Author's Accepted Manuscript

Total Page:16

File Type:pdf, Size:1020Kb

Author's Accepted Manuscript Author’s Accepted Manuscript A review of oilfield mineral scale deposits management technology for oil and gas production Abass A. Olajire www.elsevier.com/locate/petrol PII: S0920-4105(15)30106-6 DOI: http://dx.doi.org/10.1016/j.petrol.2015.09.011 Reference: PETROL3173 To appear in: Journal of Petroleum Science and Engineering Received date: 4 June 2015 Revised date: 1 August 2015 Accepted date: 9 September 2015 Cite this article as: Abass A. Olajire, A review of oilfield mineral scale deposits management technology for oil and gas production, Journal of Petroleum Science and Engineering, http://dx.doi.org/10.1016/j.petrol.2015.09.011 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. A review of oilfield mineral scale deposits management technology for oil and gas production Abass A. Olajire Industrial and Environmental Chemistry Unit, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P. M. B 4000, Ogbomoso, Oyo State, Nigeria Abstract The presence of formation water and the treatment methods (both water flooding and chemical treatments) employed during exploration and production operations have great potential for mineral scale formation. Scale deposition poses a lot of serious threat in field production and it is a menace to production flow assurance, which in turn reduces the production flow resulting in production losses. Although oilfield scale deposit is a long standing problem, oil and gas industry are facing new challenges in managing scale deposits created during offshore exploration activities in ultra-deepwater and other harsh environments. An ideal management program maximizes hydrocarbon production and minimizes the cost of scale deposits control, thereby maintaining the economic viability of the operations. This paper reviews various types of mineral scale deposits as well as the thermodynamics and kinetics prediction of mineral scale formation potentials. Also, the mitigation strategies of oilfield mineral scale deposits and chemical stimulation techniques used in oil industry to improve well productivity are discussed. Keywords: Scale deposits, inhibitors, thermodynamics, kinetics, management, prediction, Correspondence author: [email protected] (Prof. Olajire A.A) 1. Introduction Mineral scale formation in surface and subsurface oil and gas production equipment has been recognized to be a major operational problem and cause of formation damage either in injection or producing wells. Scale contributes to equipment wear and corrosion and flow restriction, thus resulting in a decrease in oil and gas production. Scale deposition results from the chemical treatment operations which are applied to maintain sustainable hydrocarbon production at oil, gas or gas condensate fields. Hydrocarbons coming out of a reservoir consist of hundreds of different components (N2, CO2, H2S, C1-C6, C7+, etc.) and may be present in a liquid (C5+) or gaseous form (C1-nC5). In addition water is usually associated to hydrocarbons coming out of reservoir, bringing within itself to the surface various dissolved compounds. The resulting composition of producing fluid will experience drop in pressure or a change in temperature, and some compounds may become more stable at solid state and will start to precipitate (Time, 2011). The precipitation of these solids occurs as a result of changes in the ionic composition, pH, pressure and temperature of the brine. When water flooding method is applied for enhance oil recovery, then the problem of scale may occur right from water injection facilities to the producing well, and generally scale can occur during and after injection operation in the injector wellbore, near the injection well bottom hole, in the reservoir between the injector and producer, at the skin of producer well, in the producer wellbore, oil well casing, oil pipelines and other production facilities (Liu et al. 2012; Dickson et al. 2011). The composition of scaling samples is basically made up of organic, inorganic and crystal water (Jiecheng et al. 2011). A scale may occur as single mineral phases, 2 but more often as a combination of different elements, which can occur when a solution becomes saturated, mostly due to changes in temperature during injection operations, changes in pH values or if two different chemicals that will precipitate are brought together. Scale deposition products in oilfield are mainly consisted of calcium carbonate, calcium sulfate, barium sulfate and strontium sulphate and carbonates, iron, silicon sediment and other insoluble solids (Jinling et al. 2009; Senthilmurugan et al. 2011; Dickinson et al. 2012). The effect of scale can be dramatic and immediate, the production can fall to zero in a few hours and the treatment cost can be massive (Al Salami and Monem, 2010). Scale in the formation pores restricts fluid flow through the formation or reduces the diameter of the production tubing by the formation of a thick layer in the wellbore tubular, which consequently chokes the production from the reservoir (Fig. 1). This can lead to a drastic increase in pressure drop and thus a decrease in the production. Scale precipitation could also cause various damages including blockage of pipeline and equipment, energy leak, accelerate corrosion, and severe accidents, which can influence the safety of production and the economic benefit of petroleum industry (El-Said et al. 2009) and thus should be avoided completely in the oilfield industry. This paper reviewed and assessed some of the management and mitigation strategies of oilfield scale for oil and gas production. Also discussed are thermodynamics and kinetics models of scale prediction. 2. Types of oilfield scales Common oilfield scales can be classified into “pH independent” and “pH sensitive” scales. The scaling tendency of sulphates (calcium sulphate, barite and celestite) and halite scales are not a strong function of brine pH. The carbonates 3 (calcite, dolomite and siderite) and sulphide scales are acid soluble and their scaling tendencies are strongly influenced by the brine pH. The most common oilfield scales are listed in Table 1 (Kelland, 2009; Bin Merdah, 2008). These scales include sulfates such as calcium sulphate (anhydrite, gypsum), barium sulphate (barite), and strontium sulphate (celestite) and calcium carbonate. Other less common scales which have also been reported include iron oxides, iron sulfides and iron carbonate and calcium naphthenate scale from acidic crudes. 2.1 pH independent scale These are sulphate compounds of barium, strontium, or calcium. The sulphate 2 2 2 2 ion (SO4 ) normally found in the seawater reacts with Ba , Sr , and /or Ca ions, which are naturally found in the formation water depending on the geological history of the oilfields. 2 2 2 2 Ba (Sr or Ca ) SO4 BaSO4 (SrSO4 or CaSO4 ) (1) These compounds are also mildly soluble in water and as a result they subsequently precipitate out and form solid solutions. 2.2 pH dependent scale The carbonates (calcite, dolomite and siderite) and sulphide scales are acid soluble. Examples of formation of this class of scales include: Ca 2 (Fe 2 ) CO 2 CaCO (FeCO ) (2a) 3 3 3 Fe 2 (Zn2 or Pb 2 ) S 2 FeS (ZnS or PbS) (2b) 2.3 Metal naphthenate scale Naphthenic acids are mixtures of alkyl-substituted acyclic and cyclic structures with the general chemical formula Cn H2mzO2 , where m indicates the carbon number and z is zero, in the case of fatty acids, or negative, depending on the number of 4 condensed and/or aromatic rings. Naphthenic acids refer to all the organic acids present in crude oil (Brientet al. 1995; Seifert, 1975). Figure 2 displays some examples of possible monoprotic naphthenic acid structures for different z values. The naphthenic acids which are generated from in-reservoir biodegradation of petroleum hydrocarbons (Jaffe and Gallardo, 1993; Behar and Albrecht 1984; Meredith et al. 2000) may react with metal cations in the water to form naphthenates which agglomerate in the oil phase. Metal naphthenate deposition may lead to costly shutdowns and causing serious problems to the oil industry (Simon et al. 2008; Dyer et al. 2003). The reaction of naphthenic acids and divalent cations at the o/w interface involves two reaction steps where the acid monomers sequentially bind to one cation, according to the following reaction scheme (Scheme 1). k1 k2 2 M 2RCOO [RCOOM ] RCOO (RCOO)2 M k1 Scheme 1: Reaction between naphthenic acids (RCOO–) and divalent cation (M2+), where {k1, k2} and {k–1} represent the reaction rate constants of the forward and the reverse steps, respectively. 3. Mechanisms of scale formation Scale formation can occur through homogeneous and heterogeneous nucleation. Homogeneously formed scale particles do not necessarily deposit or grow onto a surface and hence, could flow through the system without causing too many depositional issues. However, the scale that forms by heterogeneous nucleation builds up on solid surfaces causing problems such as pressure increases and restriction of fluid flow in the formation, pipelines, surface facilities and can potentially prevent production
Recommended publications
  • Diaspore Alo(OH) C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Orthorhombic
    Diaspore AlO(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. As crystals, platy on {010} and elongated to acicular along [001], to 40 cm; stalactitic, foliated, scaly; disseminated, massive. Twinning: On {021}, to form heart-shaped twins or pseudohexagonal aggregates; on {061}, uncommon. Physical Properties: Cleavage: {010} perfect, {110} distinct, {100} in traces. Fracture: Conchoidal. Tenacity: Very brittle. Hardness = 6.5–7 D(meas.) = 3.2–3.5 D(calc.) = 3.380 Optical Properties: Transparent to translucent. Color: White, pale gray, colorless, greenish gray, brown, pale yellow, pink, lilac; color may vary with viewing direction in the same specimen, may show a color change from brownish green in daylight to raspberry pink in artificial light; colorless in thin section. Luster: Adamantine, vitreous, pearly on cleavage faces. Optical Class: Biaxial (+). Pleochroism: In thick plates, may be reddish brown to reddish violet; grayish green to green. Orientation: X = c; Y = b; Z = a. Dispersion: r< v,weak. Absorption: Z > Y > X, seen on strongly colored specimens. α = 1.682–1.706 β = 1.705–1.725 γ = 1.730–1.752 2V(meas.) = 84◦–86◦ Cell Data: Space Group: P bnm. a = 4.4007(6) b = 9.4253(13) c = 2.8452(3) Z = 4 X-ray Powder Pattern: Springfield, Massachusetts, USA. 3.99 (100), 2.317 (56), 2.131 (52), 2.077 (49), 1.633 (43), 2.558 (30), 1.480 (20) Chemistry: (1) (2) (1) (2) SiO2 0.42 Fe2O3 0.18 Al2O3 84.44 84.98 H2O 14.99 15.02 Total 100.03 100.00 (1) Kossoi Brod, Russia.
    [Show full text]
  • Fluid Mixing and the Deep Biosphere of a Fossil Lost City-Type Hydrothermal System at the Iberia Margin
    Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin Frieder Kleina,1, Susan E. Humphrisb, Weifu Guob, Florence Schubotzc, Esther M. Schwarzenbachd, and William D. Orsia aDepartment of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; bDepartment of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; cDepartment of Geosciences and Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany; and dDepartment of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved August 4, 2015 (received for review March 7, 2015) Subseafloor mixing of reduced hydrothermal fluids with seawater is aging, brucite undersaturated in seawater dissolves and aragonite believed to provide the energy and substrates needed to support recrystallizes to calcite (7). deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., Actively venting chimneys host a microbial community with a serpentinite). However, geosphere-biosphere interactions in serpen- relatively high proportion of methanogenic archaea (the Lost tinite-hosted subseafloor mixing zones remain poorly constrained. City Methanosarcinales), methanotrophic bacteria, and sulfur- Here we examine fossil microbial communities and fluid mixing oxidizing bacteria, whereas typical sulfate-reducing bacteria are processes in the subseafloor of a Cretaceous Lost City-type hydro- rare (8–10). Geochemical evidence for significant microbial sulfate thermal system at the magma-poor passive Iberia Margin (Ocean reduction in basement lithologies and distinct microbial commu- Drilling Program Leg 149, Hole 897D). Brucite−calcite mineral assem- nities in Lost City vent fluids and chimneys suggest that subsurface blages precipitated from mixed fluids ca.
    [Show full text]
  • The Structure and Vibrational Spectroscopy of Cryolite, Na3alf6 Cite This: RSC Adv., 2020, 10, 25856 Stewart F
    RSC Advances PAPER View Article Online View Journal | View Issue The structure and vibrational spectroscopy of cryolite, Na3AlF6 Cite this: RSC Adv., 2020, 10, 25856 Stewart F. Parker, *a Anibal J. Ramirez-Cuesta b and Luke L. Daemenb Cryolite, Na3[AlF6], is essential to commercial aluminium production because alumina is readily soluble in molten cryolite. While the liquid state has been extensively investigated, the spectroscopy of the solid state has been largely ignored. In this paper, we show that the structure at 5 K is the same as that at Received 31st May 2020 room temperature. We use a combination of infrared and Raman spectroscopies together with inelastic Accepted 1st July 2020 neutron scattering (INS) spectroscopy. The use of INS enables access to all of the modes of Na3[AlF6], DOI: 10.1039/d0ra04804f including those that are forbidden to the optical spectroscopies. Our spectral assignments are supported rsc.li/rsc-advances by density functional theory calculations of the complete unit cell. Introduction In view of the technological importance of cryolite, we have Creative Commons Attribution 3.0 Unported Licence. carried out a comprehensive spectroscopic investigation and 1 Cryolite, Na3[AlF6], occurs naturally as a rare mineral. Histori- report new infrared and Raman spectra over extended temper- cally, it was used as a source of aluminium but this has been ature and spectral ranges and the inelastic neutron scattering superseded by bauxite (a mixture of the Al2O3 containing (INS) spectrum. The last of these is observed for the rst time minerals boehmite, diaspore and gibbsite), largely because of and enables access to all of the modes of Na3[AlF6].
    [Show full text]
  • Minerals of the San Luis Valley and Adjacent Areas of Colorado Charles F
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/22 Minerals of the San Luis Valley and adjacent areas of Colorado Charles F. Bauer, 1971, pp. 231-234 in: San Luis Basin (Colorado), James, H. L.; [ed.], New Mexico Geological Society 22nd Annual Fall Field Conference Guidebook, 340 p. This is one of many related papers that were included in the 1971 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Iidentilica2tion and Occurrence of Uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
    IIdentilica2tion and occurrence of uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals From the Colorado Plateaus c By A. D. WEEKS and M. E. THOMPSON A CONTRIBUTION TO THE GEOLOGY OF URANIUM GEOLOGICAL S U R V E Y BULL E TIN 1009-B For jeld geologists and others having few laboratory facilities.- This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission. UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE- INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan. Director Reprint, 1957 For sale by the Superintendent of Documents, U. S. Government Printing Ofice Washington 25, D. C. - Price 25 cents (paper cover) CONTENTS Page 13 13 13 14 14 14 15 15 15 15 16 16 17 17 17 18 18 19 20 21 21 22 23 24 25 25 26 27 28 29 29 30 30 31 32 33 33 34 35 36 37 38 39 , 40 41 42 42 1v CONTENTS Page 46 47 48 49 50 50 51 52 53 54 54 55 56 56 57 58 58 59 62 TABLES TABLE1. Optical properties of uranium minerals ______________________ 44 2. List of mine and mining district names showing county and State________________________________________---------- 60 IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM THE COLORADO PLATEAUS By A. D. WEEKSand M. E. THOMPSON ABSTRACT This report, designed to make available to field geologists and others informa- tion obtained in recent investigations by the Geological Survey on identification and occurrence of uranium minerals of the Colorado Plateaus, contains descrip- tions of the physical properties, X-ray data, and in some instances results of chem- ical and spectrographic analysis of 48 uranium arid vanadium minerals.
    [Show full text]
  • THE COLOR ORIGIN of GEM DIASPORE: CORRELATION to CORUNDUM Che Shen and Ren Lu
    FEATURE AR ICLES THE COLOR ORIGIN OF GEM DIASPORE: CORRELATION TO CORUNDUM Che Shen and Ren Lu Color-change diaspore, known commercially as Zultanite, is sought by designers and consumers for its special optical characteristics, namely its color and color change. Understanding the color origin of gem-grade diaspore could provide a scientific basis to guide its gemological testing, cutting, and valuation. This study uses ultravio- let-visible (UV-Vis) spectra and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) to examine the color origin of color-change diaspore and to compare it with corundum. As Raman spectra vibration intensities are closely related to crystal direction for diaspore, crystal orientation was determined through Raman spectroscopy. The color correlation between color-change diaspore and corundum confirmed the identity of 3+ 3+ 2+ 4+ each chromophore. In addition, the effectiveness of different chromophores such as Cr , Fe , Fe -Ti pairs, 3+ and V between gem-quality diaspore and corundum is compared quantitatively. em-quality diaspore occupies an important structure consists of AlO octahedra (Hill, 1979; Lewis 6 position in the gem market due to its rarity, et al., 1982). Both types of crystals are composed solely Gstriking pleochroism, and color-change phe- of octahedral units. In addition, the diaspore structure nomenon (figure 1). The material’s value depends on is able to convert to corundum structure through de- these factors. A clear understanding of color origin hydration (Iwai et al., 1973). Due to their closely related offers considerable benefits for gemological testing, crystallographic structure and chemical composition, cutting, and even valuation of gem diaspore.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • From Monovalent Ions to Complex Organic Molecules Udo Becker*†, Subhashis Biswas*, Treavor Kendall**, Peter Risthaus***, Christine V
    [American Journal of Science, Vol. 305, June, September, October, 2005,P.791–825] INTERACTIONS BETWEEN MINERAL SURFACES AND DISSOLVED SPECIES: FROM MONOVALENT IONS TO COMPLEX ORGANIC MOLECULES UDO BECKER*†, SUBHASHIS BISWAS*, TREAVOR KENDALL**, PETER RISTHAUS***, CHRISTINE V. PUTNIS****, and CARLOS M. PINA***** ABSTRACT. In order to understand the interactions of inorganic and organic species from solution with mineral surfaces, and more specifically, with the growth and dissolution behavior of minerals, we start by reviewing the most basic level of interaction. This is the influence of single monovalent ions on the growth and dissolution rate of minerals consisting of divalent ions. Monovalent ions as back- ground electrolyte can change the morphology of growth features such as growth islands and spirals. These morphology changes can be similar to the؉ ones caused by organic molecules and are, therefore, easily mixed up. Both Na and Cl- promote growth and dissolution of some divalent crystals such as barite and celestite. In addition, morphology changes and the stability of polar steps on sulfates are explained using atomistic principles. Subsequently, we will increase the level of complexity by investigating the interac- tion between organic molecules and mineral surfaces. As an example, we describe the influence of different organic growth inhibitors on the growth velocity of barite and use molecular simulations to identify where these organic molecules attack the surface to inhibit growth. Nature provides a number of complex organic molecules, so-called siderophores that are secreted by plants to selectively extract Fe ions from the surrounding soil. The molecular simulations on siderophores are complemented by atomic force-distance measurements to mimic the interaction of these molecules with Fe and Al oxide surfaces.
    [Show full text]
  • Leaching Behavior of Lithium-Bearing Bauxite with High-Temperature Bayer Digestion Process in K2O-Al2o3-H2O System
    metals Article Leaching Behavior of Lithium-Bearing Bauxite with High-Temperature Bayer Digestion Process in K2O-Al2O3-H2O System Dongzhan Han 1,2 , Zhihong Peng 1,*, Erwei Song 2 and Leiting Shen 1 1 School of Metallurgy and Environment, Central South University, Changsha 410083, China; [email protected] (D.H.); [email protected] (L.S.) 2 Zhengzhou Non-Ferrous Metals Research Institute Co. Ltd. of CHALCO, Zhengzhou 450041, China; [email protected] * Correspondence: [email protected] Abstract: Lithium is one of the secondary mineral elements occurring in bauxite. The behavior of lithium-bearing bauxite in the digestion process was investigated, and the effect of digestion conditions on the extraction rates of lithium was studied. The results demonstrate that the mass ratio of the added CaO to bauxite, the KOH concentration, and the digestion temperature had a significant effect on the lithium extraction efficiency. An L9(34) orthogonal experiment demonstrated that the order of each factor for lithium extraction from primary to secondary is lime dosage, caustic concentration, and reaction temperature. Under the optimal conditions (t = 60 min, T = 260 ◦C, r(K2O) = 280 g/L, and 16% lime dosage), the leaching efficiencies of lithium and alumina are 85.6% and 80.09%, respectively, with about 15% of lithium entering into red mud. The findings of this study maybe useful for controlling lithium content in alumina products and lithium recovery from the Citation: Han, D.; Peng, Z.; Song, E.; Bayer process. Shen, L. Leaching Behavior of Lithium-Bearing Bauxite Keywords: lithium-bearing bauxite; digestion; K2O-Al2O3-H2O system withHigh-Temperature Bayer Digestion Process in K2O-Al2O3-H2O System.
    [Show full text]
  • DOGAMI Short Paper 8, Strategic and Critical Minerals: a Guide for Oregon
    STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 702 Woodlark Building Portland, Oregon G M I SHORT PAPI:R No. 8 STRATEGIC AND CRITICAL MINERALS A GUIDE lOR OREGON PROSPECTORS. By Lloyd w. Staples; Ph.D, A••latant Proteaaor ot Geology University ot Oregon . • STATE GOVIEIIINING BOAIIID W. H. ITRAYIER, CHAIIIMAN . BAKU ALBIEIIIT BURC:H MIEDP'OIID IE MACNAUGHTON ••• PDIIT\.ANO EARL K. NIXON DIIIIIECTOIII PRICIE 15 CIENTI I Oat lORD In noraal tia•• ao1t pro•p•otor• look tor gold, 1inoe that aetal u1ually otter• the �uiok••t reward and i• generally tither •a•1ly reoogn1�•d or the or• 1• •usoept• 1ble or •••Y detera1nat1on. Pro1peotor11 ln general, thus gain llttlt or no experl­ tno• with other •inerai• who•• peaoetlae aarkttl otter little tnoentlve tor ltaroh tor new depo1it1. Under war oondltion• th••• aineral11 needed tor produotion ot war aat­ erial•, beooae ot priae iaportanoe and an in1i1tent deaand i1 created tor intoraation oonoernins ooourrenoe11 aineral oharaoteri1tio11 u1e1 and aarket1. fhe Dtpartaent i1 publllhins thil paper to help aeet thil deaand in1otar &I Oreson i1 �ono�rned. Dr. Staple• 11 tlptoially qualititd to write on the lubJeot or 1trateg1o aineral1. In rtoent rear• auoh ot hll work, both 1n private praotioe and 1n teaohing1 hat been oonoerntd with thll tubJeot. It 11 boptd that tht paptr will bt ot aattrial &1111t&not to Oregon pro1ptotor1 &1 well al to 1aall operator• who have turned their attention troa gold aintns to thole alneral depo1it1 e11ential tor war netdl. It i1 believed that 1ohool1 will al1o t1nd the paper intoraatlve and tiaely.
    [Show full text]
  • Investigation of Lime Usage Impacts on Bauxite Processability at ETI Aluminyum Plant
    International Journal of Industrial Chemistry (2019) 10:57–66 https://doi.org/10.1007/s40090-019-0171-x RESEARCH Investigation of lime usage impacts on bauxite processability at ETI Aluminyum Plant Hüseyin Arıkan1 · Gökhan K. Demir2 · Sema Vural3 Received: 29 March 2018 / Accepted: 3 February 2019 / Published online: 11 February 2019 © The Author(s) 2019 Abstract ETI Aluminyum A.Ş., the primary aluminium manufacturer of Turkey, is also one of the major integrated plants of the world capable of performing production from mining until end product. The alumina refnery was designed on a certain boehmitic bauxite quality basis. However, bauxite properties have changed over the years, resulting in the urgent need for process opti- mization to not only keep the refnery cost efcient, but also prevent serious bottlenecks in the near future. Lime can be used to overcome problems when using bauxites with specifc and variable chemical and mineralogical characteristics. Although lime is extensively used when processing diasporic bauxites, the studies on boehmitic bauxites and the overall efects on the process are limited. In this paper, lime impact was investigated at all stages of the Bayer process including the efect on alumina quality, energy and raw material consumptions. The results showed signifcant improvements in the product quality as well as recordable savings on consumptions. Keywords Bayer process · Lime usage · Caustic consumption · Digestion · Alumina quality · Boehmitic bauxite Introduction crystalline structure to boehmite. Diferences in ore compo- sition and presence of iron, silicon and titanium impurities The Bayer process is used for producing alumina (Al2O3) infuence their subsequent processing [3, 4]. Thus, it is nec- from bauxite ore.
    [Show full text]
  • Experimental Investigations of the Reaction Path in the Mgo–CO2
    Available online at www.sciencedirect.com Applied Geochemistry Applied Geochemistry 23 (2008) 1634–1659 www.elsevier.com/locate/apgeochem Experimental investigations of the reaction path in the MgO–CO2–H2O system in solutions with various ionic strengths, and their applications to nuclear waste isolation Yongliang Xiong *, Anna Snider Lord Sandia National Laboratories, Carlsbad Programs Group, 4100 National Parks Highway, Carlsbad, NM 88220, USA1 Received 26 June 2007; accepted 25 December 2007 Editorial handling by Z. Cetiner Available online 9 February 2008 Abstract The reaction path in the MgO–CO2–H2O system at ambient temperatures and atmospheric CO2 partial pressure(s), especially in high-ionic-strength brines, is of both geological interest and practical significance. Its practical importance lies mainly in the field of nuclear waste isolation. In the USA, industrial-grade MgO, consisting mainly of the mineral peri- clase, is the only engineered barrier certified by the Environmental Protection Agency (EPA) for emplacement in the Waste Isolation Pilot Plant (WIPP) for defense-related transuranic waste. The German Asse repository will employ a Mg(OH)2- based engineered barrier consisting mainly of the mineral brucite. Therefore, the reaction of periclase or brucite with car- bonated brines with high-ionic-strength is an important process likely to occur in nuclear waste repositories in salt forma- tions where bulk MgO or Mg(OH)2 will be employed as an engineered barrier. The reaction path in the system MgO–CO2– H2O in solutions with a wide range of ionic strengths was investigated experimentally in this study. The experimental results at ambient laboratory temperature and ambient laboratory atmospheric CO2 partial pressure demonstrate that hyd- romagnesite (5424) (Mg5(CO3)4(OH)2 Á 4H2O) forms during the carbonation of brucite in a series of solutions with differ- ent ionic strengths.
    [Show full text]