education, and marketing there is growing interest in using observa- tional data to draw causal conclusions about individual-level effects; for example, using electronic healthcare records to determine which patients should get what treatments, using school records to optimize educational policy interventions, or using past advertising campaign data to refine targeting and maximize lift. Observational datasets, due to their often very large number of samples and exhaustive scope (many measured covariates) in comparison to experimental datasets, offer a unique opportunity to uncover fine-grained effects that may apply to many target populations.
    [Show full text]
  • PLS-Regression
    Chemometrics and Intelligent Laboratory Systems 58Ž. 2001 109–130 www.elsevier.comrlocaterchemometrics PLS-regression: a basic tool of chemometrics Svante Wold a,), Michael Sjostrom¨¨a, Lennart Eriksson b a Research Group for Chemometrics, Institute of Chemistry, Umea˚˚ UniÕersity, SE-901 87 Umea, Sweden b Umetrics AB, Box 7960, SE-907 19 Umea,˚ Sweden Abstract PLS-regressionŽ. PLSR is the PLS approach in its simplest, and in chemistry and technology, most used formŽ two-block predictive PLS. PLSR is a method for relating two data matrices, X and Y, by a linear multivariate model, but goes beyond traditional regression in that it models also the structure of X and Y. PLSR derives its usefulness from its ability to analyze data with many, noisy, collinear, and even incomplete variables in both X and Y. PLSR has the desirable property that the precision of the model parameters improves with the increasing number of relevant variables and observations. This article reviews PLSR as it has developed to become a standard tool in chemometrics and used in chemistry and engineering. The underlying model and its assumptions are discussed, and commonly used diagnostics are reviewed together with the interpretation of resulting parameters. Two examples are used as illustrations: First, a Quantitative Structure–Activity RelationshipŽ. QSAR rQuantitative Struc- ture–Property RelationshipŽ. QSPR data set of peptides is used to outline how to develop, interpret and refine a PLSR model. Second, a data set from the manufacturing of recycled paper is analyzed to illustrate time series modelling of process data by means of PLSR and time-lagged X-variables.
    [Show full text]
  • Articles Causal Inference in Civil Rights Litigation
    VOLUME 122 DECEMBER 2008 NUMBER 2 © 2008 by The Harvard Law Review Association ARTICLES CAUSAL INFERENCE IN CIVIL RIGHTS LITIGATION D. James Greiner TABLE OF CONTENTS I. REGRESSION’S DIFFICULTIES AND THE ABSENCE OF A CAUSAL INFERENCE FRAMEWORK ...................................................540 A. What Is Regression? .........................................................................................................540 B. Problems with Regression: Bias, Ill-Posed Questions, and Specification Issues .....543 1. Bias of the Analyst......................................................................................................544 2. Ill-Posed Questions......................................................................................................544 3. Nature of the Model ...................................................................................................545 4. One Regression, or Two?............................................................................................555 C. The Fundamental Problem: Absence of a Causal Framework ....................................556 II. POTENTIAL OUTCOMES: DEFINING CAUSAL EFFECTS AND BEYOND .................557 A. Primitive Concepts: Treatment, Units, and the Fundamental Problem.....................558 B. Additional Units and the Non-Interference Assumption.............................................560 C. Donating Values: Filling in the Missing Counterfactuals ...........................................562 D. Randomization: Balance in Background Variables ......................................................563
    [Show full text]
  • Confounding Bias, Part I
    ERIC NOTEBOOK SERIES Second Edition Confounding Bias, Part I Confounding is one type of Second Edition Authors: Confounding is also a form a systematic error that can occur in bias. Confounding is a bias because it Lorraine K. Alexander, DrPH epidemiologic studies. Other types of can result in a distortion in the systematic error such as information measure of association between an Brettania Lopes, MPH bias or selection bias are discussed exposure and health outcome. in other ERIC notebook issues. Kristen Ricchetti-Masterson, MSPH Confounding may be present in any Confounding is an important concept Karin B. Yeatts, PhD, MS study design (i.e., cohort, case-control, in epidemiology, because, if present, observational, ecological), primarily it can cause an over- or under- because it's not a result of the study estimate of the observed association design. However, of all study designs, between exposure and health ecological studies are the most outcome. The distortion introduced susceptible to confounding, because it by a confounding factor can be large, is more difficult to control for and it can even change the apparent confounders at the aggregate level of direction of an effect. However, data. In all other cases, as long as unlike selection and information there are available data on potential bias, it can be adjusted for in the confounders, they can be adjusted for analysis. during analysis. What is confounding? Confounding should be of concern Confounding is the distortion of the under the following conditions: association between an exposure 1. Evaluating an exposure-health and health outcome by an outcome association.
    [Show full text]
  • A Hierarchical Generative Model of Electrocardiogram Records
    A Hierarchical Generative Model of Electrocardiogram Records Andrew C. Miller ∗ Sendhil Mullainathan School of Engineering and Applied Sciences Department of Economics Harvard University Harvard University Cambridge, MA 02138 Cambridge, MA 02138 [email protected] [email protected] Ziad Obermeyer Brigham and Women’s Hospital Harvard Medical School Boston, MA 02115 [email protected] Abstract We develop a probabilistic generative model of electrocardiogram (EKG) tracings. Our model describes multiple sources of variation in EKGs, including patient- specific cardiac cycle morphology and between-cycle variation that leads to quasi- periodicity. We use a deep generative network as a flexible model component to describe variation in beat-specific morphology. We apply our model to a set of 549 EKG records, including over 4,600 unique beats, and show that it is able to discover interpretable information, such as patient similarity and meaningful physiological features (e.g., T wave inversion). 1 Introduction An electrocardiogram (EKG) is a common non-invasive medical test that measures the electrical activity of a patient’s heart by recording the time-varying potential difference between electrodes placed on the surface of the skin. The resulting data is a multivariate time-series that reflects the depolarization and repolarization of the heart muscle that occurs during each heartbeat. These raw waveforms are then inspected by a physician to detect irregular patterns that are evidence of an underlying physiological problem. In this paper, we build a hierarchical generative model of electrocardiogram signals that disentangles sources of variation. We are motivated to build a generative model of EKGs for multiple reasons.
    [Show full text]
  • Worse Than Measurement Error 1 Running Head
    Worse than Measurement Error 1 Running Head: WORSE THAN MEASUREMENT ERROR Worse than Measurement Error: Consequences of Inappropriate Latent Variable Measurement Models Mijke Rhemtulla Department of Psychology, University of California, Davis Riet van Bork and Denny Borsboom Department of Psychological Methods, University of Amsterdam Author Note. This research was supported in part by grants FP7-PEOPLE-2013-CIG- 631145 (Mijke Rhemtulla) and Consolidator Grant, No. 647209 (Denny Borsboom) from the European Research Council. Parts of this work were presented at the 30th Annual Convention of the Association for Psychological Science. A draft of this paper was made available as a preprint on the Open Science Framework. Address correspondence to Mijke Rhemtulla, Department of Psychology, University of California, Davis, One Shields Avenue, Davis, CA 95616. [email protected]. [This version accepted for publication in Psychological Methods on March 11, 2019] Worse than Measurement Error 2 Abstract Previous research and methodological advice has focussed on the importance of accounting for measurement error in psychological data. That perspective assumes that psychological variables conform to a common factor model. We explore what happens when data that are not generated from a common factor model are nonetheless modeled as reflecting a common factor. Through a series of hypothetical examples and an empirical re-analysis, we show that when a common factor model is misused, structural parameter estimates that indicate the relations among psychological constructs can be severely biased. Moreover, this bias can arise even when model fit is perfect. In some situations, composite models perform better than common factor models. These demonstrations point to a need for models to be justified on substantive, theoretical bases, in addition to statistical ones.
    [Show full text]