A Survey of Dwarf Irregular Galaxies in the Local Sheet

Total Page:16

File Type:pdf, Size:1020Kb

A Survey of Dwarf Irregular Galaxies in the Local Sheet A SURVEY OF DWARF IRREGULAR GALAXIES IN THE LOCAL SHEET ROBIN LEIGH FINGERHUT A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN PHYSICS AND ASTRONOMY YORK UNIVERSITY, TORONTO, ONTARIO DECEMBER 2011 Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du 1*1 Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada NOTICE: AVIS: The author has granted a non­ L'auteur a accorc exclusive license allowing Library and permettant a la E Archives Canada to reproduce, Canada de reprc publish, archive, preserve, conserve, sauvegarder, cor communicate to the public by par telecommuni telecommunication or on the Internet, distribuer et venc loan, distrbute and sell theses monde, a des fin worldwide, for commercial or non­ support microfori commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserv ownership and moral rights in this et des droits mor thesis. Neither the thesis nor la these ni des e: substantial extracts from it may be ne doivent etre ir printed or otherwise reproduced reproduits sans s without the author's permission. Abstract This dissertation delineates and examines a sheet-like structure of galaxies embedded within the Local Supercluster. It is shown that this structure, coined "The Local Sheet", has a non-isotropic boundary at a mean distance of ~4 Mpc from the Milky Way, with the vast majority of its galaxies situated within 0.5 Mpc of the Supergalactic Plane. Its thickness is -10% of its length, which is over twice as thin as the Local Supercluster out to -10 Mpc. Upon establishing the definition of Local Sheet membership, a set of diagnostics of the luminous mass and dynamics of the Sheet's most plentiful constituents, its dwarf irregular galaxies (dls), is presented. Luminous masses were gauged from photometry in the near-infrared (Ks), where more than 95% of a dl's light can be attributed to the stars which make up the bulk of a dl's mass. To this end, an extensive Ks imaging survey of over 70 Sheet dls was conducted. The spatial distributions of the dwarf properties were then investigated for environmental influences and compared with predictions for a dynamically equilibrated sheet-like structure. To establish a framework for these observations, the same investigations were pursued using a sample of 8 theoretical sheets extracted from an N-body simulation of structure formation in the standard ACDM cosmology. Both the Local Sheet and the theoretical sheets are found to have vertical crossing times which exceed half the Universe's Age. This indicates that the Local Sheet's - iv - galaxies are making their first traversal of the Sheet's vertical extent. Nevertheless, the vertical dynamics of the dark matter halos in the theoretical sheets exhibit similarities with the predictions for an equilibrated sheet for which the density declines exponentially with altitude. Further evidence of dynamical equilibrium is found in the vertical density profiles of both the Local Sheet and the theoretical sheets, which closely match an exponential model. Tentative evidence is found for a correlation between a sheet's dynamical and structural parameters and its crossing time, in the sense that theoretical sheets with the shortest crossing times show the strongest agreement with the exponential density model for an equilibrated sheet. Based upon its comparatively long crossing time, the Local Sheet appears to be in the process of evolving into an equilibrated system. For a sheet to attain gravitational equilibrium, the exponential model requires that the sheet contains at least 1.5 times as much mass as is attached to its galaxies. The simulated sheets are estimated to possess at least this amount of mass in the form of dark matter below the approximate minimum mass of galaxy-sized halos. It is therefore concluded that the Local Sheet is pervaded by an intra-sheet population of dark matter which contains approximately as much mass as its galaxies. - v - Acknowledgements The completion of this dissertation was made possible by the unlimited patience and support of my supervisor, Dr. Marshall McCall. I have benefited immeasurably from his endless knowledge as well as from his demanding expectations. I am proud of all the work that we've done together. I would also like to thank my supervisory committee for their very helpful feedback. A special thank you goes to my entire examining committee for making the oral defense such a rewarding and memorable experience. Thank you to my mom, Beverley Fingerhut, an incredible person who makes anything possible. And finally, thank you to my husband, Dr. Robert Metcalfe, and my sons Jesse and Joey Metcalfe. Every day, at least one of you makes me laugh, and that makes life amazing. Thank you for being such super-awesome people. • VI - Table of Contents Abstract iv Acknowledgements vi Table of Contents vii L Introduction 1 1.1 Evidence for a Local Sheet of Galaxies 1 1.2 Scientific Justification for a Survey of dls in the Local Sheet 5 1.3 Features of this Study 8 1.4 Outline of this Dissertation 10 2. The Sample of Local Sheet dls 12 2.1 The Current Census of Nearby dls 12 2.1.1 Extinctions and cosmological corrections 15 2.1.2 Distances 16 2.2 The Local Sheet Reference Frame 22 2.3 Sample Definition 24 2.3.1 Extraction of the Local Sheet 24 2.3.2 Local Sheet candidates with uncertain distances 28 2.3.3 The Local Sheet survey region 29 2.4 The Local Sheet Sample 31 2.5 Sample Completeness 42 3. Theoretical Predictions of Sheets 48 3.1 The Current State of Cosmology 48 3.2 The ACDM Simulation and the Sheet Extraction Process 50 3.2.1 The overabundance of dwarf satellites predicted by the ACDM model 57 3.3 The Mass Functions of CDM Sheets 57 3.4 The Distribution of Mass in CDM Sheets 60 3.5 The Density Profiles of CDM Sheets 66 3.5.1 Construction of the vertical density profile 66 3.5.2 Vertical density models of equilibrated sheet-like systems 67 3.5.3 Fitting of the vertical density profile 70 - vii - 3.6 Peculiar Motions in CDM Sheets 81 3.6.1 The z-dependence of the vertical velocity dispersion 82 3.6.2 The relationship between the vertical and radial velocity dispersion 85 3.7 The Crossing Times of CDM Sheets 87 3.7.1 Are sheets evolving systems? 88 3.8 Surface Densities of CDM Sheets 95 4. The Near-Infrared Imaging Survey and Data Mining of Local Sheet dis 100 4.1 Ks Imaging Observations 100 4.1.1 CFHT observations 103 4.1.2 OAN-SPM observations 103 4.1.3 IRSF observations 104 4.1.4 CTIO observations 104 4.1.5 ESO observations 105 4.1.6 WIRCam observations 105 4.2 Ks Image Reduction 107 4.2.1 Image preprocessing 108 4.2.2 Sky subtraction 109 4.2.3 Photometric calibration 112 4.3 Ks Surface Photometry 113 4.4 Fitting of Surface Brightness Profiles in Ks 116 4.4.1 Radial range of the fits 117 4.4.2 Uncertainties in the fit parameters 118 4.4.3 Astrometry 119 4.5 Integrated Ks Magnitudes 132 4.5.1 Comparison with different facilities 133 4.5.2 Comparison with 2MASS photometric parameters 135 4.5.3 The dl Potential Plane 137 4.5.4 K, magnitudes for unobserved Sheet dis 138 4.6 Derived Masses of the Local Sheet dis 142 4.6.1 Stellar masses 142 4.6.2 Gas masses 143 5. Analysis of the Local Sheet 151 5.1 What We Can Learn From Our Own Backyard 151 5.2 The Distribution of Mass in the Local Sheet 154 5.2.1 Luminous mass 154 5.2.2 Gas fraction 160 5.2.3 (B-KJ o colour 164 5.3 The Density Profile of the Local Sheet 166 5.3.1 Effects of sample incompleteness 169 5.4 Peculiar Motions in the Local Sheet 171 5.4.1 The vertical velocity dispersion 176 - viii 5.5 The Crossing Time of the Local Sheet 177 5.6 The Surface Mass Density of the Local Sheet 179 6. Conclusions 185 6.1 Summary of Results 185 6.2 Future Work 191 7. References 193 - ix - 1. Introduction Kirk: "No, I'm from Iowa. I only work in outer space." 1.1 Evidence for a Local Sheet of Galaxies In the 1780s, the German-English musician William Herschel used a home-made 18.7-inch reflector to conduct the first systematic sweep of galaxies from his backyard in Bath, England. In his On the Construction of the Heavens (Herschel 1785), he made one of the first documented observations of large-scale structure in the Universe by describing a "collection of many hundreds of nebulae which are to be seen in what I have called the nebulous stratum of Coma Berenices." Edwin Hubble, shortly after his determination of the 1st definitive extragalactic distance using a Cepheid in M31, observed that the Milky Way is found within a much smaller-scale "stratum" composed of, at least, 7 members. In his Realm of the Nebulae, Hubble named this system "The Local Group" (Hubble 1936). The most recent census of the Local Group includes 35 galaxies spanning roughly 2 Mpc in extent (van den Bergh 2007). In 1958, George O. Abell published The Distribution of Rich Clusters of Galaxies containing over 2700 galaxy clusters (Abell 1958).
Recommended publications
  • The HERACLES View of the H -To-HI Ratio in Galaxies
    The HERACLES View of the H2-to-HI Ratio in Galaxies Adam Leroy (NRAO, Hubble Fellow) Fabian Walter, Frank Bigiel, the HERACLES and THINGS teams The Saturday Morning Summary • Star formation rate vs. gas relation on ~kpc scales breaks apart into: A relatively universal CO-SFR relation in nearby disks Systematic environmental scalings in the CO-to-HI ratio • The CO-to-HI ratio is a strong function of radius, total gas, and stellar surface density correlated with ISM properties: dust-to-gas ratio, pressure harder to link to dynamics: gravitational instability, arms • Interpretation: the CO-to-HI ratio traces the efficiency of GMC formation Density and dust can explain much of the observed behavior heracles Fabian Walter Erik Rosolowsky MPIA UBC Frank Bigiel Eva Schinnerer UC Berkeley THINGS plus… MPIA Elias Brinks Antonio Usero Gaelle Dumas U Hertfordshire OAN, Madrid MPIA Erwin de Blok Andreas Schruba Helmut Wiesemeyer U Cape Town IRAM … MPIA Rob Kennicutt Axel Weiss Karl Schuster Cambridge MPIfR IRAM Barry Madore Carsten Kramer Karin Sandstrom Carnegie IRAM MPIA Michele Thornley Daniela Calzetti Kelly Foyle Bucknell UMass MPIA Collaborators The HERA CO-Line Extragalactic Survey First maps Leroy et al. (2009) • IRAM 30m Large Program to map CO J = 2→1 line • Instrument: HERA receiver array operating at 230 GHz • 47 galaxies: dwarfs to starbursts and massive spirals -2 • Very wide-field (~ r25) and sensitive (σ ~ 1-2 Msun pc ) NGS The HI Nearby Galaxy Survey HI Walter et al. (2008), AJ Special Issue (2008) • VLA HI maps of 34 galaxies:
    [Show full text]
  • Dwarf Galaxies: Probes for Galaxy Formation and Evolution
    JD2 Dwarf Galaxies: Probes for Galaxy Formation and Evolution Chairpersons and Editors: E. Brinks &; T. X. Thuan Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.139, on 30 Sep 2021 at 22:48:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1539299600020074 MULTI-SPECTRAL STUDIES OF THE NEARBY DWARF GALAXIES UGCA86 AND LMC/SMC G. M. RICHTER Astrophysikalisches Institut Potsdam An der Sternwarte 16, D-14482 Potsdam, Germany gmrichter@aip. de M. BRAUN ESA-VILSPA ISOPHOT IDT Villafranca del Castillo, Satellite Tracking Station Apartado 50727, E-28080 Madrid, Spain mbraun@liso.vilspa.esa.es AND R. ASSENDORP Astrophysikalisches Institut Potsdam An der Sternwarte 16, D-14482 Potsdam, Germany rassendorp @aip. de 1. Background UGCA 86 is an irregular dwarf galaxy in the IC 342 / Maffei I group, just next to the Local Group. It was first mentioned by Zwicky (1968) as VII Zw 009, but not contained in his "Catalogue of Selected Compact Galaxies and of Post-eruptive Galaxies" (1971). It was independently rediscovered by Nilson (1974) and Rots (1979) as UGCA 86 and A 0355 resp. Rots found it by HI observations, and from peculiarities in the HI morphology and kinematics he suspected that it was interacting with IC 342. Thus, the tentatively interesting items: a starforming, low surface brightness dwarf galaxy in an interacting system (one of the nearest), triggered us to engage in more detailed studies. In a first step, we made detailed surface photometry in U, B and V (Richter et al.
    [Show full text]
  • Cosmicflows-3: Cosmography of the Local Void
    Draft version May 22, 2019 Preprint typeset using LATEX style AASTeX6 v. 1.0 COSMICFLOWS-3: COSMOGRAPHY OF THE LOCAL VOID R. Brent Tully, Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA Daniel Pomarede` Institut de Recherche sur les Lois Fondamentales de l'Univers, CEA, Universite' Paris-Saclay, 91191 Gif-sur-Yvette, France Romain Graziani University of Lyon, UCB Lyon 1, CNRS/IN2P3, IPN Lyon, France Hel´ ene` M. Courtois University of Lyon, UCB Lyon 1, CNRS/IN2P3, IPN Lyon, France Yehuda Hoffman Racah Institute of Physics, Hebrew University, Jerusalem, 91904 Israel Edward J. Shaya University of Maryland, Astronomy Department, College Park, MD 20743, USA ABSTRACT Cosmicflows-3 distances and inferred peculiar velocities of galaxies have permitted the reconstruction of the structure of over and under densities within the volume extending to 0:05c. This study focuses on the under dense regions, particularly the Local Void that lies largely in the zone of obscuration and consequently has received limited attention. Major over dense structures that bound the Local Void are the Perseus-Pisces and Norma-Pavo-Indus filaments sepa- rated by 8,500 km s−1. The void network of the universe is interconnected and void passages are found from the Local Void to the adjacent very large Hercules and Sculptor voids. Minor filaments course through voids. A particularly interesting example connects the Virgo and Perseus clusters, with several substantial galaxies found along the chain in the depths of the Local Void. The Local Void has a substantial dynamical effect, causing a deviant motion of the Local Group of 200 − 250 km s−1.
    [Show full text]
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
    Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1,
    [Show full text]
  • THE 1000 BRIGHTEST HIPASS GALAXIES: H I PROPERTIES B
    The Astronomical Journal, 128:16–46, 2004 July A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 1000 BRIGHTEST HIPASS GALAXIES: H i PROPERTIES B. S. Koribalski,1 L. Staveley-Smith,1 V. A. Kilborn,1, 2 S. D. Ryder,3 R. C. Kraan-Korteweg,4 E. V. Ryan-Weber,1, 5 R. D. Ekers,1 H. Jerjen,6 P. A. Henning,7 M. E. Putman,8 M. A. Zwaan,5, 9 W. J. G. de Blok,1,10 M. R. Calabretta,1 M. J. Disney,10 R. F. Minchin,10 R. Bhathal,11 P. J. Boyce,10 M. J. Drinkwater,12 K. C. Freeman,6 B. K. Gibson,2 A. J. Green,13 R. F. Haynes,1 S. Juraszek,13 M. J. Kesteven,1 P. M. Knezek,14 S. Mader,1 M. Marquarding,1 M. Meyer,5 J. R. Mould,15 T. Oosterloo,16 J. O’Brien,1,6 R. M. Price,7 E. M. Sadler,13 A. Schro¨der,17 I. M. Stewart,17 F. Stootman,11 M. Waugh,1, 5 B. E. Warren,1, 6 R. L. Webster,5 and A. E. Wright1 Received 2002 October 30; accepted 2004 April 7 ABSTRACT We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H i brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey (HIPASS). The selection of the brightest sources is basedontheirHi peak flux density (Speak k116 mJy) as measured from the spatially integrated HIPASS spectrum. 7 ; 10 The derived H i masses range from 10 to 4 10 M .
    [Show full text]
  • Luminous Blue Variables
    Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs.
    [Show full text]
  • 1. Introduction
    THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 122:109È150, 1999 May ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALAXY STRUCTURAL PARAMETERS: STAR FORMATION RATE AND EVOLUTION WITH REDSHIFT M. TAKAMIYA1,2 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637; and Gemini 8 m Telescopes Project, 670 North Aohoku Place, Hilo, HI 96720 Received 1998 August 4; accepted 1998 December 21 ABSTRACT The evolution of the structure of galaxies as a function of redshift is investigated using two param- eters: the metric radius of the galaxy(Rg) and the power at high spatial frequencies in the disk of the galaxy (s). A direct comparison is made between nearby (z D 0) and distant(0.2 [ z [ 1) galaxies by following a Ðxed range in rest frame wavelengths. The data of the nearby galaxies comprise 136 broad- band images at D4500A observed with the 0.9 m telescope at Kitt Peak National Observatory (23 galaxies) and selected from the catalog of digital images of Frei et al. (113 galaxies). The high-redshift sample comprises 94 galaxies selected from the Hubble Deep Field (HDF) observations with the Hubble Space Telescope using the Wide Field Planetary Camera 2 in four broad bands that range between D3000 and D9000A (Williams et al.). The radius is measured from the intensity proÐle of the galaxy using the formulation of Petrosian, and it is argued to be a metric radius that should not depend very strongly on the angular resolution and limiting surface brightness level of the imaging data. It is found that the metric radii of nearby and distant galaxies are comparable to each other.
    [Show full text]
  • Dwarfs Walking in a Row the filamentary Nature of the NGC 3109 Association
    A&A 559, L11 (2013) Astronomy DOI: 10.1051/0004-6361/201322744 & c ESO 2013 Astrophysics Letter to the Editor Dwarfs walking in a row The filamentary nature of the NGC 3109 association M. Bellazzini1, T. Oosterloo2;3, F. Fraternali4;3, and G. Beccari5 1 INAF – Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy e-mail: michele.bellazzini@oabo.inaf.it 2 Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, The Netherlands 3 Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen, The Netherlands 4 Dipartimento di Fisica e Astronomia - Università degli Studi di Bologna, viale Berti Pichat 6/2, 40127 Bologna, Italy 5 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei Munchen, Germany Received 24 September 2013 / Accepted 22 October 2013 ABSTRACT We re-consider the association of dwarf galaxies around NGC 3109, whose known members were NGC 3109, Antlia, Sextans A, and Sextans B, based on a new updated list of nearby galaxies and the most recent data. We find that the original members of the NGC 3109 association, together with the recently discovered and adjacent dwarf irregular Leo P, form a very tight and elongated configuration in space. All these galaxies lie within ∼100 kpc of a line that is '1070 kpc long, from one extreme (NGC 3109) to the other (Leo P), and they show a gradient in the Local Group standard of rest velocity with a total amplitude of 43 km s−1 Mpc−1, and a rms scatter of just 16.8 km s−1. It is shown that the reported configuration is exceptional given the known dwarf galaxies in the Local Group and its surroundings.
    [Show full text]
  • The Metallicity-Luminosity Relationship of Dwarf Irregular Galaxies
    A&A 399, 63–76 (2003) Astronomy DOI: 10.1051/0004-6361:20021748 & c ESO 2003 Astrophysics The metallicity-luminosity relationship of dwarf irregular galaxies II. A new approach A. M. Hidalgo-G´amez1,,F.J.S´anchez-Salcedo2, and K. Olofsson1 1 Astronomiska observatoriet, Box 515, 751 20 Uppsala, Sweden e-mail: anamaria@astro.uu.se, kjell.olofsson@astro.uu.se 2 Instituto de Astronom´ıa-UNAM, Ciudad Universitaria, Apt. Postal 70 264, C.P. 04510, Mexico City, Mexico e-mail: jsanchez@astroscu.unam.mx Received 21 June 2001 / Accepted 21 November 2002 Abstract. The nature of a possible correlation between metallicity and luminosity for dwarf irregular galaxies, including those with the highest luminosities, has been explored using simple chemical evolutionary models. Our models depend on a set of free parameters in order to include infall and outflows of gas and covering a broad variety of physical situations. Given a fixed set of parameters, a non-linear correlation between the oxygen abundance and the luminosity may be established. This would be the case if an effective self–regulating mechanism between the accretion of mass and the wind energized by the star formation could lead to the same parameters for all the dwarf irregular galaxies. In the case that these parameters were distributed in a random manner from galaxy to galaxy, a significant scatter in the metallicity–luminosity diagram is expected. Comparing with observations, we show that only variations of the stellar mass–to–light ratio are sufficient to explain the observed scattering and, therefore, the action of a mechanism of self–regulation cannot be ruled out.
    [Show full text]
  • Report of Contributions
    Mapping the X-ray Sky with SRG: First Results from eROSITA and ART-XC Report of Contributions https://events.mpe.mpg.de/e/SRG2020 Mapping the X- … / Report of Contributions eROSITA discovery of a new AGN … Contribution ID : 4 Type : Oral Presentation eROSITA discovery of a new AGN state in 1H0707-495 Tuesday, 17 March 2020 17:45 (15) One of the most prominent AGNs, the ultrasoft Narrow-Line Seyfert 1 Galaxy 1H0707-495, has been observed with eROSITA as one of the first CAL/PV observations on October 13, 2019 for about 60.000 seconds. 1H 0707-495 is a highly variable AGN, with a complex, steep X-ray spectrum, which has been the subject of intense study with XMM-Newton in the past. 1H0707-495 entered an historical low hard flux state, first detected with eROSITA, never seen before in the 20 years of XMM-Newton observations. In addition ultra-soft emission with a variability factor of about 100 has been detected for the first time in the eROSITA light curves. We discuss fast spectral transitions between the cool and a hot phase of the accretion flow in the very strong GR regime as a physical model for 1H0707-495, and provide tests on previously discussed models. Presenter status Senior eROSITA consortium member Primary author(s) : Prof. BOLLER, Thomas (MPE); Prof. NANDRA, Kirpal (MPE Garching); Dr LIU, Teng (MPE Garching); MERLONI, Andrea; Dr DAUSER, Thomas (FAU Nürnberg); Dr RAU, Arne (MPE Garching); Dr BUCHNER, Johannes (MPE); Dr FREYBERG, Michael (MPE) Presenter(s) : Prof. BOLLER, Thomas (MPE) Session Classification : AGN physics, variability, clustering October 3, 2021 Page 1 Mapping the X- … / Report of Contributions X-ray emission from warm-hot int … Contribution ID : 9 Type : Poster X-ray emission from warm-hot intergalactic medium: the role of resonantly scattered cosmic X-ray background We revisit calculations of the X-ray emission from warm-hot intergalactic medium (WHIM) with particular focus on contribution from the resonantly scattered cosmic X-ray background (CXB).
    [Show full text]
  • The Extragalactic Distance Scale
    The Extragalactic Distance Scale Published in "Stellar astrophysics for the local group" : VIII Canary Islands Winter School of Astrophysics. Edited by A. Aparicio, A. Herrero, and F. Sanchez. Cambridge ; New York : Cambridge University Press, 1998 Calibration of the Extragalactic Distance Scale By BARRY F. MADORE1, WENDY L. FREEDMAN2 1NASA/IPAC Extragalactic Database, Infrared Processing & Analysis Center, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA 91125, USA 2Observatories, Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena CA 91101, USA The calibration and use of Cepheids as primary distance indicators is reviewed in the context of the extragalactic distance scale. Comparison is made with the independently calibrated Population II distance scale and found to be consistent at the 10% level. The combined use of ground-based facilities and the Hubble Space Telescope now allow for the application of the Cepheid Period-Luminosity relation out to distances in excess of 20 Mpc. Calibration of secondary distance indicators and the direct determination of distances to galaxies in the field as well as in the Virgo and Fornax clusters allows for multiple paths to the determination of the absolute rate of the expansion of the Universe parameterized by the Hubble constant. At this point in the reduction and analysis of Key Project galaxies H0 = 72km/ sec/Mpc ± 2 (random) ± 12 [systematic]. Table of Contents INTRODUCTION TO THE LECTURES CEPHEIDS BRIEF SUMMARY OF THE OBSERVED PROPERTIES OF CEPHEID
    [Show full text]