The Coulter Principle: for the Good of Humankind
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High-Bandwidth Radio Frequency Coulter Counter D
APPLIED PHYSICS LETTERS 87, 184106 ͑2005͒ High-bandwidth radio frequency Coulter counter D. K. Wood Department of Physics and Institute for Collaborative Biotechnologies, University of California at Santa Barbara, Santa Barbara, California 93106 S.-H. Oh and S.-H. Lee California Nanosystems Institute, University of California at Santa Barbara, Santa Barbara, California 93106 H. T. Soh Department of Mechanical Engineering and Institute for Collaborative Biotechnologies, University of California at Santa Barbara, Santa Barbara, California 93106 ͒ A. N. Clelanda Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106 ͑Received 15 April 2005; accepted 10 September 2005; published online 27 October 2005͒ We demonstrate a method for high-bandwidth, high-sensitivity particle sensing and cell counting in a microfluidic system. Our approach employs a tuned radiofrequency probe, which forms the radiofrequency analog of a Coulter counter. By measuring the reflected rf power, this approach provides an unprecedented detection rate, with a theoretical bandwidth in excess of 10 MHz. Particle detection was performed in a continuous flow mode in a microfluidic channel, using 15 m diameter polystyrene beads suspended in a sucrose-saline solution. We demonstrate 30 kHz counting rates and show high-resolution bead time-of-flight data, comprising the fastest electronic particle detection on-chip to date. © 2005 American Institute of Physics. ͓DOI: 10.1063/1.2125111͔ High throughput cell counting and analysis is an impor- are implemented using optically patterned, thermally evapo- tant biotechnological capability. Since the invention of the rated gold/titanium films ͑500 nm/10 nm thick͒ on glass Coulter counter,1 electronic means to count and analyze bio- chips. -
Software Defined Radio with Ethernet Interface Ligi K, Chandrasekar P Vel Tech Dr.RR & Dr.SR.Technical University, Chennai, India
ISSN: 2319-5967 ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 4, Issue 2, March 2015 Software Defined Radio with Ethernet Interface Ligi K, Chandrasekar P Vel Tech Dr.RR & Dr.SR.Technical University, Chennai, India Abstract—initialization of transmitter parameters can be done locally by setting values on the transmitter itself or remotely using a pc. a radio transmitter design has to meet certain requirements. these include the frequency of operation, the type of modulation, the stability and purity of the resulting signal, the efficiency of power use and the power levels required to meet the system design objectives. local control of a transmitter is not sufficient in defense and other security purpose. This project aims to develop a suitable gui using labview and create an Ethernet ieee 802.11 interface to communicate with the transmitter in the client end. transmission control protocol (tcp) is used as the communication protocol. All signal parameters such as frequency, transmission power and modulation scheme can be set using the gui. a raspberry pi board acts as the server. An adf7020 transceiver is used as the radio whose parameters is setting through gui and is interfaced with raspberry pi board through usb port. Index Terms— Software Defined Radio, Raspberry Pi, TCP, ADF7020 Transceiver, PIC18F4620, Client server Communication. I. INTRODUCTION Software defined radios are radio communication systems whose hardware are implemented and replaced with software [1]. Parameters settings of a transmitter defined by software are the proposing method that avoids hardware parts like knobs and meters in the transmitters. -
Wildlife Radio-Telemetry
Wildlife Radio-telemetry Standards for Components of British Columbia's Biodiversity No. 5 Prepared by Ministry of Environment, Lands and Parks Resources Inventory Branch for the Terrestrial Ecosystems Task Force Resources Inventory Committee August 1998 Version 2.0 © The Province of British Columbia Published by the Resources Inventory Committee Canadian Cataloguing in Publication Data Main entry under title: Wildlife radio-telemetry [computer file] (Standards for components of British Columbia’s biodiversity ; no. 5) Available through the Internet. Issued also in printed format on demand. Includes bibliographical references: p. ISBN 0-7726-3535-8 1. Animal radio tracking – British Columbia - Handbooks, manuals, etc. I. BC Environment. Resources Inventory Branch. II. Resources Inventory Committee (Canada). Terrestrial Ecosystems Task Force. III. Series. QL60.4.W54 1998 596’.028 C98-960107-2 Additional Copies of this publication can be purchased from: Superior Repro #200 - 1112 West Pender Street Vancouver, BC V6E 2S1 Tel: (604) 683-2181 Fax: (604) 683-2189 Digital Copies are available on the Internet at: http://www.for.gov.bc.ca/ric Wildlife Radio-telemetry Preface This manual presents standards for the use of wildlife radio-telemetry in British Columbia. It was compiled by the Elements Working Group of the Terrestrial Ecosystems Task Force, under the auspices of the Resources Inventory Committee (RIC). The objectives of the working group are to develop inventory methods that will lead to the collection of comparable, defensible, and useful inventory and monitoring data for the species component of biodiversity. This manual is one of the Standards for Components of British Columbia’s Biodiversity (CBCB) series which present standard protocols designed specifically for groups of species with similar inventory requirements. -
Microfluidic Multiple Cross-Correlated Coulter Counter for Improved
Microfluidic multiple cross-correlated Coulter counter for improved particle size analysis Wenchang Zhanga,1, Yuan Hu a,1, Gihoon Choib, Shengfa Lianga, Ming Liua*, and Weihua Guanb, c* a Key Lab of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China b Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA c Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA *Corresponding Authors: [email protected] (M. Liu), [email protected] (W. Guan) 1 The authors contributed equally. Declarations of interest: none 1 Abstract Coulter counters (a.k.a. resistive pulse sensors) were widely used to measure the size of biological cells and colloidal particles. One of the important parameters of Coulter counters is its size discriminative capability. This work reports a multiple pore-based microfluidic Coulter counter for improved size differentiation in a mixed sample. When a single particle translocated across an array of sensing pores, multiple time-related resistive pulse signals were generated. Due to the time correlation of these resistive pulse signals, we found a multiple cross-correlation analysis (MCCA) could enhance the sizing signal- to-noise (SNR) ratio by a factor of n1/2, where n is the pore numbers in series. This proof- of-concept is experimentally validated with polystyrene beads as well as human red blood cells. We anticipate this method would be highly beneficial for applications where improved size differentiation is required. Keywords: Coulter counter, particle sizing, resistive pulse sensors, multiple cross- correlation analysis 2 1 Introduction Coulter counters, also known as the resistive pulse sensors, are well-developed devices to measure the size and concentration of biological cells and colloidal particles suspended in a buffer solution[1-5]. -
Microfluidic and Nanofluidic Resistive Pulse Sensing
micromachines Review Microfluidic and Nanofluidic Resistive Pulse Sensing: A Review Yongxin Song 1, Junyan Zhang 1 and Dongqing Li 2,* 1 Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China; [email protected] (Y.S.); [email protected] (J.Z.) 2 Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada * Correspondence: [email protected] or [email protected]; Tel.: +1-519-888-4567 (ext. 38682) Received: 17 April 2017; Accepted: 21 June 2017; Published: 25 June 2017 Abstract: The resistive pulse sensing (RPS) method based on the Coulter principle is a powerful method for particle counting and sizing in electrolyte solutions. With the advancement of micro- and nano-fabrication technologies, microfluidic and nanofluidic resistive pulse sensing technologies and devices have been developed. Due to the unique advantages of microfluidics and nanofluidics, RPS sensors are enabled with more functions with greatly improved sensitivity and throughput and thus have wide applications in fields of biomedical research, clinical diagnosis, and so on. Firstly, this paper reviews some basic theories of particle sizing and counting. Emphasis is then given to the latest development of microfuidic and nanofluidic RPS technologies within the last 6 years, ranging from some new phenomena, methods of improving the sensitivity and throughput, and their applications, to some popular nanopore or nanochannel fabrication techniques. The future research directions and challenges on microfluidic and nanofluidic RPS are also outlined. Keywords: resistive pulse sensing; particle sizing and counting; microfluidics and nanofluidics; review 1. Introduction Accurately determining the size and number of particles and cells in electrolyte solutions is an important task in many fields, such as biomedical research [1–6], clinical diagnosis [7–12], and environmental monitoring. -
Coulter Principle Short Course
Coulter Principle Short Course DS-18639A Chapter 1 A. In a system, there exist a high number of particles. Basic Concepts in Particle Each individual particle may have different physical Characterization or chemical properties if the material is not homogeneous. The ensemble behavior is usually 1. Particles what is macroscopically observable. The macroscopic properties are derived from contributions of What is a particle? According to Webster’s Dictionary, individual particles. If the relevant property is the a particle is “a minute quantity or fragment” or “a relatively same for all particles in the system, the system small or the smallest discrete portion or amount of is deemed “monodisperse.” If all or some of the something.” Because the word “small” is relative to particles in the system have differing values for “something,” a particle can be as small as a quark or the property of interest, the system is referred to as large as the sun. In the vast universe, the sun is just as “polydisperse.” Another term, “pausidisperse” a small particle! Thus, the range of sciences and is occasionally used to describe systems with technologies for studying particles can be as broad as a small number of distinct groups. All particles we can imagine, from astrophysics to nuclear physics. within a given group have the same value for Therefore, we have to defi ne the type of particles in the concerned property. which we are interested. B. The specifi c surface area (surface area per unit “Fine Particles” is a term normally reserved for particles mass) of small particles is so high that it leads ranging from a few nanometers to a few millimeters to many significant and unique interfacial in diameter. -
Electrical Systems and Safety Oversight
Electrical Systems and Safety Oversight Qualification Standard Reference Guide DECEMBER 2009 This page is intentionally blank. Table of Contents LIST OF FIGURES ..................................................................................................................... vi LIST OF TABLES ..................................................................................................................... viii ACRONYMS ................................................................................................................................ ix PURPOSE ...................................................................................................................................... 1 SCOPE ........................................................................................................................................... 1 PREFACE ...................................................................................................................................... 1 GENERAL TECHNICAL COMPETENCIES .......................................................................... 3 I. KNOWLEDGE OF ELECTRICAL THEORY & EQUIPMENT ............................... 3 1. Electrical personnel shall demonstrate a working level knowledge of electrical and circuit theory, theorems, terminology, laws, and analysis. ........................................................3 2. Electrical personnel shall demonstrate a working level knowledge of basic AC theory. ........24 3. Electrical personnel shall demonstrate a working level knowledge of -
Integrated Circuit Design Macmillan New Electronics Series Series Editor: Paul A
Integrated Circuit Design Macmillan New Electronics Series Series Editor: Paul A. Lynn Paul A. Lynn, Radar Systems A. F. Murray and H. M. Reekie, Integrated Circuit Design Integrated Circuit Design Alan F. Murray and H. Martin Reekie Department of' Electrical Engineering Edinhurgh Unit·ersity Macmillan New Electronics Introductions to Advanced Topics M MACMILLAN EDUCATION ©Alan F. Murray and H. Martin Reekie 1987 All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No paragraph of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright Act 1956 (as amended), or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, 7 Ridgmount Street, London WC1E 7AE. Any person who does any unauthorised act in relation to this publication may be liable to criminal prosecution and civil claims for damages. First published 1987 Published by MACMILLAN EDUCATION LTD Houndmills, Basingstoke, Hampshire RG21 2XS and London Companies and representatives throughout the world British Library Cataloguing in Publication Data Murray, A. F. Integrated circuit design.-(Macmillan new electronics series). 1. Integrated circuits-Design and construction I. Title II. Reekie, H. M. 621.381'73 TK7874 ISBN 978-0-333-43799-5 ISBN 978-1-349-18758-4 (eBook) DOI 10.1007/978-1-349-18758-4 To Glynis and Christa Contents Series Editor's Foreword xi Preface xii Section I 1 General Introduction -
Simulation Model of a Microfluidic Point of Care Biosensor for Electrical Enumeration of Blood Cells
SIMULATION MODEL OF A MICROFLUIDIC POINT OF CARE BIOSENSOR FOR ELECTRICAL ENUMERATION OF BLOOD CELLS BY AARON JANKELOW THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Bioengineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2018 Urbana, Illinois Adviser: Professor Rashid Bashir Abstract Point of care microfluidic devices provide many opportunities for improving the diagnosis of a number of illnesses. They can provide a speedy, quantitative assay in the form of an easy to use portable platform. By using Finite Element Analysis software to model and simulate these microfluidic devices, we can further optimize and improve on the design of such devices. In this work we will use such software in order to model an electrical counting chamber that would be implemented in such a device. This chamber utilizes the coulter counting principle to measure the change in impedance caused when a bead or a cell passes over a series of electrodes. By utilizing the signals to count the number of cells coming into and out of a capture chamber that targets a specific antigen, we can obtain a quantitative measure of how many cells or beads were expressing the target antigen and use this for a diagnosis. First the simulation was tuned to be able to produce the characteristic bipolar pulse when a cell passed over the electrodes. Then by varying elements such as bead size, input voltage, bead composition and electrode placement and recording the results we can use this model to help further refine and optimize this device by giving us a quantitative model that will allow us to better understand how changing such variables will alter the signal received from the device and thus allow us a better understanding of the best way to get a clearer signal. -
Flow Cytometry/Coulter Counter
Counting Cells and Microscopic Particles: Introduction to Flow Cytometry, EpiFluorescence Microscopy, and Coulter Counters Karen Selph SOEST Flow Cytometry Facility Department of Oceanography University of Hawaii [email protected] www.soest.hawaii.edu/sfcf The Microbial World Particles to chemists, small critters to biologists… Size range (excluding viruses): ~0.4 µm to a few 100 µm’s in diameter Includes all bacteria, phytoplankton, & most primary planktonic consumers, as well as a range of abiotic particles (clay to fine sand) Ubiquitous, highly diverse functionally & taxonomically, variable activities Responsible for most of the transformations of organic matter in the ocean, as well as much of the gas transfers (O2, CO2, etc.) How do we study them? Microscopic, so need methods that will resolve small particles. Today, I’ll introduce you to 3 instruments that can resolve such small particles and give us useful information about them: – Epifluorescence Microscope – Flow Cytometer – Coulter Counter Why use an epifluorescence microscope? Quantitative detection and enumeration of microbes, including viruses Ability to concentrate particles to see rarer populations Estimate microbial biomass, using biovolume estimates. Separate classes, e.g., autotroph from heterotroph, prokaryote from eukaryote, even by species for some organisms Why use a flow cytometer? Rapid counting of microbes (minutes) Enumerate several populations in one sample, if their scatter or fluorescence signatures are distinct Enumerate dimmer cells or cells -
Mobile Handset Design
www.allitebooks.com www.allitebooks.com MOBILE HANDSET DESIGN www.allitebooks.com www.allitebooks.com MOBILE HANDSET DESIGN Sajal Kumar Das Nokia R&D Center, India www.allitebooks.com Copyright Ó 2010 John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, # 02-01, Singapore 129809 Visit our Home Page on www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as expressly permitted by law, without either the prior written permission of the Publisher, or authorization through payment of the appropriate photocopy fee to the Copyright Clearance Center. Requests for permission should be addressed to the Publisher, John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, #02-01, Singapore 129809, tel: 65-64632400, fax: 65-64646912, email: [email protected]. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book. All trademarks referred to in the text of this publication are the property of their respective owners. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. -
Scepter™ 2.0 Cell Counter Precise, Handheld Cell Counting
Scepter™ 2.0 Cell Counter Precise, handheld cell counting The life science business of Merck operates as MilliporeSigma in the U.S. and Canada. Scepter™ 2.0 Cell Counter Precise, handheld cell counting The Scepter™ 2.0 cell counter is your portable device option. While other automated counters consume bench space and rely on object recognition software, manual focusing and clumsy loading chambers, the Scepter™ cell counter provides true automation without the error that accompanies vision-based systems. With its microfabricated, precision-engineered sensor, the Scepter™ cell counter does all the work and delivers accurate and reliable cell counts in less than 30 seconds. Scepter™ 2.0 cell counters mark the next generation in Scepter™ technology, highlighted by: Compatibility with More Cell Types The Scepter™ cell counter is the only one on the market to accurately count particles as small as 3 μm in diameter. Increased Cell Concentration Range The new 40 μm sensor can count samples with concentrations as high as 1,500,000 cells/mL. Powerful Software for Complex, Effortless Cell Analysis • Compare sample sets side by side using histogram overlay and multiparametric data table • Create and save gating templates • Generate reports, graphs and tables Are you an existing Scepter™ device user interested in upgrading to the Scepter™ 2.0 cell counter? It’s easy. Visit MerckMillipore.com/scepterupgrade to upgrade your Scepter™ device today! 2 3 Scepter™ 2.0 │ Precise, handheld cell counting Measured Measured The power of precision Cell Type size (μm) 40 μm sensor 60 μm sensor Cell Type size (μm) 40 μm sensor 60 μm sensor Trust Scepter™ devices with your most valuable samples to get reproducible and reliable 2102 Ep 15-19 • Meg-01 16-17 • counts.