The Spider Chelicerae: Some Problems of Origin and Evolution

Total Page:16

File Type:pdf, Size:1020Kb

The Spider Chelicerae: Some Problems of Origin and Evolution EUROPEAN ARACHNOLOGY 2003 (LOGUNOV D.V. & PENNEY D. eds.), pp. 349366. © ARTHROPODA SELECTA (Special Issue No.1, 2004). ISSN 0136-006X (Proceedings of the 21st European Colloquium of Arachnology, St.-Petersburg, 49 August 2003) The spider chelicerae: some problems of origin and evolution Õåëèöåðû ïàóêîâ: ïðîáëåìû ïðîèñõîæäåíèÿ è ýâîëþöèè S.L. ZONSTEIN Ñ.Ë. ÇÎÍØÒÅÉÍ Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel. email: [email protected] Îòäåë çîîëîãèè, Ôàêóëüòåò åñòåñòâåííûõ íàóê èì. Äæîðæ Ñ. Âèçå, Òåëü-Àâèâñêèé óíèâåðñèòåò, Òåëü- Àâèâ, Èçðàèëü. email: [email protected] ABSTRACT. Some problems of the origin and evolution of the chelicerae in spiders are discussed. The enlargement and bending of the basal cheliceral segments combined with the displacement of the fang insertion point ventrad is recognized as the principal cheliceral modification observed in the Araneae. The chelicerae of the Liphistiidae and the Mygalomorphae are regarded as plesiomor- phic in their position and axial orientation, but as apomorphic by their configuration; the latter seems to be an evolutionary compromise caused by burrowing activity. The possibility of an origin of the labidognathous cheliceral construction from the specialized orthognathous chelicerae of liphistiids and mygalomorphs is regarded as improbable. ÐÅÇÞÌÅ.  ñòàòüå îáñóæäàþòñÿ âîïðîñû ïðîèñõîæäåíèÿ è ýâîëþöèè õåëèöåð ó ïàóêîâ. Îñíîâíûìè ìîäèôèêàöèÿìè õåëèöåð, íàáëþäàåìûìè ó îðòîãíàòíûõ ïàóêîâ, ïðèçíàþòñÿ óêðóïíåíèå è âûãèáàíèå îñíîâíûõ ÷ëåíèêîâ õåëèöåð è ñìåùåíèå òî÷êè ïðèêðåïëåíèÿ êîãîòêà íà èõ âåíòðàëüíóþ ñòîðîíó. Õåëèöåðû Liphistiidae è Mygalomorphae ïðèíèìàþòñÿ ïëåçèîìîðôíûìè ïî çàíèìàåìîìó ïîëîæåíèþ è îñåâîé îðèåíòàöèè, íî àïîìîðôíûìè ïî ñâîåé êîíôèãóðàöèè; ïîñëåäíÿÿ ïðåäñòàâëÿåòñÿ ðåçóëüòàòîì ýâîëþöèîííîãî êîìïðîìèññà, âûçâàííîãî ïåðåõîäîì ê íîðíîìó îáðàçó æèçíè. Âîçìîæíîñòü ïðîèñõîæäåíèÿ õåëèöåð ëàáèäîãíàòíîãî òèïà èç ñïåöèàëèçèðîâàííûõ îðòîãíàòíûõ õåëèöåð ëèôèñòèèä è ìèãàëîìîð- ôîâ ïðèçíàåòñÿ ìàëîâåðîÿòíîé. KEY WORDS: Araneae, spiders, chelicerae, evolution. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: Araneae, ïàóêè, õåëèöåðû, ýâîëþöèÿ. Introduction considered (explicitly or by implication) the orthognathous chelicerae in spiders as precur- Until recently the traditional standpoint treat- sors of the labidognathous type. Starobogatov ing the cheliceral construction in the orthogna- [1985] also used a third category, plagiaxiality, thous spiders as an initial state of the labidogna- a somewhat intermediate cheliceral orientation thous chelicerae was dominant and used in a occurring in the Hypochiloidea. Otherwise, his great number of arachnological publications reconstruction was given in the traditional style: [see Platnick & Gertsch, 1976]. All those works orthognathyplagiaxial statelabidognathy. 350 EUROPEAN ARACHNOLOGY 2003 Kraus & Kraus [1993] first arrived at the (North American mygalomorphs including repre- conclusion that not only labidognathous cheli- sentatives of the Antrodiaetidae, Microhexura, etc.). cerae, but also the orthognathous cheliceral con- Also examined were some taxa of the Uropygi and struction represented the apomorphic modifica- the Araneomorphae. The majority of whip spider tions of a primary type defined as the plagiaxial specimens used, a few females representing two species of Liphistius, and a specimen of Hypochilus variant. In their opinion, this model can be repre- coylei (all from the collection of the American Mu- sented in all main lineages of the order Araneae. seum of Natural History) were kindly lent to me for The cheliceral configurations known for the Li- study through the courtesy of Dr. Norman Platnick. phistiidae, for a number of mygalomorph taxa Most of the figures were prepared specially for possessing shorter chelicerae, and for the repre- this study. Additionally, I had to use some drawings sentatives of the family Hypochilidae, were con- taken from other sources, all these were scanned so sidered as the most similar to the mentioned type. that the output was changed minimally from their Dunlop [1997] supported this hypothesis original form. In a few extraordinary cases some and added a new state, palaeognathy, found in figures were redrawn from the original source. All members of the fossil Paleozoic order Trigono- credits and relevant references are provided. With minor exceptions, the terminology follows tarbida. He suggested that both orthognathy Kaestner [1956], Starobogatov [1985], Shultz and labidognathy can be derived from palaeog- [1990], Kraus & Kraus [1993] and Dunlop [1994, nathy through the plagiaxial type by simple 1996c, 1997]. The subbasal cheliceral segment cor- torsions of basal cheliceral segments, and some responds to the cheliceral coxa of lower arachnids, particular states can be explained by reversals. absent in spiders and their Recent relatives [see However, the palaeognathplagiaxial ver- Dunlop, 1997]. sion appears to be only one of a few possible Some terms as well as the states denoted should ways of explaining the situation observed. A be specified. The term plagiaxial is used only in new attempt to restore the idea to separate the cases when the cheliceral fangs meet each other at approximately 90°, axial orientation of the basal orthognaths and labidognaths from each other cheliceral segments occupies an intermediate posi- was made by Eskov & Zonstein [1990a]. A tion between the forward-directed and downward- little later, I demonstrated another scheme show- directed types; these axes are divergent laterally. ing the independent origin of orthognathous The terms palaeognathy, plesiognathy and neog- and labidognathous chelicerae in spiders at the nathy as well as the derived forms (e.g., plesiogna- Third Eurasian Arachnological Conference. This thous) are used to designate the orthognathous states report was briefly reviewed by Mikhailov found in the Trigonotarbida, in the Pedipalpi (that [1992], but it has never been published. Despite includes the orders Amblypygi, Uropygi and Schi- the general formal resemblance of both hypoth- zomida) and in the Araneae, respectively. The first term (palaeognathy) was first used by Dunlop [1997], eses, they were based on quite different as- whereas the latter two are newly applied to the sumptions and a number of the significant dif- arachnids. The swollen neognathous chelicerae are ferences between them could be listed. The characterized by the claw insertion point displaced expanded and reworked variant of the 1992 ventrad [Dunlop, 1994: fig. 1]. The least modified version is given here. plesiognathous construction retains many ancestral characters including a trapezoidal basal cheliceral Material and methods segment provided with a toothed vestige of the former immovable finger [Dunlop, 1994: figs 2, 3]. Finally, A noticeable part of the material used for this the palaeognathous cheliceral configuration includes study was lent from the spider collection of the both the fangs more or less displaced, and the gener- Zoological Institute of the Russian Academy of al cheliceral orientation changed from forward- to Sciences, St. Petersburg, in the early 1990s. It in- downward-directed [Dunlop, 1994: fig. 4]. cluded numerous mygalomorph taxa belonging to The term phrynid type applies only to the gener- the families Atypidae, Idiopidae, Actinopodidae, alized subchelate construction occurring in the Re- Ctenizidae, Cyrtaucheniidae, Hexathelidae, Diplu- cent taxa represented by the Amblypygi, the Uropy- ridae, Nemesiidae, Barychelidae and Theraphosidae. gi, the Schizomida, and found to be applicable also In addition, material was kindly sent to me by Dr. for some members of the fossil order Trigonotarbida Kirill Eskov (Heptathele) and Dr. Frederick Coyle (for details see the corresponding parts of this study). S.L. Zonstein. Origin and evolution of spider chelicerae 351 This term reflects a certain evolutionary level only; Pedipalpi it does not convey any taxonomic context. Plesiomorphically, ancestors of the Tetra- pulmonata presumably possessed three-seg- Results and discussion mented, chelate chelicerae with the movable finger (the future tetrapulmonate cheliceral fang) Origin located retrolaterally; it is the cheliceral con- struction that is shared by the less advanced arachnids, including representatives of the or- The allied groups der Palpigradi adjacent to the tetrapulmonates Most phylogenetic studies agree in placing [Dunlop, 1997; Selden & Dunlop, 1998]. Araneae into the same group with Amblypygi, The orthognathous chelicerae occurring in Uropygi and Schizomida other arachnid or- the representatives of those orders were consid- ders with members also possessing two pairs of ered to be the most archaic cheliceral construc- book-lungs and the clasp-knife-shaped cheli- tion occurring within this pair of taxa. The main cerae1. Together they constitute the Tetrapul- constructive features of this type are as follows: monata Shultz, 1990. Some disagreement oc- (1) contrary to spiders, the chelicerae here are curs only in drawing spiders closer to one or relatively small (cf. Figs 18); (2) basal cheli- another subtaxon within this group. ceral segments are trapezoidal and flattened; Until recently Amblypygi were found to be (3) the fang is relatively short and joined to the the closest relatives of spiders [see Platnick & basal segment close to its foremost dorso-api- Gertsch, 1976]. Most often Uropygi s.lat. (The- cal vertex; (4) the toothed part of cheliceral lyphonida + Schizomida) has been considered a furrow representing
Recommended publications
  • Cryptic Species Delimitation in the Southern Appalachian Antrodiaetus
    Cryptic species delimitation in the southern Appalachian Antrodiaetus unicolor (Araneae: Antrodiaetidae) species complex using a 3RAD approach Lacie Newton1, James Starrett1, Brent Hendrixson2, Shahan Derkarabetian3, and Jason Bond4 1University of California Davis 2Millsaps College 3Harvard University 4UC Davis May 5, 2020 Abstract Although species delimitation can be highly contentious, the development of reliable methods to accurately ascertain species boundaries is an imperative step in cataloguing and describing Earth's quickly disappearing biodiversity. Spider species delimi- tation remains largely based on morphological characters; however, many mygalomorph spider populations are morphologically indistinguishable from each other yet have considerable molecular divergence. The focus of our study, Antrodiaetus unicolor species complex which contains two sympatric species, exhibits this pattern of relative morphological stasis with considerable genetic divergence across its distribution. A past study using two molecular markers, COI and 28S, revealed that A. unicolor is paraphyletic with respect to A. microunicolor. To better investigate species boundaries in the complex, we implement the cohesion species concept and employ multiple lines of evidence for testing genetic exchangeability and ecological interchange- ability. Our integrative approach includes extensively sampling homologous loci across the genome using a RADseq approach (3RAD), assessing population structure across their geographic range using multiple genetic clustering analyses that include STRUCTURE, PCA, and a recently developed unsupervised machine learning approach (Variational Autoencoder). We eval- uate ecological similarity by using large-scale ecological data for niche-based distribution modeling. Based on our analyses, we conclude that this complex has at least one additional species as well as confirm species delimitations based on previous less comprehensive approaches.
    [Show full text]
  • Arachnida: Araneae) by Monthly Census for 3 Years in Forest Areas of Yakushima Island, Japan
    Biodiversity Data Journal 5: e14789 doi: 10.3897/BDJ.5.e14789 Data Paper Specimen records of spiders (Arachnida: Araneae) by monthly census for 3 years in forest areas of Yakushima Island, Japan Takeshi Osawa‡‡, Yuki G Baba , Tatsumi Suguro§, Noriaki Naya |, Takeo Yamauchi¶ ‡ Institute for Agro-environmental Sciences, Tsukuba, Japan § Keio Yochisha Elementary School, Tokyo, Japan | Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan ¶ Museum of Nature and Human Activities, Hyogo, Sanda, Japan Corresponding author: Takeshi Osawa ([email protected]) Academic editor: Robert Mesibov Received: 29 Jun 2017 | Accepted: 18 Jul 2017 | Published: 25 Jul 2017 Citation: Osawa T, Baba Y, Suguro T, Naya N, Yamauchi T (2017) Specimen records of spiders (Arachnida: Araneae) by monthly census for 3 years in forest areas of Yakushima Island, Japan. Biodiversity Data Journal 5: e14789. https://doi.org/10.3897/BDJ.5.e14789 Abstract Background Spiders (Arachnida: Araneae) are a classic indicator taxon for evaluating the health of natural environments. However, studies of spiders’ responses to forest succession under natural and anthropogenic disturbance regimes are lacking. Yakushima Island in southwestern Japan has a unique forest ecosystem, and part of the island is designated as a world natural heritage site by UNESCO. Approximately 90% of Yakushima is covered by forest, including both plantations and natural forests. New information We made an inventory of spiders on Yakushima Island by collecting specimens in five forests (two plantations and three natural forests) with Malaise and window traps from 2006 to 2008 (a total of 637 traps). We collected 3487 specimens, representing 31 families and © Osawa T et al.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9111799 Evolutionary morphology of the locomotor apparatus in Arachnida Shultz, Jeffrey Walden, Ph.D.
    [Show full text]
  • Key to Common Indoor Spiders Found in Utah
    KEY TO COMMON INDOOR SPIDERS FOUND IN UTAH Alan H. Roe Insect Diagnostician Utah Plant Pest Diagnostic Lab November 2005 This key is intended as an identification aid for spider specimens commonly collected from indoor situations in Utah. It is not all-inclusive and will not correctly identify all spiders. However, the key does include groups that comprise about 90% of the specimens that are submitted from household situations in Utah, and about 80% of spiders submitted from all situations. This simplified key is designed for use by persons with a minimal knowledge of spider anatomy. Anatomical characteristics utilized by the key include eye arrangements, the number of claws on the tarsi, the presence or lack of claw tufts, the appearance of the spinnerets, and the arrangement of teeth (if any) on the rear margin of the cheliceral fang furrow. Actual photographs of spider anatomy are utilized to illustrate the various characteristics described in the key. A dissecting microscope (20X minimum power) is recommended to observe the necessary characteristics. One or two pairs of fine forceps and a dissecting pin are useful for manipulating specimens. A silicone-filled dissecting dish and insect pins may also be useful for holding specimens in the required viewing positions. Ethyl alcohol (70%) is recommended for preserving spider specimens. Specimens can be viewed submerged under alcohol or dry, but dry specimens are prone to breakage. Spiders included in this key are identified to the family, genus, or species level. A list of these spiders and their classification level is given in the table below. The actual key follows the table.
    [Show full text]
  • Download (8MB)
    https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] THE USE OF SPIDER SILK IN THE NESTS OF SMALL BIRDS, WITH PARTICULAR REFERENCE TO THE CHAFFINCH (FRINGILLA COELEBS). A thesis submitted to the Faculty of Science, University of Glasgow, for the degree of Master of Science by Nicholas P Storer May 1991 ProQuest Number: 11011423 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11011423 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC.
    [Show full text]
  • Spiders in Africa - Hisham K
    ANIMAL RESOURCES AND DIVERSITY IN AFRICA - Spiders In Africa - Hisham K. El-Hennawy SPIDERS IN AFRICA Hisham K. El-Hennawy Arachnid Collection of Egypt, Cairo, Egypt Keywords: Spiders, Africa, habitats, behavior, predation, mating habits, spiders enemies, venomous spiders, biological control, language, folklore, spider studies. Contents 1. Introduction 1.1. Africa, the continent of the largest web spinning spider known 1.2. Africa, the continent of the largest orb-web ever known 2. Spiders in African languages and folklore 2.1. The names for “spider” in Africa 2.2. Spiders in African folklore 2.3. Scientific names of spider taxa derived from African languages 3. How many spider species are recorded from Africa? 3.1. Spider families represented in Africa by 75-100% of world species 3.2. Spider families represented in Africa by more than 400 species 4. Where do spiders live in Africa? 4.1. Agricultural lands 4.2. Deserts 4.3. Mountainous areas 4.4. Wetlands 4.5. Water spiders 4.6. Spider dispersal 4.7. Living with others – Commensalism 5. The behavior of spiders 5.1. Spiders are predatory animals 5.2. Mating habits of spiders 6. Enemies of spiders 6.1. The first case of the species Pseudopompilus humboldti: 6.2. The second case of the species Paracyphononyx ruficrus: 7. Development of spider studies in Africa 8. Venomous spiders of Africa 9. BeneficialUNESCO role of spiders in Africa – EOLSS 10. Conclusion AcknowledgmentsSAMPLE CHAPTERS Glossary Bibliography Biographical Sketch Summary There are 7935 species, 1116 genera, and 79 families of spiders recorded from Africa. This means that more than 72% of the known spider families of the world are represented in the continent, while only 19% of the described spider species are ©Encyclopedia of Life Support Systems (EOLSS) ANIMAL RESOURCES AND DIVERSITY IN AFRICA - Spiders In Africa - Hisham K.
    [Show full text]
  • Spider Biodiversity Patterns and Their Conservation in the Azorean
    Systematics and Biodiversity 6 (2): 249–282 Issued 6 June 2008 doi:10.1017/S1477200008002648 Printed in the United Kingdom C The Natural History Museum ∗ Paulo A.V. Borges1 & Joerg Wunderlich2 Spider biodiversity patterns and their 1Azorean Biodiversity Group, Departamento de Ciˆencias conservation in the Azorean archipelago, Agr´arias, CITA-A, Universidade dos Ac¸ores. Campus de Angra, with descriptions of new species Terra-Ch˜a; Angra do Hero´ısmo – 9700-851 – Terceira (Ac¸ores); Portugal. Email: [email protected] 2Oberer H¨auselbergweg 24, Abstract In this contribution, we report on patterns of spider species diversity of 69493 Hirschberg, Germany. the Azores, based on recently standardised sampling protocols in different hab- Email: joergwunderlich@ t-online.de itats of this geologically young and isolated volcanic archipelago. A total of 122 species is investigated, including eight new species, eight new records for the submitted December 2005 Azorean islands and 61 previously known species, with 131 new records for indi- accepted November 2006 vidual islands. Biodiversity patterns are investigated, namely patterns of range size distribution for endemics and non-endemics, habitat distribution patterns, island similarity in species composition and the estimation of species richness for the Azores. Newly described species are: Oonopidae – Orchestina furcillata Wunderlich; Linyphiidae: Linyphiinae – Porrhomma borgesi Wunderlich; Turinyphia cavernicola Wunderlich; Linyphiidae: Micronetinae – Agyneta depigmentata Wunderlich; Linyph- iidae:
    [Show full text]
  • A Preliminary Phylogeographic Study of the Diplurid Genus Microhexura
    A PRELIMINARY PHYLOGEOGRAPHIC STUDY OF THE DIPLURID GENUS MICROHEXURA By Mia M. Martens A Thesis Submitted to the Faculty of the Graduate School of Western Carolina University in Partial Fulfillment of the Requirements for the Degree of Master of Science -,.L~:::::::.------~~r:=:::=""------ Dean of the Graduate School Fall 2005 Western Carolina University Cullowhee, North Carolina A PRELIMINARY PHYLOGEOGRAPHIC STUDY OF THE DIPLURID GENUS MICROHEXURA A thesis presented to the facuIty of the Graduate School of Western Carolina University in partial fulfillment of the requirements for the degree of Master of Science. By Mia M. Martens Director: Dr. James Costa H.P. and Katherine P. Robinson Professor of Biology Department of Biology December 2005 The Sequence A cross between a bug and a woolly worm Was here to seep away the sap. First, all the firs began to squirm, . Then fell to take a long nap. A change came to the forest, Darkness turned to light. The firs couldn't persist Due to this adelgid blight. Before too long, there was no shade. The light made the moss begin to dry, And as their populations began to fade, The spruce-fir moss spider started to sigh. Habitat loss and lack of lumber Caused questions for spiders to heed. What is our minimum number? How many of us do we need? Come; let's closely compare these three things. How's the weather, things like rain and snow? What's the rate of death to new beings? And finally, let's look at our gene flow. Now with this, we compare all our info.
    [Show full text]
  • From Arunachal Pradesh, India
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Asia-Pacific Biodiversity 8 (2015) 43e48 HOSTED BY Contents lists available at ScienceDirect Journal of Asia-Pacific Biodiversity journal homepage: http://www.elsevier.com/locate/japb Original article New genus with two new species of the Family Nemesiidae (Araneae: Mygalomorphae) from Arunachal Pradesh, India Manju Siliwal a,*, Sanjay Molur a, Robert Raven b a Wildlife Information Liaison Development Society, Coimbatore, Tamil Nadu, India b Queensland Museum, South Brisbane, Queensland, Australia article info abstract Article history: The new genus, Damarchilus gen. nov., is proposed with descriptions of two new species, Damarchilus Received 16 December 2014 nigricus sp. nov. and Damarchilus rufus sp. nov., from northeast India. External characters for the new Received in revised form genus and new species are examined and illustrated. In addition, the natural history of the species is 23 January 2015 provided. Accepted 26 January 2015 Copyright Ó 2015, National Science Museum of Korea (NSMK) and Korea National Arboretum (KNA). Available online 4 February 2015 Production and hosting by Elsevier. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/). Keywords: Mygalomorphs Nemesiidae New genus Taxonomy Introduction paper, we describe a new genus, Damarchilus gen. nov., with two new species, Damarchilus nigricus sp. nov. and Damarchilus rufus sp. The family Nemesiidae is represented by 44 genera and 374 nov., from the western Arunachal Pradesh, India. This study was species in the world (World Spider Catalog 2014).
    [Show full text]
  • Species Delimitation and Phylogeography of Aphonopelma Hentzi (Araneae, Mygalomorphae, Theraphosidae): Cryptic Diversity in North American Tarantulas
    Species Delimitation and Phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): Cryptic Diversity in North American Tarantulas Chris A. Hamilton1*, Daniel R. Formanowicz2, Jason E. Bond1 1 Auburn University Museum of Natural History and Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America, 2 Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America Abstract Background: The primary objective of this study is to reconstruct the phylogeny of the hentzi species group and sister species in the North American tarantula genus, Aphonopelma, using a set of mitochondrial DNA markers that include the animal ‘‘barcoding gene’’. An mtDNA genealogy is used to consider questions regarding species boundary delimitation and to evaluate timing of divergence to infer historical biogeographic events that played a role in shaping the present-day diversity and distribution. We aimed to identify potential refugial locations, directionality of range expansion, and test whether A. hentzi post-glacial expansion fit a predicted time frame. Methods and Findings: A Bayesian phylogenetic approach was used to analyze a 2051 base pair (bp) mtDNA data matrix comprising aligned fragments of the gene regions CO1 (1165 bp) and ND1-16S (886 bp). Multiple species delimitation techniques (DNA tree-based methods, a ‘‘barcode gap’’ using percent of pairwise sequence divergence (uncorrected p- distances), and the GMYC method) consistently recognized a number of divergent and genealogically exclusive groups. Conclusions: The use of numerous species delimitation methods, in concert, provide an effective approach to dissecting species boundaries in this spider group; as well they seem to provide strong evidence for a number of nominal, previously undiscovered, and cryptic species.
    [Show full text]
  • Four New Species of the Trapdoor Spider Genus Conothele Thorell
    A peer-reviewed open-access journal ZooKeys 643: 63–74Four (2017) new species of the trapdoor spider genus Conothele Thorell, 1878... 63 doi: 10.3897/zookeys.643.10543 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Four new species of the trapdoor spider genus Conothele Thorell, 1878 from Mainland China and Laos (Araneae, Ctenizidae) Xin Xu1,2, Chen Xu2, Fengxiang Liu2, Zengtao Zhang2, Daiqin Li3 1 College of Life Sciences, Hunan Normal University, Changsha, Hunan, China 2 Centre for Behavioural Eco- logy and Evolution (CBEE), College of Life Sciences, Hubei University, Wuhan, Hubei, China 3 Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 Corresponding authors: Xin Xu ([email protected]); Daiqin Li ([email protected]) Academic editor: M. Arnedo | Received 18 September 2016 | Accepted 7 December 2016 | Published 5 January 2017 http://zoobank.org/96168144-0EDD-4A84-919C-ACE0DF7E19D3 Citation: Xu X, Xu C, Liu F, Zhang Z, Li D (2017) Four new species of the trapdoor spider genus Conothele Thorell, 1878 from Mainland China and Laos (Araneae, Ctenizidae). ZooKeys 643: 63–74.https://doi.org/10.3897/ zookeys.643.10543 Abstract Here for the first time the presence of the trapdoor spider genus Conothele Thorell 1878 (Araneae: Ctenizidae) is reported from mainland China and Laos. Four Conothele species collected from the re- gions are described as new to science, based on the female genital morphology: C. baiyunensis Xu, Xu & Liu, sp. n. (Guangdong Province), C. daxinensis Xu, Xu & Li, sp. n. (Guangxi Province), C. sidiechon- gensis Xu, Xu & Liu, sp.
    [Show full text]
  • Phylogenomic Analysis and Revised Classification of Atypoid Mygalomorph Spiders (Araneae, Mygalomorphae), with Notes on Arachnid Ultraconserved Element Loci
    Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci Marshal Hedin1, Shahan Derkarabetian1,2,3, Adan Alfaro1, Martín J. Ramírez4 and Jason E. Bond5 1 Department of Biology, San Diego State University, San Diego, CA, United States of America 2 Department of Biology, University of California, Riverside, Riverside, CA, United States of America 3 Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America 4 Division of Arachnology, Museo Argentino de Ciencias Naturales ``Bernardino Rivadavia'', Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 5 Department of Entomology and Nematology, University of California, Davis, CA, United States of America ABSTRACT The atypoid mygalomorphs include spiders from three described families that build a diverse array of entrance web constructs, including funnel-and-sheet webs, purse webs, trapdoors, turrets and silken collars. Molecular phylogenetic analyses have generally supported the monophyly of Atypoidea, but prior studies have not sampled all relevant taxa. Here we generated a dataset of ultraconserved element loci for all described atypoid genera, including taxa (Mecicobothrium and Hexurella) key to understanding familial monophyly, divergence times, and patterns of entrance web evolution. We show that the conserved regions of the arachnid UCE probe set target exons, such that it should be possible to combine UCE and transcriptome datasets in arachnids. We also show that different UCE probes sometimes target the same protein, and under the matching parameters used here show that UCE alignments sometimes include non- Submitted 1 February 2019 orthologs. Using multiple curated phylogenomic matrices we recover a monophyletic Accepted 28 March 2019 Published 3 May 2019 Atypoidea, and reveal that the family Mecicobothriidae comprises four separate and divergent lineages.
    [Show full text]