Testing Stability by Quantifier Elimination

Total Page:16

File Type:pdf, Size:1020Kb

Testing Stability by Quantifier Elimination View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector J. Symbolic Computation (1997) 24, 161–187 Testing Stability by Quantifier Elimination HOON HONG†, RICHARD LISKA‡ AND STANLY STEINBERG§ †RISC Linz, Johannes Kepler University, Linz, Austria †Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Bˇrehov´a7, 115 19 Prague 1, Czech Republic §Department of Mathematics and Statistics, University of New Mexico, Albuquerque NM 87131-1141, U.S.A. For initial and initial-boundary value problems described by differential equations, sta- bility requires the solutions to behave well for large times. For linear constant-coefficient problems, Fourier and Laplace transforms are used to convert stability problems to questions about roots of polynomials. Many of these questions can be viewed, in a natu- ral way, as quantifier-elimination problems. The Tarski–Seidenberg theorem shows that quantifier-elimination problems are solvable in a finite number of steps. However, the complexity of this algorithm makes it impractical for even the simplest problems. The newer Quantifier Elimination by Partial Algebraic Decomposition (QEPCAD) algorithm is far more practical, allowing the solution of some non-trivial problems. In this paper, we show how to write all common stability problems as quantifier-elimination problems, and develop a set of computer-algebra tools that allows us to find analytic solutions to simple stability problems in a few seconds, and to solve some interesting problems in from a few minutes to a few hours. c 1997 Academic Press Limited 1. Introduction Initial-value problems for systems of ordinary differential equations, and initial-boundary value problems for systems of partial differential equations are one of the most common mathematical structures used to model physical processes. In general, these problems are nonlinear, and the first question asked about such problems is: Is the problem well posed? That is, does the problem possess a unique solution that depends continuously on the data of the problem? If the problem is well posed, then the next most important questions concern the stability of the solutions. If two solutions that start out close together remain close together, then the problem is stable, while if the solutions become arbitrarily close, then the problem is asymptotically stable. Otherwise, the problem is unstable. The analysis of such stability problems begins by studying a system of equations that † E-mail: [email protected] ‡ E-mail: [email protected] § E-mail: [email protected] 0747–7171/97/020161 + 27 $25.00/0 sy970121 c 1997 Academic Press Limited 162 H. Hong et al. are linear and have constant coefficients. A standard approach to solving the linear constant-coefficient problems is to use transforms to reduce the problem to an algebraic form; in particular, if a variable is defined for all real values, the Fourier transform in that variable is used, while if the variable is defined for positive real values, the Laplace transform in that variable is used. The transforms and some algebra reduce the computation of solutions to the problem of finding the roots of a polynomial, called the characteristic polynomial, which is a polynomial in the transformed time variable with coefficients that are polynomials in the parameters of the problem and other transform variables. The method of choice for solving an initial-boundary value problem for which analytic solutions cannot be found by the transform methods, is to approximate the problem by a discrete problem and then solve the discrete problem numerically. As in the continuum, it is important to know that the discrete problem is well posed, and if it is well posed, whether it is stable or asymptotically stable. In fact, more is required, since the discrete problems will contain discretization parameters: step sizes that go to zero, or the number of grid points that go to infinity. The analysis of discrete problems follows the same pattern as the continuum problem. In particular, linear constant-coefficient problems are analysed first, using the same transforms as in the continuum problems. For linear constant-coefficient problems, the notion of stability can be somewhat sim- plified. A problem is well posed if all solutions are bounded in time by an exponential function, is stable if all solutions are bounded, and is asymptotically stable if all solutions converge to zero. The transform method of analysis is not particularly well suited to sym- bolic computing. However, the transform method shows that all solutions can be found by calculating all solutions of exponential form. Functions of the appropriate exponential form are called trial solutions. For example, for systems of ordinary differential equations, the trial solutions are a vector times an exponential function of the time variable t, eλt, where λ is the complex transform variable related to the time variable t. For this expo- nential to be a solution, λ will have to be a root of the characteristic polynomial, where typically the coefficients of the polynomial contain both parameters of the problem and other transform variables. Note that, when t ,if λ>0, the trial solution grows in time, while if λ = 0, the trial solution is bounded,→∞ < and if λ<0, the trial solution converges to zero.< (The notation used in this paper is summarized< in Appendix A.) In the case of discrete problems, in particular for systems of ordinary difference equa- tions, the trial solutions are also a vector times an exponential function of n, given by setting t = n ∆t in the previous trial solution. For computational purposes it is better to rewrite this function as a power: eλn∆t =sn,s=eλ∆t. Again, note that when n ,if s >1, the trial solution grows in time, while if s =1, the trial solution is bounded,→∞ and| if| s < 1, the trial solution converges to zero. | | Because of the way that exponentials| | grow, and given that the stability conditions must be uniform in the transform variables, one is tempted to say that a problem is well posed, if for all roots λ of the characteristic equation, there is a constant K (independent of the other transform variables) such that λ K, that the problem is stable if λ 0, and asymptotically stable if λ<0. The< first≤ and last of these conditions are< correct,≤ but the condition for stability< is only correct if the polynomial has no multiple roots Testing Stability by Quantifier Elimination 163 with λ = 0. In the case of multiple roots, the solutions of the problem are exponentials, possibly< multiplied by polynomials, and then the analysis becomes more difficult. There- fore, for problems in this paper, we restrict our attention to showing that problems are asymptotically stable or unstable. Similar comments apply to discrete problems. How are such problems cast as quantifier-elimination problems? Asymptotic stability of the continuum problem for partial differential equations requires that all the roots of the characteristic polynomial have a negative real part for all transform variables related to space. If the characteristic polynomial is C(λ, ξ,~ ~α) where λ is the complex transform variable related to the time variable, the components of ξ~ are the real transform variables related to the spatial variables, and ~α represents the parameters of the problem, then the asymptotic stability of the problem can be written ξ~ R λ C C(λ, ξ,~ ~α)=0 λ<0 . (1.1) ∀ ∈ ∀ ∈ { ⇒< } A necessary condition for stability is obtained by replacing < by in the last formula. The well posedness can be stated as a similar quantifier elimination≤ problem including existence of the global upper bound for the real part of the roots. In this paper we consider only asymptotic stability; however, well posedness can be analysed by similar methods. Eliminating the quantifiers from the previous logical formula produces a formula equivalent to the original but only involving the parameters ~α. This formula gives a complete answer to the stability problem. The Tarski–Seidenberg Theorem states that the quantifiers in the previous logical formula can be eliminated in a finite number of steps to produce a logical formula in polynomials in ~α. However, all of the algorithms for eliminating quantifiers are extremely complex. In the literature on differential equations and numerical methods, stability problems are solved using a variety of methods, but the solutions of even relatively modest problems are quite complex (e.g. Strikwerda, 1989, Example 11.4.1, p. 260). For difficult stability problems, it is typical to either prove an estimate of the stability condition (e.g. Wendroff, 1991), or to estimate the stability region using numerical sampling (e.g. Ganzha and Vorozhtsov, 1987). Fortunately, the quantifier-elimination problems arising in stability theory are neither completely general nor trivial. In the next section, a number of special techniques are described for analysing and sometimes solving these problems. Because of the importance and complexity of stability problems, it is valuable to have a battery of tools for solving them, either approximately or exactly. The solution procedures described in this paper start by using trial solutions to deter- mine a characteristic polynomial for a problem and then writing the stability problem as a quantifier-elimination problem. If the problem concerns asymptotic stability of an initial-value problem (see equation (1.1)), then a Routh–Hurwitz-type procedure is used to eliminate one complex quantified variable (λ). For ordinary differential or difference equations, this along with some simplification, solves the problem. For partial differential or difference equations (for these a conformal map is applied before Routh–Hurwitz), the remaining quantifiers are eliminated using a quantifier elimination using partial cylindri- cal algebraic decomposition algorithm (QEPCAD). For stability problems (equation (1.1) with < replaced by ), the Routh–Hurwitz-type criteria do not apply, so QEPCAD must be applied directly,≤ and this makes such problems much more difficult.
Recommended publications
  • Arithmetic and Geometric Applications of Quantifier Elimination for Valued Fields
    Model Theory, Algebra, and Geometry MSRI Publications Volume 39, 2000 Arithmetic and Geometric Applications of Quantifier Elimination for Valued Fields JAN DENEF Abstract. We survey applications of quantifier elimination to number the- ory and algebraic geometry, focusing on results of the last 15 years. We start with the applications of p-adic quantifier elimination to p-adic inte- gration and the rationality of several Poincar series related to congruences f(x) = 0 modulo a prime power, where f is a polynomial in several vari- ables. We emphasize the importance of p-adic cell decomposition, not only to avoid resolution of singularities, but especially to obtain much stronger arithmetical results. We survey the theory of p-adic subanalytic sets, which is needed when f is a power series instead of a polynomial. Next we explain the fundamental results of Lipshitz{Robinson and Gardener{Schoutens on subanalytic sets over algebraically closed complete valued fields, and the connection with rigid analytic geometry. Finally we discuss recent geo- metric applications of quantifier elimination over C((t)), related to the arc space of an algebraic variety. One of the most striking applications of the model theory of valued fields to arithmetic is the work of Ax and Kochen [1965a; 1965b; 1966; Kochen 1975], and of Ershov [1965; 1966; 1967], which provided for example the first quantifier elimination results for discrete valued fields [Ax and Kochen 1966], and the decidability of the field Qp of p-adic numbers. As a corollary of their work, Ax and Kochen [1965a] proved the following celebrated result: For each prime number p, big enough with respect to d, any homogeneous polynomial of degree 2 d over Qp in d + 1 variables has a nontrivial zero in Qp.
    [Show full text]
  • More Model Theory Notes Miscellaneous Information, Loosely Organized
    More Model Theory Notes Miscellaneous information, loosely organized. 1. Kinds of Models A countable homogeneous model M is one such that, for any partial elementary map f : A ! M with A ⊆ M finite, and any a 2 M, f extends to a partial elementary map A [ fag ! M. As a consequence, any partial elementary map to M is extendible to an automorphism of M. Atomic models (see below) are homogeneous. A prime model of T is one that elementarily embeds into every other model of T of the same cardinality. Any theory with fewer than continuum-many types has a prime model, and if a theory has a prime model, it is unique up to isomorphism. Prime models are homogeneous. On the other end, a model is universal if every other model of its size elementarily embeds into it. Recall a type is a set of formulas with the same tuple of free variables; generally to be called a type we require consistency. The type of an element or tuple from a model is all the formulas it satisfies. One might think of the type of an element as a sort of identity card for automorphisms: automorphisms of a model preserve types. A complete type is the analogue of a complete theory, one where every formula of the appropriate free variables or its negation appears. Types of elements and tuples are always complete. A type is principal if there is one formula in the type that implies all the rest; principal complete types are often called isolated. A trivial example of an isolated type is that generated by the formula x = c where c is any constant in the language, or x = t(¯c) where t is any composition of appropriate-arity functions andc ¯ is a tuple of constants.
    [Show full text]
  • Arxiv:2007.09244V1 [Math.LO] 17 Jul 2020 Rdcs Given Products
    AXIOMS FOR COMMUTATIVE UNITAL RINGS ELEMENTARILY EQUIVALENT TO RESTRICTED PRODUCTS OF CONNECTED RINGS JAMSHID DERAKHSHAN AND ANGUS MACINTYRE† Abstract. We give axioms in the language of rings augmented by a 1-ary predicate symbol Fin(x) with intended interpretation in the Boolean algebra of idempotents as the ideal of finite elements, i.e. finite unions of atoms. We prove that any commutative unital ring satisfying these axioms is elementarily equivalent to a restricted product of connected rings. This is an extension of the results in [3] for products. While the results in [3] give a converse to the Feferman-Vaught theorem for products, our results prove the same for restricted products. We give a complete set of axioms in the language of rings for the ring of adeles of a number field, uniformly in the number field. 0. Introduction This paper is a natural sequel to [3] and the main results and proofs are natural extensions of those in [3]. In many cases we will simply refer to the material from [3] [3] deals with the model theory of products of connected unital rings, and can be construed as providing a partial converse to the Feferman-Vaught Theorem [9] in the special case of products Qi∈I Ri, i ∈ I, where Ri are connected commutative unital rings and I an index set (Recall that a commutative ring R is connected if 0, 1 are the only idempotents of R). The converse concerns the issue of providing axioms for rings elementarily equivalent to rings Qi∈I Ri as above. The solution of this problem is given in [3] and, inter alia has applications to non-standard models arXiv:2007.09244v1 [math.LO] 17 Jul 2020 of PA (first order Peano arithmetic) in [4].
    [Show full text]
  • Quantifier Elimination and Real Closed Ordered Fields with A
    Quanti¯er Elimination and Real Closed Ordered Fields with a Predicate for the Powers of Two Yimu Yin December 17, 2005 Abstract In this thesis we ¯rst review the model theory of quanti¯er elim- ination and investigate the logical relations among various quanti¯er elimination tests. In particular we prove the equivalence of two quanti- ¯er elimination tests for countable theories. Next we give a procedure for eliminating quanti¯ers for the theory of real closed ordered ¯elds with a predicate for the powers of two. This result was ¯rst obtained by van den Dries [20]. His method is model-theoretic, which provides no apparent bounds on the complexity of a decision procedure. In the last section we give a complete axiomatization of the theory of real closed ordered ¯elds with a predicate for the Fibonacci numbers. 1 Acknowledgements I thank my advisor Jeremy Avigad for the guidance he has provided me. I am grateful to James Cummings and Rami Grossberg for many helpful suggestions. I also thank Chris Miller for suggesting the problem considered in the last section of this thesis. 2 1 Introduction A \decision procedure" for mathematics is, roughly, a procedure for deter- mining whether or not a mathematical statement is true. Of course, any proof can be viewed as a procedure for determining that a particular theo- rem is true; but when we talk about decision procedures, we usually mean a procedure for deciding a class of statements. Some decision procedures have been around for a very long time. For example, Euclid's algorithm is such a procedure.
    [Show full text]
  • Formalizing Constructive Quantifier Elimination in Agda
    Formalizing Constructive Quantifier Elimination in Agda Jeremy Pope University of Gothenburg Gothenburg, Sweden [email protected] In this paper a constructive formalization of quantifier elimination is presented, based on a classical formalization by Tobias Nipkow. The formalization is implemented and verified in the programming language/proof assistant Agda. It is shown that, as in the classical case, the ability to eliminate a single existential quantifier may be generalized to full quantifier elimination and consequently a decision procedure. The latter is shown to have strong properties under a constructive metatheory, such as the generation of witnesses and counterexamples. Finally, this is demonstrated on a minimal theory on the natural numbers. 1 Introduction 1.1 Predicate Logic and Quantifier Elimination A proposition in predicate logic is formed in one of three ways: from an atom, by linking propositions together using a connective (such as ∨ or ⇒), or by quantifying a proposition with ∀ or ∃. Neglecting the internal structure of atoms, it is the third that sets predicate logic apart from propositional logic; the quantifiers greatly enhance the expressiveness of the language. A drawback of predicate logic is that the truth of a proposition is no longer easy to determine. With propositional logic an exhaustive enumeration is possible, but this is not so in predicate logic: to do so on a proposition such as ∀x.(x =6 x + 1) would require verifying x =6 x + 1 for every possible value of x, which—depending on our choice of domain—could be infinite. There is not always a way around this; predicate logic is indeed undecidable in the general case.
    [Show full text]
  • Model Theory – Draft
    Math 225A – Model Theory – Draft Speirs, Martin Autumn 2013 Contents Contents 1 0 General Information 5 1 Lecture 16 1.1 The Category of τ-Structures....................... 6 2 Lecture 2 11 2.1 Logics..................................... 13 2.2 Free and bound variables......................... 14 3 Lecture 3 16 3.1 Diagrams................................... 16 3.2 Canonical Models.............................. 19 4 Lecture 4 22 4.1 Relations defined by atomic formulae.................. 22 4.2 Infinitary languages............................ 22 4.3 Axiomatization............................... 24 The Arithmetical Hierarchy........................ 24 1 Contents 2 5 Lecture 5 25 5.1 Preservation of Formulae......................... 26 6 Lecture 6 31 6.1 Theories and Models............................ 31 6.2 Unnested formulae............................. 34 6.3 Definitional expansions.......................... 36 7 Lecture 7 38 7.1 Definitional expansions continued.................... 38 7.2 Atomisation/Morleyisation........................ 39 8 Lecture 8 42 8.1 Quantifier Elimination........................... 42 8.2 Quantifier Elimination for (N, <) ..................... 42 8.3 Skolem’s theorem.............................. 45 8.4 Skolem functions.............................. 46 9 Lecture 9 47 9.1 Skolemisation................................ 47 9.2 Back-and-Forth and Games........................ 49 9.3 The Ehrenfeucht-Fraïssé game...................... 50 10 Lecture 10 52 10.1 The Unnested Ehrenfeucht-Fraïssé Game................ 52 11 Lecture
    [Show full text]
  • INTRODUCTION to MODEL THEORY 1. Intro And
    INTRODUCTION TO MODEL THEORY MOSHE KAMENSKY 1. Intro and review 1.1. Boolean algebras. Let B be a boolean algebra. We let S(B) be the set of boolean algebra maps B −! 2, where 2 = f0, 1g is the unique 2-element boolean algebra. Any element b 2 B determines a map b : S(B) −! 2, via b(x) = x(b). Note that the set Hom(X, 2), for any set X, is a boolean algebra with pointwise operations. Viewing the elements of this algebra as characteristic functions, this is identified with the power set of X, with the boolean algebra structure given as usual. Exercise 1.1.1. The map b 7! b is an injective homomorphism of boolean algebras r : B −! Hom(S(B), 2) Hence, any boolean algebra can be viewed as a subalgebra of a power set. To describe the image, we use a topological language. Definition 1.1.2. The Stone space of a boolean algebra B is the set S(B), with the weak topology making all functions b for b 2 B continuous (where 2 is discrete). By definition, each function b is continuous, so the image of r lies in the subalgebra C(S(B), 2) consisting of continuous functions. Theorem 1.1.3 (Stone representation theorem). The space S(B) is Haus- dorff and compact. The map r : B −! C(S(B), 2) is an isomorphism from B to the algebra of continuous functions. Proof. Compactness is an exercise (this is the compactness theorem for propositional logic). Assume f : S(B) −! 2 is continuous, and let Bf = fb 2 Bjb > fg.
    [Show full text]
  • Model Theory of Real Closed Fields
    Model Theory of Real Closed Fields Victoria L. Noquez Carnegie Mellon University Logic and Computation Senior Thesis Advisor: Dr. James Cummings May 2008 Abstract An important fact in the application of model theory to algebra is the result that quantifier elimination in a theory implies that it is model complete. In particular, quantifier elimination (and thus, model completeness) in the theory of algebraically closed fields has been used to give succinct proofs of such results as Hilbert’s Nullstellensatz. This paper is an exposition of the work of Prestel [7], Marker [6] and Dick- mann [4] regarding real closed fields such as the real numbers. Using methods of abstract algebra we prove that all ordered fields admit a unique real algebraic closure, and use this to show that the theory of real closed ordered fields admits quantifier elimination, and thus is model complete. From this we may conclude that the theory of real closed fields (without an ordering relation) is model complete. The result provides us with a proof of the Positivstellensatz (a modified version of Hilbert’s Nullstellensatz for real closed fields) and a solution to Hilbert’s 17th problem. For Lily Introduction The goal of this paper is to show that the theory of real closed fields is model complete and use this to prove results in algebra. I have divided it into three sections: Algebra, Logic, and Applications. The first and most extensive section which follows Prestel’s text [7] con- tains the algebraic preliminaries required to show the model theoretic results about real closed fields. In particular, we focus on the relationship between ordered fields and real closed fields.
    [Show full text]
  • Effective Quantifier Elimination Over Real Closed Fields
    EFFECTIVE QUANTIFIER ELIMINATION OVER REAL CLOSED FIELDS N. Vorobjov 1 Tarski (1931, 1951): Elementary algebra and geometry is decidable. More generally, there is an algorithm for quan- tifier elimination in the first order theory of the reals. Boolean formula F (x1;:::; xº) with atoms of the kind f > 0, where f 2 R[x0; x1;:::; xº], xi = (xi;1; : : : ; xi;ni). Φ(x0) := Q1x1Q2x2 ¢ ¢ ¢ QºxºF (x0; x1;:::; xº), where Qi 2 f9; 8g, Qi 6= Qi+1. Theorem 1. There is a quantifier-free formula Ψ(x0) such that Ψ(x0) , Φ(x0) over R, n n i.e., fx0 2 R 0j Ψ(x0)g = fx0 2 R 0j Φ(x0)g. Theorem remains true if R is replaced by any real closed field R, e.g., real algebraic numbers, Puiseux series over R in an infinitesimal. 2 Theorem 2. If atoms f 2 Z[x0; x1;:::; xº], then there is an algorithm which eliminates quanti- fiers from Φ(x0), i.e., for a given Φ(x0) pro- duces Ψ(x0). Corollary 3. The first order theory of the reals is decidable, i.e., there is an algorithm which for a given closed formula Q1x1Q2x2 ¢ ¢ ¢ QºxºF (x1;:::; xº) decides whether it’s true or false. 3 Integer coefficients are mentioned here to be able to handle the problem on a Turing ma- chine. If we are less picky about the model of computation, for example allow exact arith- metic operations and comparisons in a real closed field R, then Theorem ?? and Corol- lary ?? are also true for formulae over R.
    [Show full text]
  • Quantifier Elimination for Deduction in Econometrics
    NBER WORKING PAPER SERIES QUANTIFIER ELIMINATION FOR DEDUCTION IN ECONOMETRICS Casey B. Mulligan Working Paper 24601 http://www.nber.org/papers/w24601 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 May 2018 This work has benefitted from discussions with Clark Barrett, Nikolaj Bjorner, Russell Bradford, James Davenport, Matthew England, Lars Hansen, Leo de Moura, Zak Tonks, Alex Torgovitsky, comments from minicourse participants at Chicago, LSE, Tel-Aviv University, and Stanford, and the research assistance of Chanwool Kim. The views expressed herein are those of the author and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications. © 2018 by Casey B. Mulligan. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. Quantifier Elimination for Deduction in Econometrics Casey B. Mulligan NBER Working Paper No. 24601 May 2018 JEL No. C01,C63,C65 ABSTRACT When combined with the logical notion of partially interpreted functions, many nonparametric results in econometrics and statistics can be understood as statements about semi-algebraic sets. Tarski’s quantifier elimination (QE) theorem therefore guarantees that a universal algorithm exists for deducing such results from their assumptions. This paper presents the general framework and then applies QE algorithms to Jensen’s inequality, omitted variable bias, partial identification of the classical measurement error model, point identification in discrete choice models, and comparative statics in the nonparametric Roy model.
    [Show full text]
  • Quantifier Elimination and Other Model-Theoretic Properties of BL
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Notre Dame Journal of Formal Logic Volume 52, Number 4, 2011 Quantifier Elimination and Other Model-Theoretic Properties of BL-Algebras Tommaso Cortonesi, Enrico Marchioni, and Franco Montagna Abstract This work presents a model-theoretic approach to the study of first- order theories of classes of BL-chains. Among other facts, we present several classes of BL-algebras, generating the whole variety of BL-algebras, whose first- order theory has quantifier elimination. Model-completeness and decision prob- lems are also investigated. Then we investigate classes of BL-algebras having (or not having) the amalgamation property or the joint embedding property and we relate the above properties to the existence of ultrahomogeneous models. 1 Introduction The aim of this paper is to investigate the algebraic semantics of Hájek’s basic fuzzy logic BL (cf. [20]) by model-theoretic means. An investigation of this kind was first carried out for finitely and infinitely valued Łukasiewicz logics, product logic, and Gödel logic in [26; 27; 25; 4; 8; 28]. In particular, the research focus has been on the study of quantifier elimination and model completions for classes of algebras related to the above-mentioned logics. Lacava and Saeli showed in [26; 27] that the first-order theory of the variety gen- erated by a finite MV-algebra admits a model completion, and the same holds for the theory of the class of all linearly ordered MV-algebras. Lacava also showed that the theory of the whole variety of MV-algebras does not even have a model-companion.
    [Show full text]
  • Elimination of Quantifiers in Algebraic Structures
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ADVANCES IN MATHEMATICS 47, 74-87 (1983) Elimination of Quantifiers in Algebraic Structures ANGUS MACINTYRE, KENNETH MCKENNA,* Lou VAN DEN DRIES’ Department of Mathematics, Yale University, New Haven, Connecticut 06520 One of the first techniques used in the study of the logical properties of algebraic objects was that of elimination of quantifiers. It was, for example, used by Tarski [ 161 to prove the decidability of the theory of any given algebraically closed field and the decidability of the theory of real closed ordered fields. The theories of various other algebraic structures (e.g., the p- adic numbers, divisible ordered abelian groups) may also be shown to eliminate quantifiers in appropriate languages. The choice of the language is especially important in these dealings. It must be chosen to lie close to natural algebraic phenomena. Any structure may be made to admit elimination of quantifiers by the choice of a sufficiently complex language: the structure may be Skolemized or Morleyized [ 151. Clearly the resulting languages are too far from the natural relations on the objects to be of immediate algebraic interest. In this paper we will show that for many natural languages those structures which have been shown in the past to admit elimination of quan- tifiers are, in fact, the only structures of their type to admit elimination of quantifiers in that language. In particular we will show that apart from the finite fields and the algebraically closed fields there are no other fields which admit elimination of quantifiers in the language of rings with identity (i.e., the language with primitives +, ., -, 0, l).’ We will show that the only theory of ordered fields that admits elimination of quantifiers in the natural language of ordered domains is the theory of real closed ordered fields.
    [Show full text]