Earl Mccune [email protected] Linear PA Efficiency Ceilings

Total Page:16

File Type:pdf, Size:1020Kb

Earl Mccune Emc2@Alum.Calberkeley.Org Linear PA Efficiency Ceilings Blending Radio and Power Management Technologies for Greatly Improved Performance -or- Why is an RF guy doing Power Management?! Earl McCune, Ph.D., F-IEEE Thursday, Aug. 23, 2018 Texas Instruments Building E Conference Center 2900 Semiconductor Blvd. Santa Clara, CA 95051 6:30pm - 7:00pm: Dinner and Networking 7:00pm - 8:00pm: Talk and Q & A Outline • State of the art in switch-based radio transmitters • Common physics with switching power converters • Zero-Power Idle (ZPI) supply • Very-high Dimming Ratio (VHDR) efficient driver • Bridge rectifier elimination • Power factor correction Earl McCune [email protected] Linear PA Efficiency Ceilings • Entire output signal – peak Envelope PDF to peak – must fit within the linear PA load line Signal envelope • PA is scaled for signal peak power • Signal average power sets 0.03 communication range 0.025 0.02 • Low average power (A) 0.015 C I increases PA heat 0.01 – A direct consequence of 0.005 Ohm’s Law 0 0 0.5 1 1.5 2 2.5 3 3.5 GaAs HBT VCE (V) Earl McCune [email protected] 3 Linear PA Efficiency: Business Impact Efficiency vs. PAPR 5G-NR Cost vs. Efficiency 10 9 Power supply size Input Power 8 Power Dissipation 7 LTE 2G 6 5 4 3G 2.5G COST TX power 3 Heatsink 2G 2.5G 2 3G LTE size 5G-NR 1 Power / Output power (Normalized) power / Output Power 0 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Circuit Energy Efficiency • Signal design progression forces linear PA efficiency to decrease • Costs therefore rise – Higher input power is required (larger power supply) – Thermal management of the corresponding PA heat • Preferred radio efficiency range by industry: between 40 to 70 % • 5G must be profitable to build and operate – or it will fail Earl McCune [email protected] 4 Physically Available Options Actual transmitter objective: modulation accuracy at-power • Traditional approach: Linear Theory VDD – Modulate at small signal levels Vout= IR D ⋅ L R – Increase signal power with linear amplifiers L – Maintains modulation accuracy, Large PSAT • as long as all amplifiers remain linear (mathematical sense) VIN • Alternative approach: Sampling Theory VDD – Sample the envelope with phase-modulated carrier RL PSAT VSUPPLY VRout = ⋅ L Large VIN RRL+ ON RON Earl McCune [email protected] 5 Implementation Differences Linear Operation 1 VDD Output range is bounded 0.8 • RL by the knee voltage 0.6 P • Signal always stays on the Large SAT 0.4 Drain Current (A) VIN load line 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 VDS (V) VDD Switching Operation 0.03 ON state • Output range is bounded RL 0.025 by the ON resistance PSAT 0.02 Large VIN (A) 0.015 • Circuitry operates at the C I 0.01 endpoints of the load line RON 0.005 • Efficiency increases 0 0 0.5 1 1.5 2 2.5 3 3.5 VCE (V) OFF state Earl McCune [email protected] 6 Sampling Transmitter Operation 1 VVout SUPPLY ILOAD = = 0.8 RL RR L+ ON 0.6 • Phase modulated carrier samples the signal envelope 0.4 Drain Current (A) • Dynamic Power Supply (DPS) 0.2 sets the instantaneous 0 0 0.5 1 1.5 2 2.5 3 3.5 envelope value VDS (V) Dynamic Power Supply • Switch-mode mixer modulator 3 VSUPPLY (SM ) does the sampling at- A(t) power Envelope DPS • Switching forces use of polar cos(ωφtt+ ( )) At( )cos(ωφ t+ ( t)) Phase SM3 signal processing Modulated RF Earl McCune [email protected] 7 Operating Modes: L-mode, C-mode, and P-mode VSUPPLY Booth Surface VS , IS Control DPS PDto heatsink 30 20 VDPS , IDPS New Interface 10 P = V * I 0 DC PA PA } -10 -20 -30 PA -40 PIN POUT -50 5.0 P-mode -60 RF Power 4.0 -70 (dBm) Power Output PA PD 3.0 15 -5 5 Transistor To heatsink 2.0 -15 -35 -25 1.0 -55 -45 PA Supply Voltage (V) Input RF Power (dBm) 0.0 • All power transistors are 3-port circuits • 3 operating modes appear when both supply voltage (dynamic power supply (DPS)) and input RF power are varied – L-mode: conventional linear “PA” operation – C-mode: fully compressed operation Eridan operates in C-P mode – P-mode: low voltage “gain-collapse” region Earl McCune [email protected] 8 Measured Efficiency vs. Signal PAPR 70% • Use of switching 60% circuitry greatly 50% 5G NR improves LTE DL 40% measured LTE UL efficiency 30% 3G QAMs • Modulation Stack Efficiency 20% EDGE accuracy is 10% GSM-CE maintained 0% 0 2 4 6 8 10 12 14 • Modulation Signal PAPR (dB) generality is not compromised 16384 QAM LTE Downlink 5G-NR • Reported efficiency is fully linearized -51dB ACLR Earl McCune [email protected] 9 Backup: Switching PA Efficiency Bounds 100 RL/RON=100 80 RL/RON=30 5 4 R /R =10 5 L ON 3 4 60 2 3 1 2 0 1 -1 0 90.0 90.5 91.0 91.5 92.0 time, nsec 40 -1 6 90.0 90.5 91.0 91.5 92.0 5 time, nsec 4 3 20 2 1 Achievable Efficiency (%) 0 -1 90.0 90.5 91.0 91.5 92.0 time, nsec 0 9 0 1 2 3 10 10 10 10 fT / fo • Maximum efficiency depends on RL/RON • Transistors need to have fT > 50fo to operate well as a switching PA • Efficiency drops rapidly when fT < 10fo – Dissipation during transitions becomes much more significant [email protected] Earl McCune 10 Technology Similarities • SM RF Power VERY important to carefully manage the switching duty cycle of the RF drive! • Boost DC-DC Earl McCune [email protected] Switching Supplies • Switching supplies are not voltage sources Inductor current • Energy is stored in both L and C Load current L R 2 C LD 112 VOUT 1 2 ELL= LI ⋅= L ⋅EC = CV ⋅ OUT 22RLD 2 SM PS c o n t r o l • Matching inductor current to load current requires a feedback controller – Loop dynamics constraint appears – Mis-match errors are all handled by the storage capacitor C Earl McCune [email protected] 12 Switching Supply: Output Agility Change from VO1 → VO2 1 L ∆ =∆ +∆ = +22 − E ELC E2 CV( OO21 V ) 2 RLD L = +C ∆⋅ V avg( V, V ) Greater the higher the 2 O OO21 output voltage is RLD (PROBLEM) Fast switching voltage (within TSTEP): ∆EL∆⋅VO avg( V OO21, V ) Goes to infinity as the = + C TR2 T step time goes to zero STEP LD STEP (PROBLEM) If the switching time gets very short, changing energy in the digital supply requires kilowatts of transient power Supply agility is therefore much slower than logic operating speeds Earl McCune [email protected] Power Management Topic • CPU power recovery (MicroNap / MicroWake) • LED drivers: Special capabilities • Direct (bridgeless) downconverting AC-DC + PFC • Duty cycle frequency multiplier (digital) Earl McCune [email protected] Solution: Hold the Energy for Later 50 microseconds per division • Connect the load (or not) on command OFF ON OFF ON OFF • Example: 40 us OFF intervals – Load current is 17A for this measurement – 10 ns edge transition time on the device power supply • Spacing between and width of these OFF intervals is completely arbitrary Dynamic Power Supply Voltage waveform Why we care: Inductor Keep C large for storage good regulation switch L C DC input DC output Synchronous Capacitor rectifier storage switch Earl McCune [email protected] Configurations Normal Operation Hold energy while OFF • Storing inductor current and electric charge within a DC-DC converter • Linear regulators can also take advantage of this output filter (storage) switching Earl McCune [email protected] Power Proportional Computing • Input power is saved whenever Personal, Embedded Server region the output is not powered region – Input current falls as the output duty cycle is reduced, maintaining DC-DC conversion efficiency – ON time for this test is 200 microseconds • This regulator has an observed input bias current of 12 mA • Linear tracking is very good with duty cycle Earl McCune [email protected] ACPI States 10 nanoseconds per transition • Nearly immediate transition between power states: no “friction” • Controlled by job scheduler • Optimum when applied to each core ACPI: C0 ACPI: C0 individually • Spacing between and width of these OFF intervals is completely arbitrary ACPI: C2 / C3 Scheduler Assignments messages Server cluster Responses Earl McCune [email protected] Low Processing-Demand Case Wide time view Zoom-in view ON OFF ON OFF ON OFF ON OFF Control Command 1 A Controlled Power Supply • Energy is maintained within the power supply while the output is OFF • Turn-on edge here remains at 10 ns even after 2 milliseconds of OFF time – Output (20 us) pulse remains the same even when the OFF time exceeds 1 second (0.002% duty cycle) • No loss of processing throughput performance Switch and Capacitor technology combine to set available ZPI hold time Inductor storage switch L C Earl McCune [email protected] DC input DC output Proving the ZPI Concept • Modified existing DC-DC converter evaluation board – Additional control to the regulator – Switches to manage internal energy storage • Applies more easily to linear regulators • Nanosecond stop and start of amperes to the load is achieved – No overshoot on any transient • Brings RF transmitter technology to power supplies for Computing • US patents issued Earl McCune [email protected] Power Management Topic • CPU power recovery (MicroNap / MicroWake) • LED drivers: Special capabilities • Direct (bridgeless) downconverting AC-DC + PFC • Duty cycle frequency multiplier (digital) Earl McCune [email protected] LED Dimming Method Options Options for dimming already in production include • Shunt-switch pulsewidth modulation SS-PWM • Pulsewidth modulation PWM • Linear Current Regulation IREG • Series Resistor (sense) RSNS And now a new method is added • Variable-resistance Var_R Source DC-DC • Provide a widely varying resistor value in series with supply converter the
Recommended publications
  • Software Defined Radio with Ethernet Interface Ligi K, Chandrasekar P Vel Tech Dr.RR & Dr.SR.Technical University, Chennai, India
    ISSN: 2319-5967 ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 4, Issue 2, March 2015 Software Defined Radio with Ethernet Interface Ligi K, Chandrasekar P Vel Tech Dr.RR & Dr.SR.Technical University, Chennai, India Abstract—initialization of transmitter parameters can be done locally by setting values on the transmitter itself or remotely using a pc. a radio transmitter design has to meet certain requirements. these include the frequency of operation, the type of modulation, the stability and purity of the resulting signal, the efficiency of power use and the power levels required to meet the system design objectives. local control of a transmitter is not sufficient in defense and other security purpose. This project aims to develop a suitable gui using labview and create an Ethernet ieee 802.11 interface to communicate with the transmitter in the client end. transmission control protocol (tcp) is used as the communication protocol. All signal parameters such as frequency, transmission power and modulation scheme can be set using the gui. a raspberry pi board acts as the server. An adf7020 transceiver is used as the radio whose parameters is setting through gui and is interfaced with raspberry pi board through usb port. Index Terms— Software Defined Radio, Raspberry Pi, TCP, ADF7020 Transceiver, PIC18F4620, Client server Communication. I. INTRODUCTION Software defined radios are radio communication systems whose hardware are implemented and replaced with software [1]. Parameters settings of a transmitter defined by software are the proposing method that avoids hardware parts like knobs and meters in the transmitters.
    [Show full text]
  • Wildlife Radio-Telemetry
    Wildlife Radio-telemetry Standards for Components of British Columbia's Biodiversity No. 5 Prepared by Ministry of Environment, Lands and Parks Resources Inventory Branch for the Terrestrial Ecosystems Task Force Resources Inventory Committee August 1998 Version 2.0 © The Province of British Columbia Published by the Resources Inventory Committee Canadian Cataloguing in Publication Data Main entry under title: Wildlife radio-telemetry [computer file] (Standards for components of British Columbia’s biodiversity ; no. 5) Available through the Internet. Issued also in printed format on demand. Includes bibliographical references: p. ISBN 0-7726-3535-8 1. Animal radio tracking – British Columbia - Handbooks, manuals, etc. I. BC Environment. Resources Inventory Branch. II. Resources Inventory Committee (Canada). Terrestrial Ecosystems Task Force. III. Series. QL60.4.W54 1998 596’.028 C98-960107-2 Additional Copies of this publication can be purchased from: Superior Repro #200 - 1112 West Pender Street Vancouver, BC V6E 2S1 Tel: (604) 683-2181 Fax: (604) 683-2189 Digital Copies are available on the Internet at: http://www.for.gov.bc.ca/ric Wildlife Radio-telemetry Preface This manual presents standards for the use of wildlife radio-telemetry in British Columbia. It was compiled by the Elements Working Group of the Terrestrial Ecosystems Task Force, under the auspices of the Resources Inventory Committee (RIC). The objectives of the working group are to develop inventory methods that will lead to the collection of comparable, defensible, and useful inventory and monitoring data for the species component of biodiversity. This manual is one of the Standards for Components of British Columbia’s Biodiversity (CBCB) series which present standard protocols designed specifically for groups of species with similar inventory requirements.
    [Show full text]
  • Electrical Systems and Safety Oversight
    Electrical Systems and Safety Oversight Qualification Standard Reference Guide DECEMBER 2009 This page is intentionally blank. Table of Contents LIST OF FIGURES ..................................................................................................................... vi LIST OF TABLES ..................................................................................................................... viii ACRONYMS ................................................................................................................................ ix PURPOSE ...................................................................................................................................... 1 SCOPE ........................................................................................................................................... 1 PREFACE ...................................................................................................................................... 1 GENERAL TECHNICAL COMPETENCIES .......................................................................... 3 I. KNOWLEDGE OF ELECTRICAL THEORY & EQUIPMENT ............................... 3 1. Electrical personnel shall demonstrate a working level knowledge of electrical and circuit theory, theorems, terminology, laws, and analysis. ........................................................3 2. Electrical personnel shall demonstrate a working level knowledge of basic AC theory. ........24 3. Electrical personnel shall demonstrate a working level knowledge of
    [Show full text]
  • Integrated Circuit Design Macmillan New Electronics Series Series Editor: Paul A
    Integrated Circuit Design Macmillan New Electronics Series Series Editor: Paul A. Lynn Paul A. Lynn, Radar Systems A. F. Murray and H. M. Reekie, Integrated Circuit Design Integrated Circuit Design Alan F. Murray and H. Martin Reekie Department of' Electrical Engineering Edinhurgh Unit·ersity Macmillan New Electronics Introductions to Advanced Topics M MACMILLAN EDUCATION ©Alan F. Murray and H. Martin Reekie 1987 All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No paragraph of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright Act 1956 (as amended), or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, 7 Ridgmount Street, London WC1E 7AE. Any person who does any unauthorised act in relation to this publication may be liable to criminal prosecution and civil claims for damages. First published 1987 Published by MACMILLAN EDUCATION LTD Houndmills, Basingstoke, Hampshire RG21 2XS and London Companies and representatives throughout the world British Library Cataloguing in Publication Data Murray, A. F. Integrated circuit design.-(Macmillan new electronics series). 1. Integrated circuits-Design and construction I. Title II. Reekie, H. M. 621.381'73 TK7874 ISBN 978-0-333-43799-5 ISBN 978-1-349-18758-4 (eBook) DOI 10.1007/978-1-349-18758-4 To Glynis and Christa Contents Series Editor's Foreword xi Preface xii Section I 1 General Introduction
    [Show full text]
  • Mobile Handset Design
    www.allitebooks.com www.allitebooks.com MOBILE HANDSET DESIGN www.allitebooks.com www.allitebooks.com MOBILE HANDSET DESIGN Sajal Kumar Das Nokia R&D Center, India www.allitebooks.com Copyright Ó 2010 John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, # 02-01, Singapore 129809 Visit our Home Page on www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as expressly permitted by law, without either the prior written permission of the Publisher, or authorization through payment of the appropriate photocopy fee to the Copyright Clearance Center. Requests for permission should be addressed to the Publisher, John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, #02-01, Singapore 129809, tel: 65-64632400, fax: 65-64646912, email: [email protected]. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book. All trademarks referred to in the text of this publication are the property of their respective owners. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.
    [Show full text]
  • Design for Minimum Energy in Starship and Interstellar Communication David G
    MESSERSCHMITT: INTERSTELLAR COMMUNICATION 1 Design for minimum energy in starship and interstellar communication David G. Messerschmitt TABLE I Abstract—Microwave digital communication at interstellar ACRONYMS distances applies to starship and extraterrestrial civilization (SETI and METI) communication. Large distances demand large Acronym Definition transmitted power and/or large antennas, while the propagation AWGN Additive white Gaussian noise is transparent over a wide bandwidth. Recognizing a fundamental tradeoff, reduced energy delivered to the receiver at the expense CMB Cosmic background radiation of wide bandwidth (the opposite of terrestrial objectives) is CSP Coding and signal processing advantageous. Wide bandwidth also results in simpler design ICH Interstellar coherence hole and implementation, allowing circumvention of dispersion and ISM Interstellar medium scattering arising in the interstellar medium and motion effects SETI Search for interstellar intelligence and obviating any related processing. The minimum energy delivered to the receiver per bit of information is determined by cosmic microwave background alone. By mapping a single bit onto a carrier burst, the Morse code invented for the telegraph This context is illustrated in Fig. 1, showing the subsystems in 1836 comes closer to this minimum energy than approaches of an end-to-end system communicating information by radio. used in modern terrestrial radio. Rather than the terrestrial This paper concerns the coding and signal processing (CSP) approach of adding phases and amplitudes to increases informa- tion capacity while minimizing bandwidth, adding multiple time- subsystem. It is presumed that a message input is represented frequency locations for carrier bursts increases capacity while digitally (composed of discrete symbols), in which case it minimizing energy per information bit.
    [Show full text]
  • Wireless Radio Frequency Module Using PIC Microcontroller
    WIRELESS RF MODULE USING PIC CONTROLLER Six Weeks Summer Training Report PIC16F72/73 Microcontroller AN RF MODULE IS A SMALL ELECTRONIC CIRCUIT USED TO TRANSMIT, RECEIVE, OR TRANSCEIVE RADIO WAVES ON ONE OF A NUMBER OF CARRIER FREQUENCIES. RF MODULES ARE WIDELY USED IN CONSUMER APPLICATIONS SUCH AS GARAGE DOOR OPENERS, WIRELESS ALARM SYSTEMS, INDUS- TRIAL REMOTE CONTROLS, SMART SENSOR APPLICATIONS, WEATHER MONITORING SYSTEM, RFID, WIRELESS MOUSE TECHNOLOGY AND WIRELESS HOME AUTOMATION SYSTEMS. THEY ARE OFTEN USED INSTEAD OF INFRARED REMOTE CONTROLS AS THEY HAVE THE ADVANTAGE OF NOT REQUIR- ING LINE-OF-SIGHT OPERATION. PROJECT BY ABHI SHARMA ABSTRACT The Radio Frequency Module is basically a PIC Microcontroller Based Wireless Communication System. Wireless RF Module Technology enables a vast edge to any electronics project & provide many consistent advantages, which leads it to today’s up-to-date technology. An RF module is a small electronic circuit used to transmit, receive, or transceive a radio waves on one of a number of carrier frequencies. RF modules are widely used in consumer applications such as garage door openers, wireless alarm systems, industrial remote controls, smart sensor applications and wireless home automation systems. They are often used instead of infrared remote controls as they have the advantage of not requiring line-of-sight operation. Radio Frequency involves two sub units Named, Transmitter & Receiver. As their name implies transmitter is used to transmit or to send the data from input & it convert into serial port data by using HT12E encoder. This encoded data get re- ceived by receiver placing far away from it.
    [Show full text]
  • 'High-Lights of Antenna Lore' Is Subject of Laport Talk
    Volume 4 November, 1955 Number 3 LaPort Discusses Antenna Kadiutioti SECTION MEETING 'High-Lights Of Antenna Lore' NOVEMBER 15 "HIGH-LIGHTS OF Is Subject Of LaPort Talk ANTENNA LORE" In the Auditorium at 8 P.M. The third Fall 1955 meeting of the Long Island IRE Section will lia\ Stratford Avenue School as its speaker Mr. Edmund A. LaPort. Garden City liadio Corporation of America. The meeting will he held at the Stratford Pre-Meeting Film Avenue School. Garden City, on Tues- day. November 15. The talk, which is Auditorium, 7:35 P.M. titled "Hight-Lights of Antenna Pre-Meeting Dinner Lore," will be given at 8 P.M.. and will follow a pre-meeting film. At Howard Johnsons This month's speaker began his Jericho Turnpike, Mineola career as a service technician for sta- 5.45 P.M. tion WJZ back in 1921. As cam- munications began to burgeon, Mr. LaPort went to G.E. for a short stay and then to Westinghouse where he PGMTT MEETING did radio transmitter design and NOVEMBER 29 served as station construction en- gineer. Subsequent work in single- "WAVEGUIDES FOR LONG- side band and asymmetric side band DISTANCE COMMUNICATION" floating carrier systers for program In the Auditorium at 8 P.M. transmission over power lines fol- lowed. In 1936 Mr. LaPort joined Stratford Avenue School RCA at Camden in charge of high- Edmund LaPort, Radio Garden City power transmitter engineering. Suc- Corporation of America ceeding this he was transferred to Pre-Meeting Dinner RCA Victor Ltd., Montreal, where he At Howard Johnsons served as Chief Products Engineer.
    [Show full text]
  • CERTIFICATION As the Candidate's Supervisor, I Have Accepted This
    CERTIFICATION As the candidate’s supervisor, I have accepted this project report for submission. Name: Mr. Mbazingwa E. Mkiramweni Signature: ……………………………. Date: …………………………………. DECLARATION I declare to the best of my knowledge that, the project presented here as a part of achievement of bachelor of engineering in electronics and telecommunications course, it is my original work and has not been copied anywhere or presented elsewhere, except where openly indicted otherwise as all sources of knowledge have been duly acknowledged. Name of the candidate: Onesmo Augustino Signature: ………………………… Date: ……………………………… iii ABSTRACT The advancement of technology has reduced human intervention on various tasks and operation that involves machines, tools, equipment and other several appliances. Such replacement enhanced both quantity and quality production of goods and services emphasizing a better living standard. Depending on the kind of applications, different systems had been designed. Basing on this project a sub-security alarm system is intended of which the organization is such that; the recorded audible voice command will be played alerting the populaces to leave the seaside specifically the Gymkhanas beach. There should also be a human repellent unit which produces unpleasant sound to persons who disobeys the command given by this system. Both voice command and disturbing sound frequencies are played via the loudspeakers. The aimed system detects the presence or absence of an individual around by using the PIR sensors that are contained by it. Moreover an RF module is attached to every sub-system to ensure security over a large area around the beach by transmitting unique pulse code to another RF unit about 500feets whenever human is detected.
    [Show full text]
  • Simulation of a Multi-Band Class E PA with a PWM Envelope-Coded Signal
    Simulation of a Multi-band Class E PA with a PWM Envelope-coded Signal, for a Multi-radio Transmitter Antoine Diet, Martha Suarez, Fabien Robert, Martine Villegas, Genevieve Baudoin To cite this version: Antoine Diet, Martha Suarez, Fabien Robert, Martine Villegas, Genevieve Baudoin. Simulation of a Multi-band Class E PA with a PWM Envelope-coded Signal, for a Multi-radio Transmitter. Inter- national Journal on Communications Antenna and Propagation, Praise Worthy Prize, 2011, 1 (3), pp.290 - 295. hal-00641204 HAL Id: hal-00641204 https://hal-supelec.archives-ouvertes.fr/hal-00641204 Submitted on 17 Nov 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Simulation of a Multi-band Class E PA with a PWM Envelope-coded Signal, for a Multi-radio Transmitter A. Diet1, M. Suarez-Peñaloza2, F. Robert3,2, M. Villegas2, G. Baudoin2 Abstract – This paper focuses on the design of a highly efficient multi-band Power Amplifier (PA), for high Peak to Average Power Ratio (PAPR) signals in the context of a multi-radio transmitter design. Solutions are currently based on polar decomposition of the signal and constant power signal amplification.
    [Show full text]
  • Wireless Radio Frequency Module Using PIC Microcontroller
    This book was distributed courtesy of: For your own Unlimited Reading and FREE eBooks today, visit: http://www.Free-eBooks.net Share this eBook with anyone and everyone automatically by selecting any of the options below: Share on Facebook Share on Twitter Share on LinkedIn Send via e-mail To show your appreciation to the author and help others have wonderful reading experiences and find helpful information too, we'd be very grateful if you'd kindly post your comments for this book here. COPYRIGHT INFORMATION Free-eBooks.net respects the intellectual property of others. When a book's copyright owner submits their work to Free-eBooks.net, they are granting us permission to distribute such material. Unless otherwise stated in this book, this permission is not passed onto others. As such, redistributing this book without the copyright owner's permission can constitute copyright infringement. If you believe that your work has been used in a manner that constitutes copyright infringement, please follow our Notice and Procedure for Making Claims of Copyright Infringement as seen in our Terms of Service here: http://www.free-ebooks.net/tos.html Wireless rF Module using PIC Controller Six Weeks Summer Training Report PIC16F72/73 Microcontroller An RF module is A smAll electRonic ciRcuit used to tRAnsmit, Receive, oR tRAnsceive RAdio wAves on one oF A numbeR oF cARRieR FRequencies. RF modules ARe widely used in consumeR ApplicAtions such As gARAge dooR openeRs, wiReless AlARm systems, industRiAl Remote contRols, smARt sensoR ApplicAtions, weAtheR monitoRing system, RFid, wiReless mouse technology And wiReless home AutomAtion systems.
    [Show full text]
  • The Coulter Principle: for the Good of Humankind
    University of Kentucky UKnowledge Theses and Dissertations--History History 2020 THE COULTER PRINCIPLE: FOR THE GOOD OF HUMANKIND Marshall Graham University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/etd.2020.495 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Graham, Marshall, "THE COULTER PRINCIPLE: FOR THE GOOD OF HUMANKIND" (2020). Theses and Dissertations--History. 62. https://uknowledge.uky.edu/history_etds/62 This Master's Thesis is brought to you for free and open access by the History at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--History by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]