Restionaceae (Poales) in the Footsteps of Robert Brown
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Native Vegetation of the Nattai and Bargo Reserves
The Native Vegetation of the Nattai and Bargo Reserves Project funded under the Central Directorate Parks and Wildlife Division Biodiversity Data Priorities Program Conservation Assessment and Data Unit Conservation Programs and Planning Branch, Metropolitan Environmental Protection and Regulation Division Department of Environment and Conservation ACKNOWLEDGMENTS CADU (Central) Manager Special thanks to: Julie Ravallion Nattai NP Area staff for providing general assistance as well as their knowledge of the CADU (Central) Bioregional Data Group area, especially: Raf Pedroza and Adrian Coordinator Johnstone. Daniel Connolly Citation CADU (Central) Flora Project Officer DEC (2004) The Native Vegetation of the Nattai Nathan Kearnes and Bargo Reserves. Unpublished Report. Department of Environment and Conservation, CADU (Central) GIS, Data Management and Hurstville. Database Coordinator This report was funded by the Central Peter Ewin Directorate Parks and Wildlife Division, Biodiversity Survey Priorities Program. Logistics and Survey Planning All photographs are held by DEC. To obtain a Nathan Kearnes copy please contact the Bioregional Data Group Coordinator, DEC Hurstville Field Surveyors David Thomas Cover Photos Teresa James Nathan Kearnes Feature Photo (Daniel Connolly) Daniel Connolly White-striped Freetail-bat (Michael Todd), Rock Peter Ewin Plate-Heath Mallee (DEC) Black Crevice-skink (David O’Connor) Aerial Photo Interpretation Tall Moist Blue Gum Forest (DEC) Ian Roberts (Nattai and Bargo, this report; Rainforest (DEC) Woronora, 2003; Western Sydney, 1999) Short-beaked Echidna (D. O’Connor) Bob Wilson (Warragamba, 2003) Grey Gum (Daniel Connolly) Pintech (Pty Ltd) Red-crowned Toadlet (Dave Hunter) Data Analysis ISBN 07313 6851 7 Nathan Kearnes Daniel Connolly Report Writing and Map Production Nathan Kearnes Daniel Connolly EXECUTIVE SUMMARY This report describes the distribution and composition of the native vegetation within and immediately surrounding Nattai National Park, Nattai State Conservation Area and Bargo State Conservation Area. -
Flora.Sa.Gov.Au/Jabg
JOURNAL of the ADELAIDE BOTANIC GARDENS AN OPEN ACCESS JOURNAL FOR AUSTRALIAN SYSTEMATIC BOTANY flora.sa.gov.au/jabg Published by the STATE HERBARIUM OF SOUTH AUSTRALIA on behalf of the BOARD OF THE BOTANIC GARDENS AND STATE HERBARIUM © Board of the Botanic Gardens and State Herbarium, Adelaide, South Australia © Department of Environment, Water and Natural Resources, Government of South Australia All rights reserved State Herbarium of South Australia PO Box 2732 Kent Town SA 5071 Australia © 2012 Board of the Botanic Gardens & State Herbarium, Government of South Australia J. Adelaide Bot. Gard. 25 (2012) 71–96 © 2012 Department of Environment, Water and Natural Resources, Govt of South Australia Notes on Hibbertia (Dilleniaceae) 8. Seven new species, a new combination and four new subspecies from subgen. Hemistemma, mainly from the central coast of New South Wales H.R. Toelkena & R.T. Millerb a State Herbarium of South Australia, DENR Science Resource Centre, P.O. Box 2732, Kent Town, South Australia 5071 E-mail: [email protected] b 13 Park Road, Bulli, New South Wales 2516 E-mail: [email protected] Abstract Increased collections from the Hibbertia-rich vicinity of Sydney, New South Wales, prompted a survey of rarer species to publicise the need for more information ahead of the rapid urban spread. Many of these species were previously misunderstood or are listed as rare and endangered. Thirteen new taxa (in bold) are described and discussed in context with the following seventeen taxa within seven different species groups: 1. H. acicularis group: H. woronorana Toelken; 2. H. humifusa group: H. -
Chordifex Bgbriggs & Lasjohnson
Flora of Australia Chordifex B.G.Briggs & L.A.S.Johnson Author: Phillip Kodela Cite this profile as: Phillip Kodela (2019) Chordifex. In: Flora of Australia. Australian Biological Resources Study, Department of the Environment and Energy, Canberra. https://profiles.ala.org.au/opus/foa/profile/Chordifex [Date Accessed: 18 March 2019] Generated on Mon Mar 18, 2019 Copyright © Copyright Commonwealth of Australia, 2019 The material in this profile is protected by copyright laws and may be used as permitted under the Copyright Act 1968 or in accordance with licences granted by the copyright owner. Your right to use images and maps or to permit others to use these is subject to the terms of the licence that the contributor of them has applied to the image or map. Information on copyright in images is set out in the Acknowledgements section and through the ALA site at http://www.ala.org.au/faq/using-images-found-on-the-ala/ Text used in this profile has been contributed by the editors and others identified. Unless permitted by the copyright owner, you may download or print a single copy of this material for your own information, research or study. You may not remove any copyright or other notices appearing in this profile. No rights are granted to the Commonwealth Coat of Arms or to any logos or trade marks. Please contact ALA at [email protected] if you believe material in this profile infringes any rights or breaches any contract or licence obligations. License All material CC-BY unless otherwise stated. ISSN: 22077820 Profile Updated: Mon Mar 18, 2019 10:56 AM +11:00 Version: 1 Cite this profile as: Phillip Kodela (2019) Chordifex. -
MVG 21 – Other Grasslands, Herblands, Sedgelands and Rushlands
NVIS Fact sheet MVG 21 – Other grasslands, herblands, sedgelands and rushlands Australia’s native vegetation is a rich and fundamental • communities and support a large range of species, partly element of our natural heritage. It binds and nourishes as a result of their geographical range, and variation in our ancient soils; shelters and sustains wildlife, protects soils and site conditions streams, wetlands, estuaries, and coastlines; and absorbs • include many plant species capable of vegetative carbon dioxide while emitting oxygen. The National reproduction by rhizomes, or stolons Vegetation Information System (NVIS) has been developed • can comprise associated species that may include and maintained by all Australian governments to provide perennial forbs or/and short-lived ephemeral plants that a national picture that captures and explains the broad proliferate after seasonal or cyclonic rains, to longer-term diversity of our native vegetation. perennials that rely on underground organs such This is part of a series of fact sheets which the Australian as rhizomes Government developed based on NVIS Version 4.2 data to • occur on a range of sites including intermittently provide detailed descriptions of the major vegetation groups inundated depressions, margins of perennial freshwater (MVGs) and other MVG types. The series is comprised of lagoons and brackish tidal or inland wetlands. Ferns tend a fact sheet for each of the 25 MVGs to inform their use by to dominate specific humid areas where the environment planners and policy makers. An additional eight MVGs are is less variable between seasons available outlining other MVG types. • have structurally distinctive features of landscape that provide a variety of habitats for faunal species For more information on these fact sheets, including its limitations and caveats related to its use, please see: • may be associated with an overstorey of scattered and ‘Introduction to the Major Vegetation Group (MVG) isolated trees fact sheets’. -
VESSELS in ERIOCAULACEAE By
IAWA Journ al, Vol. 17 (2), 1996: 183-204 VESSELS IN ERIOCAULACEAE by Jennifer A. Thorsch & Vernon I. Cheadle I Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93 106, U.S.A. SUMMARY The occ urrence and level of specialization of vesse ls in 70 species representing 12 genera of Eriocaulaceae are presented. In alI species of Eriocaulaceae and in alI parts of the plant examined, vessels with simple perforations have been identified . Correlations between level of specia lization of vessel members and ecological conditi ons are reported for species from diverse habitats and species with distinct differences in habit. The pattern of origin and specialization of tracheary celIs in Erio caulaceae was compared to tracheary data for Xyridaceae , Rapateaceae, Restionaceae and Centrolepidaceae. The evolutionary position of these families has been regarded as close to Eriocaulaceae. Key words: Eriocaulaceae, vessels, perforation plates, phylogenetic posi tion. INTRODUCTION This paper provides detailed information about perforation plates of vessels in Erio caulaceae, the 29th family we have similarly examined in monocotyledons. The near ly complete list of families analyzed in detail is given in the literature cited in the paper on Commelinales (Cheadle & Kosakai 1980). Our studies on the tracheary elements in monocotyledons have included families and species from a broad range of habits, habitats and geographical sites around the world. Families for study were selected based on three criteria: I) presence of alI plant parts, 2) variety of habits and habitats, and 3) broad representation of the species within the family. The data on tracheids and vessels from these broadly based studies led to the folIowing brief conclusions. -
Edition 2 from Forest to Fjaeldmark the Vegetation Communities Highland Treeless Vegetation
Edition 2 From Forest to Fjaeldmark The Vegetation Communities Highland treeless vegetation Richea scoparia Edition 2 From Forest to Fjaeldmark 1 Highland treeless vegetation Community (Code) Page Alpine coniferous heathland (HCH) 4 Cushion moorland (HCM) 6 Eastern alpine heathland (HHE) 8 Eastern alpine sedgeland (HSE) 10 Eastern alpine vegetation (undifferentiated) (HUE) 12 Western alpine heathland (HHW) 13 Western alpine sedgeland/herbland (HSW) 15 General description Rainforest and related scrub, Dry eucalypt forest and woodland, Scrub, heathland and coastal complexes. Highland treeless vegetation communities occur Likewise, some non-forest communities with wide within the alpine zone where the growth of trees is environmental amplitudes, such as wetlands, may be impeded by climatic factors. The altitude above found in alpine areas. which trees cannot survive varies between approximately 700 m in the south-west to over The boundaries between alpine vegetation communities are usually well defined, but 1 400 m in the north-east highlands; its exact location depends on a number of factors. In many communities may occur in a tight mosaic. In these parts of Tasmania the boundary is not well defined. situations, mapping community boundaries at Sometimes tree lines are inverted due to exposure 1:25 000 may not be feasible. This is particularly the or frost hollows. problem in the eastern highlands; the class Eastern alpine vegetation (undifferentiated) (HUE) is used in There are seven specific highland heathland, those areas where remote sensing does not provide sedgeland and moorland mapping communities, sufficient resolution. including one undifferentiated class. Other highland treeless vegetation such as grasslands, herbfields, A minor revision in 2017 added information on the grassy sedgelands and wetlands are described in occurrence of peatland pool complexes, and other sections. -
Jervis Bay Territory Page 1 of 50 21-Jan-11 Species List for NRM Region (Blank), Jervis Bay Territory
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Gondwanan Origin of Major Monocot Groups Inferred from Dispersal-Vicariance Analysis Kåre Bremer Uppsala University
Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 3 2006 Gondwanan Origin of Major Monocot Groups Inferred from Dispersal-Vicariance Analysis Kåre Bremer Uppsala University Thomas Janssen Muséum National d'Histoire Naturelle Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Bremer, Kåre and Janssen, Thomas (2006) "Gondwanan Origin of Major Monocot Groups Inferred from Dispersal-Vicariance Analysis," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/3 Aliso 22, pp. 22-27 © 2006, Rancho Santa Ana Botanic Garden GONDWANAN ORIGIN OF MAJOR MONO COT GROUPS INFERRED FROM DISPERSAL-VICARIANCE ANALYSIS KARE BREMERl.3 AND THOMAS JANSSEN2 lDepartment of Systematic Botany, Evolutionary Biology Centre, Norbyvagen l8D, SE-752 36 Uppsala, Sweden; 2Museum National d'Histoire Naturelle, Departement de Systematique et Evolution, USM 0602: Taxonomie et collections, 16 rue Buffon, 75005 Paris, France 3Corresponding author ([email protected]) ABSTRACT Historical biogeography of major monocot groups was investigated by biogeographical analysis of a dated phylogeny including 79 of the 81 monocot families using the Angiosperm Phylogeny Group II (APG II) classification. Five major areas were used to describe the family distributions: Eurasia, North America, South America, Africa including Madagascar, and Australasia including New Guinea, New Caledonia, and New Zealand. In order to investigate the possible correspondence with continental breakup, the tree with its terminal distributions was fitted to the geological area cladogram «Eurasia, North America), (Africa, (South America, Australasia») and to alternative area cladograms using the TreeFitter program. -
Introduction Methods Results
Papers and Proceedings Royal Society ofTasmania, Volume 1999 103 THE CHARACTERISTICS AND MANAGEMENT PROBLEMS OF THE VEGETATION AND FLORA OF THE HUNTINGFIELD AREA, SOUTHERN TASMANIA by J.B. Kirkpatrick (with two tables, four text-figures and one appendix) KIRKPATRICK, J.B., 1999 (31:x): The characteristics and management problems of the vegetation and flora of the Huntingfield area, southern Tasmania. Pap. Proc. R. Soc. Tasm. 133(1): 103-113. ISSN 0080-4703. School of Geography and Environmental Studies, University ofTasmania, GPO Box 252-78, Hobart, Tasmania, Australia 7001. The Huntingfield area has a varied vegetation, including substantial areas ofEucalyptus amygdalina heathy woodland, heath, buttongrass moorland and E. amygdalina shrubbyforest, with smaller areas ofwetland, grassland and E. ovata shrubbyforest. Six floristic communities are described for the area. Two hundred and one native vascular plant taxa, 26 moss species and ten liverworts are known from the area, which is particularly rich in orchids, two ofwhich are rare in Tasmania. Four other plant species are known to be rare and/or unreserved inTasmania. Sixty-four exotic plantspecies have been observed in the area, most ofwhich do not threaten the native biodiversity. However, a group offire-adapted shrubs are potentially serious invaders. Management problems in the area include the maintenance ofopen areas, weed invasion, pathogen invasion, introduced animals, fire, mechanised recreation, drainage from houses and roads, rubbish dumping and the gathering offirewood, sand and plants. Key Words: flora, forest, heath, Huntingfield, management, Tasmania, vegetation, wetland, woodland. INTRODUCTION species with the most cover in the shrub stratum (dominant species) was noted. If another species had more than half The Huntingfield Estate, approximately 400 ha of forest, the cover ofthe dominant one it was noted as a codominant. -
The Smut Fungi (Ustilaginomycetes) of Restionaceae S. Lat
MYCOLOGIA BALCANICA 3: 19–46 (2006) 19 Th e smut fungi (Ustilaginomycetes) of Restionaceae s. lat. Kálmán Vánky Herbarium Ustilaginales Vánky (H.U.V.), Gabriel-Biel-Str. 5, D-72076 Tübingen, Germany (e-mail: [email protected]) Received 2 October 2005 / Accepted 25 October 2005 Abstract. Smut fungi of Restionaceae s. lat. were studied. Th ey are classifi ed into two genera, Restiosporium and Websdanea. Problems of species delimitation in these smuts are discussed. In addition to the nine known smut fungi, thirteen new species are described and illustrated: Restiosporium anarthriae, R. apodasmiae, R. chaetanthi, R. desmocladii, R. eurychordae, R. fl exuosum, R. hypolaenae, R. lepyrodiae, R. pallentis, R. patei, R. proliferum, R. spathacei, and R. sphacelatum. Key words: new species, Restionaceae s. lat., Restiosporium, smut fungi, taxonomy, Websdanea Introduction and stained in 1 % aqueous uranyl acetate for 1 h in the dark. After fi ve washes in distilled water, the material was Th e monocotyledonous Restionaceae is a remarkable family dehydrated in acetone series, embedded in Spurr’s plastic, of Southern Hemisphere, evergreen, rush-like plants. Th ey and sectioned with a diamond knife. Semi-thin sections are concentrated mainly in SW Africa and in SW Australia. were stained with new fuchsin and crystal violet, mounted Th e c. 320 species of African Restionaceae, in 19 genera, were in ‘Entellan’ and studied in a light microscope. revised by Linder (1985, 1991). Th e 170 species of Australian Spore ball and spore morphology was studied using Restionaceae s. lat. were published by Meney & Pate (1999) a light microscope (LM) with an oil immersion lens at a in a beautifully illustrated monograph. -
Plant Life of Western Australia
INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm. -
Approved Conservation Advice for Baloskion Longipes
This conservation advice was approved by the Minister / Delegate of the Minister on: 26/3/2008 A statement for the purposes of approved conservation advice (s266B of the Environment Protection and Biodiversity Conservation Act 1999) Approved Conservation Advice for Baloskion longipes This Conservation Advice has been developed based on the best available information at the time this conservation advice was approved. Description Baloskion longipes, Family Restionaceae, previously listed as Restio longipes, is a perennial, grass-like erect sedge with culms (flowering stems) to 150 cm long arising from a compact rhizome (underground stem) (Meney & Pate, 1999; DECC, 2005). This dioecious taxon (male and female flowers on different plants) flowers in summer with seed maturation taking a further 6–8 months (Meney & Pate, 1999). The species is known to resprout after fire (Meney & Pate, 1999). Conservation Status Baloskion longipes is listed as vulnerable. This species is eligible for listing as vulnerable under the Environment Protection and Biodiversity Conservation Act 1999 (Cwlth) (EPBC Act) as, prior to the commencement of the EPBC Act, Restio longipes was listed as vulnerable under Schedule 1 of the Endangered Species Protection Act 1992 (Cwlth). The species is also listed as vulnerable under the Threatened Species Conservation Act 1995 (NSW). Distribution and Habitat Baloskion longipes is known from the Kanangra–Boyd area in the Southern Tablelands (NSW) (DECC, 2005). Populations have been recorded in the Blue Mountains National Park (NP), Kanangra–Boyd NP, Penrose State Forest (in Hanging Rock Swamp), Morton NP (The Vines), the Clyde Mountain area and Ballalaba (south of Braidwood) (DECC, 2005). This species occurs within the Hawkesbury–Nepean, Hunter–Central Rivers, Lachlan and Southern Rivers (NSW) Natural Resource Management Regions (DECC, 2005).