Introduction to Model Theory

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Model Theory Introduction to Model Theory Introduction to Model Theory Martin Hils Équipe de Logique Mathématique, Institut de Mathématiques de Jussieu Université Paris Diderot – Paris 7 Second International Conference and Workshop on Valuation Theory Segovia / El Escorial (Spain), 18th – 29th July 2011 Introduction to Model Theory Outline Basic Concepts Languages, Structures and Theories Definable Sets and Quantifier Elimination Types and Saturation Some Model Theory of Valued Fields Algebraically Closed Valued Fields The Ax-Kochen-Eršov Principle Imaginaries Imaginary Galois theory and Elimination of Imaginaries Imaginaries in valued fields Definable Types Basic Properties and examples Stable theories Prodefinability Introduction to Model Theory Basic Concepts Languages, Structures and Theories First order languages A first order language L is given by I constant symbols fci gi2I ; I relation symbols fRj gj2J (Rj of some fixed arity nj ); I function symbols ffk gk2K (fk of some fixed arity nk ); I a distinguished binary relation "=" for equality; I an infinite set of variables fvi j i 2 Ng (we also use x; y etc.); I the connectives :, ^, _, !, $, and I the quantifiers 8; 9. Introduction to Model Theory Basic Concepts Languages, Structures and Theories First order languages (continued) L-formulas are built inductively (in the obvious manner). Let ' be an L-formula. I A variable x is free in ' if it is not bound by a quantifier. I ' is called a sentence if it contains no free variables. I We write ' = '(x1;:::; xn) to indicate that the free variables of ' are among fx1;:::; xng. In what follows, we will only consider countable languages. Introduction to Model Theory Basic Concepts Languages, Structures and Theories First order structures Definition M M M An L-structure M is a tuple M = (M; ci ; Rj ; fk ), where I M is a non-empty set, the domain of M; M M nj M nk I ci 2 M , Rj ⊆ M , and fk : M ! M are interpretations of the symbols in L. To interpret an L-formula ' in M, note that the quantified variables run over M. n Let '(x1;:::; xn) and a 2 M be given. We set M j= '(a) if and only if ' holds for a in M. Introduction to Model Theory Basic Concepts Languages, Structures and Theories Examples of languages and structures I Lrings = f0; 1; +; −; ·} (language of rings). Any (unitary) ring is naturally an Lrings -structure, e.g. C = (C; 0; 1; +; −; ·) and R = (R; 0; 1; +; −; ·). ' ≡ 8x9y y · y = x is an Lrings -formula (even a sentence), with C j= ' and R j= :'. I Loag = f0; +; <g (language of ordered abelian groups) Let Z = (Z; 0; +; <) and Q = (Q; 0; +; <). Let (x; y) ≡ 9z(x < z ^ z < y). Then Q j= (1; 2) , Z 6j= (1; 2) and Z j= (0; 2). We will often write M instead of M, if the structure we mean is clear from the context. Introduction to Model Theory Basic Concepts Languages, Structures and Theories First order theories An L-theory T is a set of L-sentences. I An L-structure M is a model of T if M j= ' for every ' 2 T . We denote this by M j= T . I T is called consistent if it has a model. Examples 1. The usual field axioms, in Lrings , give rise a theory Tfields , with M j= Tfields if and only if M = (M; 0; 1; +; −; ·) is a field. n n−1 2. Let 'n ≡ 8z0 · · · 8zn−19x x + zn−1x + ::: + z0 = 0. ACF=Tfields [ f'n j n ≥ 2g. (Models are alg. closed fields.) 3. There is an Loag-theory DOAG whose models are preciseley the non-trivial divisible ordered abelian groups. 4. If M is an L-structure, Th(M) = f' L-sentence j M j= 'g. Introduction to Model Theory Basic Concepts Languages, Structures and Theories The expressive power of first order logic Theorem (Compactness Theorem) Let T be a theory. Suppose that any finite subtheory T0 of T has a model. Then T has a model. Corollary 1. If T has arbitrarily large finite models, it has an infinite model. Thus, there is e.g. no theory whose models are the finite fields. 2. If T has an infinite model, it has models of arbitrarily large cardinality. In particular, an infinite L-structure is not determined (up to L-isomorphism) by its theory. V To prove (1), consider n ≡ 9x1;:::; xn i<j xi 6= xj , and apply 0 compactness to T = T [ f n j n 2 Ng. Introduction to Model Theory Basic Concepts Languages, Structures and Theories Complete theories Let T be a theory. A sentence is a consequence of T , denoted T j= , if every model of T is also a model of . M and N are called elementarily equivalent if Th(M) = Th(N ). We write M ≡ N . A consistent theory T is complete if all its models are elementarily equivalent. Alternatively, for every ', either T j= ' or T j= :'. Examples 1. Th(M) is complete, for any structure M. 2. ACFp is a complete Lrings -theory, for p = 0 or a prime. 3. DOAG is a complete Loag-theory. Introduction to Model Theory Basic Concepts Definable Sets and Quantifier Elimination Definable sets Let M be an L-structure. A set D ⊆ Mn is said to be definable if there is a formula '(x; y) and parameters b from M such that n o D = '(M; b) := a 2 Mn j M j= '(a; b) : If b may be taken from B ⊆ M, we say D is B-definable. Convenient to add parameters, passing to LB = L [ fcb j b 2 Bg. Then M expands naturally to an LB -structure MB . Examples 1. In R, the set R≥0 is Lrings -definable, as the set of squares. 2. Let K j= ACF, and let V = V (K) ⊆ K n be an affine variety. Then V is definable in Lrings by a quantifier free formula. More generally, this is the case for every constructible subset of K n. Introduction to Model Theory Basic Concepts Definable Sets and Quantifier Elimination Elementary substructures I M ⊆ N is a substructure if M N N M N n M c = c ; f Mn = f and R \ M = R : I We say M is an elementary substructure of N , M 4 N if for every L-formula '(x) and every tuple a 2 Mn one has M j= '(a) iff N j= '(a): In other words, the embedding respects all definable sets. Note: M 4 N ) M ≡ N . Introduction to Model Theory Basic Concepts Definable Sets and Quantifier Elimination Quantifier elimination Definition A theory T has quantifier elimination (QE) if for every formula '(x) there is a quantifier free (q.f.) formula (x) such that T j= 8x ('(x) $ (x)) : Proposition Let T be a (consistent) theory with QE. I In M j= T , every definable set is q.f. definable. Equivalently, projections of q.f. definable sets are q.f. definable. I Let M and N be models of T . Then M ⊆ N ) M 4 N . (T is model complete). I If any two models of T contain a common substructure, then T is complete. Introduction to Model Theory Basic Concepts Definable Sets and Quantifier Elimination Examples of theories with QE Theorem (Chevalley-Tarski Theorem) ACF has quantifier elimination. Corollary In algebraically closed fields, a set is definable iff it is constructible. Corollary ACFp is complete and strongly minimal: in every model M j= ACFp, every definable subset of M is finite or cofinite. Remark Model-completeness of ACF ^= Hilbert’s Nullstellensatz. Example The theory of the real field R = (R; 0; 1; +; −; ·) does not have QE. (The set of squares is not q.f. definable.) Introduction to Model Theory Basic Concepts Definable Sets and Quantifier Elimination Tarski’s theorem Let Lo:rings = Lrings [ f<g, and let RCF (the theory of real closed fields) be the Lo:rings -theory whose models are I ordered fields F such that I every positive element in F is a square in F and I every polynomial of odd degree over F has a zero in F . Theorem (Tarski 1951) RCF is complete (so equal to Th(R)) and has QE. Corollary The definable sets in RCF are precisely the semi-algebraic sets (sets defined by boolean combinations of polynomial inequalities). Introduction to Model Theory Basic Concepts Definable Sets and Quantifier Elimination 0-minimal theories Definition Let L = f<; : : :g. An L-theory T is o-minimal if in any M j= T , any definable subset of M is a finite union of intervals and points. Corollary RCF is an o-minimal theory. Proof. Clearly, p(X ) ≥ 0 defines a set of the right form, for p a polynomial. We are done by Tarski’s QE result. Proposition 1. DOAG is complete and has QE (in Loag). 2. Definable sets in DOAG are piecewise linear (given by bool. comb. of linear inequalities). In particular, DOAG is o-minimal. Introduction to Model Theory Basic Concepts Types and Saturation The notion of a complete type Definition Let M be a structure and B ⊆ M. A set p(x) of LB -formulas '(x1;:::; xn) is a (complete) n-type over B if I p(x) is finitely satisfiable, i.e. for any '1;:::;'k 2 p there is n a 2 M such that M j= 'i (a) for all i; I p(x) is maximal with this property. Example n Let N < M. For a 2 N , tp(a=B) := f'(x) 2 LB j N j= '(a)g is a complete n-type over B, the type of a over B. Lemma Every complete type p is of the form p(x) = tp(a=B).
Recommended publications
  • Mathematisches Forschungsinstitut Oberwolfach Computability Theory
    Mathematisches Forschungsinstitut Oberwolfach Report No. 08/2012 DOI: 10.4171/OWR/2012/08 Computability Theory Organised by Klaus Ambos-Spies, Heidelberg Rodney G. Downey, Wellington Steffen Lempp, Madison Wolfgang Merkle, Heidelberg February 5th – February 11th, 2012 Abstract. Computability is one of the fundamental notions of mathematics, trying to capture the effective content of mathematics. Starting from G¨odel’s Incompleteness Theorem, it has now blossomed into a rich area with strong connections with other areas of mathematical logic as well as algebra and theoretical computer science. Mathematics Subject Classification (2000): 03Dxx, 68xx. Introduction by the Organisers The workshop Computability Theory, organized by Klaus Ambos-Spies and Wolf- gang Merkle (Heidelberg), Steffen Lempp (Madison) and Rodney G. Downey (Wellington) was held February 5th–February 11th, 2012. This meeting was well attended, with 53 participants covering a broad geographic representation from five continents and a nice blend of researchers with various backgrounds in clas- sical degree theory as well as algorithmic randomness, computable model theory and reverse mathematics, reaching into theoretical computer science, model the- ory and algebra, and proof theory, respectively. Several of the talks announced breakthroughs on long-standing open problems; others provided a great source of important open problems that will surely drive research for several years to come. Computability Theory 399 Workshop: Computability Theory Table of Contents Carl Jockusch (joint with Rod Downey and Paul Schupp) Generic computability and asymptotic density ....................... 401 Laurent Bienvenu (joint with Andrei Romashchenko, Alexander Shen, Antoine Taveneaux, and Stijn Vermeeren) Are random axioms useful? ....................................... 403 Adam R. Day (joint with Joseph S. Miller) Cupping with Random Sets ......................................
    [Show full text]
  • The Metamathematics of Putnam's Model-Theoretic Arguments
    The Metamathematics of Putnam's Model-Theoretic Arguments Tim Button Abstract. Putnam famously attempted to use model theory to draw metaphysical conclusions. His Skolemisation argument sought to show metaphysical realists that their favourite theories have countable models. His permutation argument sought to show that they have permuted mod- els. His constructivisation argument sought to show that any empirical evidence is compatible with the Axiom of Constructibility. Here, I exam- ine the metamathematics of all three model-theoretic arguments, and I argue against Bays (2001, 2007) that Putnam is largely immune to meta- mathematical challenges. Copyright notice. This paper is due to appear in Erkenntnis. This is a pre-print, and may be subject to minor changes. The authoritative version should be obtained from Erkenntnis, once it has been published. Hilary Putnam famously attempted to use model theory to draw metaphys- ical conclusions. Specifically, he attacked metaphysical realism, a position characterised by the following credo: [T]he world consists of a fixed totality of mind-independent objects. (Putnam 1981, p. 49; cf. 1978, p. 125). Truth involves some sort of correspondence relation between words or thought-signs and external things and sets of things. (1981, p. 49; cf. 1989, p. 214) [W]hat is epistemically most justifiable to believe may nonetheless be false. (1980, p. 473; cf. 1978, p. 125) To sum up these claims, Putnam characterised metaphysical realism as an \externalist perspective" whose \favorite point of view is a God's Eye point of view" (1981, p. 49). Putnam sought to show that this externalist perspective is deeply untenable. To this end, he treated correspondence in terms of model-theoretic satisfaction.
    [Show full text]
  • Set-Theoretic Geology, the Ultimate Inner Model, and New Axioms
    Set-theoretic Geology, the Ultimate Inner Model, and New Axioms Justin William Henry Cavitt (860) 949-5686 [email protected] Advisor: W. Hugh Woodin Harvard University March 20, 2017 Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics and Philosophy Contents 1 Introduction 2 1.1 Author’s Note . .4 1.2 Acknowledgements . .4 2 The Independence Problem 5 2.1 Gödelian Independence and Consistency Strength . .5 2.2 Forcing and Natural Independence . .7 2.2.1 Basics of Forcing . .8 2.2.2 Forcing Facts . 11 2.2.3 The Space of All Forcing Extensions: The Generic Multiverse 15 2.3 Recap . 16 3 Approaches to New Axioms 17 3.1 Large Cardinals . 17 3.2 Inner Model Theory . 25 3.2.1 Basic Facts . 26 3.2.2 The Constructible Universe . 30 3.2.3 Other Inner Models . 35 3.2.4 Relative Constructibility . 38 3.3 Recap . 39 4 Ultimate L 40 4.1 The Axiom V = Ultimate L ..................... 41 4.2 Central Features of Ultimate L .................... 42 4.3 Further Philosophical Considerations . 47 4.4 Recap . 51 1 5 Set-theoretic Geology 52 5.1 Preliminaries . 52 5.2 The Downward Directed Grounds Hypothesis . 54 5.2.1 Bukovský’s Theorem . 54 5.2.2 The Main Argument . 61 5.3 Main Results . 65 5.4 Recap . 74 6 Conclusion 74 7 Appendix 75 7.1 Notation . 75 7.2 The ZFC Axioms . 76 7.3 The Ordinals . 77 7.4 The Universe of Sets . 77 7.5 Transitive Models and Absoluteness .
    [Show full text]
  • FOUNDATIONS of RECURSIVE MODEL THEORY Mathematics Department, University of Wisconsin-Madison, Van Vleck Hall, 480 Lincoln Drive
    Annals of Mathematical Logic 13 (1978) 45-72 © North-H011and Publishing Company FOUNDATIONS OF RECURSIVE MODEL THEORY Terrence S. MILLAR Mathematics Department, University of Wisconsin-Madison, Van Vleck Hall, 480 Lincoln Drive, Madison, WI 53706, U.S.A. Received 6 July 1976 A model is decidable if it has a decidable satisfaction predicate. To be more precise, let T be a decidable theory, let {0, I n < to} be an effective enumeration of all formula3 in L(T), and let 92 be a countable model of T. For any indexing E={a~ I i<to} of I~1, and any formula ~eL(T), let '~z' denote the result of substituting 'a{ for every free occurrence of 'x~' in q~, ~<o,. Then 92 is decidable just in case, for some indexing E of 192[, {n 192~0~ is a recursive set of integers. It is easy, to show that the decidability of a model does not depend on the choice of the effective enumeration of the formulas in L(T); we omit details. By a simple 'effectivizaton' of Henkin's proof of the completeness theorem [2] we have Fact 1. Every decidable theory has a decidable model. Assume next that T is a complete decidable theory and {On ln<to} is an effective enumeration of all formulas of L(T). A type F of T is recursive just in case {nlO, ~ F} is a recursive set of integers. Again, it is easy to see that the recursiveness of F does not depend .on which effective enumeration of L(T) is used.
    [Show full text]
  • Axiomatic Set Teory P.D.Welch
    Axiomatic Set Teory P.D.Welch. August 16, 2020 Contents Page 1 Axioms and Formal Systems 1 1.1 Introduction 1 1.2 Preliminaries: axioms and formal systems. 3 1.2.1 The formal language of ZF set theory; terms 4 1.2.2 The Zermelo-Fraenkel Axioms 7 1.3 Transfinite Recursion 9 1.4 Relativisation of terms and formulae 11 2 Initial segments of the Universe 17 2.1 Singular ordinals: cofinality 17 2.1.1 Cofinality 17 2.1.2 Normal Functions and closed and unbounded classes 19 2.1.3 Stationary Sets 22 2.2 Some further cardinal arithmetic 24 2.3 Transitive Models 25 2.4 The H sets 27 2.4.1 H - the hereditarily finite sets 28 2.4.2 H - the hereditarily countable sets 29 2.5 The Montague-Levy Reflection theorem 30 2.5.1 Absoluteness 30 2.5.2 Reflection Theorems 32 2.6 Inaccessible Cardinals 34 2.6.1 Inaccessible cardinals 35 2.6.2 A menagerie of other large cardinals 36 3 Formalising semantics within ZF 39 3.1 Definite terms and formulae 39 3.1.1 The non-finite axiomatisability of ZF 44 3.2 Formalising syntax 45 3.3 Formalising the satisfaction relation 46 3.4 Formalising definability: the function Def. 47 3.5 More on correctness and consistency 48 ii iii 3.5.1 Incompleteness and Consistency Arguments 50 4 The Constructible Hierarchy 53 4.1 The L -hierarchy 53 4.2 The Axiom of Choice in L 56 4.3 The Axiom of Constructibility 57 4.4 The Generalised Continuum Hypothesis in L.
    [Show full text]
  • Integer-Valued Definable Functions
    Integer-valued definable functions G. O. Jones, M. E. M. Thomas and A. J. Wilkie ABSTRACT We present a dichotomy, in terms of growth at infinity, of analytic functions definable in the real exponential field which take integer values at natural number inputs. Using a result concerning the density of rational points on curves definable in this structure, we show that if a definable, k analytic function 1: [0, oo)k_> lR is such that 1(N ) C;;; Z, then either sUPlxl(r 11(x)1 grows faster than exp(r"), for some 15 > 0, or 1 is a polynomial over <Ql. 1. Introduction The results presented in this note concern the growth at infinity of functions which are analytic and definable in the real field expanded by the exponential function and which take integer values on N. They are descendants of a theorem of P6lya [8J from 1915 concerning integer­ valued, entire functions on <C. This classic theorem tells us that 2z is, in some sense, the smallest non-polynomialfunction of this kind. More formally, letm(f,r) := sup{lf(z)1 : Izl ~ r}. P6lya's Theorem, refined in [3, 9J, states the following. THEOREM 1.1 [9, Theorem IJ. Iff: C --, C is an entire function which satisfies both f(N) <::: Z and . m(f, r) 11m sup < 1, r-->x 2r then f is a polynomial. This result cannot be directly transferred to the real analytic setting (for example, consider the function f (x) = sin( K::C)). In fact, it appears that there are very few results of this character known for such functions (some rare examples may be found in [1]).
    [Show full text]
  • Arithmetic and Geometric Applications of Quantifier Elimination for Valued Fields
    Model Theory, Algebra, and Geometry MSRI Publications Volume 39, 2000 Arithmetic and Geometric Applications of Quantifier Elimination for Valued Fields JAN DENEF Abstract. We survey applications of quantifier elimination to number the- ory and algebraic geometry, focusing on results of the last 15 years. We start with the applications of p-adic quantifier elimination to p-adic inte- gration and the rationality of several Poincar series related to congruences f(x) = 0 modulo a prime power, where f is a polynomial in several vari- ables. We emphasize the importance of p-adic cell decomposition, not only to avoid resolution of singularities, but especially to obtain much stronger arithmetical results. We survey the theory of p-adic subanalytic sets, which is needed when f is a power series instead of a polynomial. Next we explain the fundamental results of Lipshitz{Robinson and Gardener{Schoutens on subanalytic sets over algebraically closed complete valued fields, and the connection with rigid analytic geometry. Finally we discuss recent geo- metric applications of quantifier elimination over C((t)), related to the arc space of an algebraic variety. One of the most striking applications of the model theory of valued fields to arithmetic is the work of Ax and Kochen [1965a; 1965b; 1966; Kochen 1975], and of Ershov [1965; 1966; 1967], which provided for example the first quantifier elimination results for discrete valued fields [Ax and Kochen 1966], and the decidability of the field Qp of p-adic numbers. As a corollary of their work, Ax and Kochen [1965a] proved the following celebrated result: For each prime number p, big enough with respect to d, any homogeneous polynomial of degree 2 d over Qp in d + 1 variables has a nontrivial zero in Qp.
    [Show full text]
  • Definable Isomorphism Problem
    Logical Methods in Computer Science Volume 15, Issue 4, 2019, pp. 14:1–14:19 Submitted Feb. 27, 2018 https://lmcs.episciences.org/ Published Dec. 11, 2019 DEFINABLE ISOMORPHISM PROBLEM KHADIJEH KESHVARDOOST a, BARTEK KLIN b, SLAWOMIR LASOTA b, JOANNA OCHREMIAK c, AND SZYMON TORUNCZYK´ b a Department of Mathematics, Velayat University, Iranshahr, Iran b University of Warsaw c CNRS, LaBRI, Universit´ede Bordeaux Abstract. We investigate the isomorphism problem in the setting of definable sets (equiv- alent to sets with atoms): given two definable relational structures, are they related by a definable isomorphism? Under mild assumptions on the underlying structure of atoms, we prove decidability of the problem. The core result is parameter-elimination: existence of an isomorphism definable with parameters implies existence of an isomorphism definable without parameters. 1. Introduction We consider hereditarily first-order definable sets, which are usually infinite, but can be finitely described and are therefore amenable to algorithmic manipulation. We drop the qualifiers herediatarily first-order, and simply call them definable sets in what follows. They are parametrized by a fixed underlying relational structure Atoms whose elements are called atoms. Example 1.1. Let Atoms be a countable set f1; 2; 3;:::g equipped with the equality relation only; we shall call this structure the pure set. Let V = f fa; bg j a; b 2 Atoms; a 6= b g ; E = f (fa; bg; fc; dg) j a; b; c; d 2 Atoms; a 6= b ^ a 6= c ^ a 6= d ^ b 6= c ^ b 6= d ^ c 6= d g : Both V and E are definable sets (over Atoms), as they are constructed from Atoms using (possibly nested) set-builder expressions with first-order guards ranging over Atoms.
    [Show full text]
  • Model Theory
    Class Notes for Mathematics 571 Spring 2010 Model Theory written by C. Ward Henson Mathematics Department University of Illinois 1409 West Green Street Urbana, Illinois 61801 email: [email protected] www: http://www.math.uiuc.edu/~henson/ c Copyright by C. Ward Henson 2010; all rights reserved. Introduction The purpose of Math 571 is to give a thorough introduction to the methods of model theory for first order logic. Model theory is the branch of logic that deals with mathematical structures and the formal languages they interpret. First order logic is the most important formal language and its model theory is a rich and interesting subject with significant applications to the main body of mathematics. Model theory began as a serious subject in the 1950s with the work of Abraham Robinson and Alfred Tarski, and since then it has been an active and successful area of research. Beyond the core techniques and results of model theory, Math 571 places a lot of emphasis on examples and applications, in order to show clearly the variety of ways in which model theory can be useful in mathematics. For example, we give a thorough treatment of the model theory of the field of real numbers (real closed fields) and show how this can be used to obtain the characterization of positive semi-definite rational functions that gives a solution to Hilbert’s 17th Problem. A highlight of Math 571 is a proof of Morley’s Theorem: if T is a complete theory in a countable language, and T is κ-categorical for some uncountable κ, then T is categorical for all uncountable κ.
    [Show full text]
  • More Model Theory Notes Miscellaneous Information, Loosely Organized
    More Model Theory Notes Miscellaneous information, loosely organized. 1. Kinds of Models A countable homogeneous model M is one such that, for any partial elementary map f : A ! M with A ⊆ M finite, and any a 2 M, f extends to a partial elementary map A [ fag ! M. As a consequence, any partial elementary map to M is extendible to an automorphism of M. Atomic models (see below) are homogeneous. A prime model of T is one that elementarily embeds into every other model of T of the same cardinality. Any theory with fewer than continuum-many types has a prime model, and if a theory has a prime model, it is unique up to isomorphism. Prime models are homogeneous. On the other end, a model is universal if every other model of its size elementarily embeds into it. Recall a type is a set of formulas with the same tuple of free variables; generally to be called a type we require consistency. The type of an element or tuple from a model is all the formulas it satisfies. One might think of the type of an element as a sort of identity card for automorphisms: automorphisms of a model preserve types. A complete type is the analogue of a complete theory, one where every formula of the appropriate free variables or its negation appears. Types of elements and tuples are always complete. A type is principal if there is one formula in the type that implies all the rest; principal complete types are often called isolated. A trivial example of an isolated type is that generated by the formula x = c where c is any constant in the language, or x = t(¯c) where t is any composition of appropriate-arity functions andc ¯ is a tuple of constants.
    [Show full text]
  • Arxiv:2007.09244V1 [Math.LO] 17 Jul 2020 Rdcs Given Products
    AXIOMS FOR COMMUTATIVE UNITAL RINGS ELEMENTARILY EQUIVALENT TO RESTRICTED PRODUCTS OF CONNECTED RINGS JAMSHID DERAKHSHAN AND ANGUS MACINTYRE† Abstract. We give axioms in the language of rings augmented by a 1-ary predicate symbol Fin(x) with intended interpretation in the Boolean algebra of idempotents as the ideal of finite elements, i.e. finite unions of atoms. We prove that any commutative unital ring satisfying these axioms is elementarily equivalent to a restricted product of connected rings. This is an extension of the results in [3] for products. While the results in [3] give a converse to the Feferman-Vaught theorem for products, our results prove the same for restricted products. We give a complete set of axioms in the language of rings for the ring of adeles of a number field, uniformly in the number field. 0. Introduction This paper is a natural sequel to [3] and the main results and proofs are natural extensions of those in [3]. In many cases we will simply refer to the material from [3] [3] deals with the model theory of products of connected unital rings, and can be construed as providing a partial converse to the Feferman-Vaught Theorem [9] in the special case of products Qi∈I Ri, i ∈ I, where Ri are connected commutative unital rings and I an index set (Recall that a commutative ring R is connected if 0, 1 are the only idempotents of R). The converse concerns the issue of providing axioms for rings elementarily equivalent to rings Qi∈I Ri as above. The solution of this problem is given in [3] and, inter alia has applications to non-standard models arXiv:2007.09244v1 [math.LO] 17 Jul 2020 of PA (first order Peano arithmetic) in [4].
    [Show full text]
  • The Dividing Line Methodology: Model Theory Motivating Set Theory
    The dividing line methodology: Model theory motivating set theory John T. Baldwin University of Illinois at Chicago∗ January 6, 2020 The 1960’s produced technical revolutions in both set theory and model theory. Researchers such as Martin, Solovay, and Moschovakis kept the central philosophical importance of the set theoretic work for the foundations of mathematics in full view. In contrast the model theoretic shift is often seen as ‘ technical’ or at least ‘merely mathematical’. Although the shift is productive in multiple senses, is a rich mathematical subject that provides a metatheory in which to investigate many problems of traditional mathematics: the profound change in viewpoint of the nature of model theory is overlooked. We will discuss the effect of Shelah’s dividing line methodology in shaping the last half century of model theory. This description will provide some background, definitions, and context for [She19]. In this introduction we briefly describe the paradigm shift in first order1 model theory that is laid out in more detail in [Bal18]. We outline some of its philosophical consequences, in particular concerning the role of model theory in mathematics. We expound in Section 1 the classification of theories which is the heart of the shift and the effect of this division of all theories into a finite number of classes on the development of first order model theory, its role in other areas of mathematics, and on its connections with set theory in the last third of the 20th century. We emphasize that for most practitioners of late 20th century model theory and especially for applications in traditional mathematics the effect of this shift was to lessen the links with set theory that had seemed evident in the 1960’s.
    [Show full text]