Model Theory – Draft

Total Page:16

File Type:pdf, Size:1020Kb

Model Theory – Draft Math 225A – Model Theory – Draft Speirs, Martin Autumn 2013 Contents Contents 1 0 General Information 5 1 Lecture 16 1.1 The Category of τ-Structures....................... 6 2 Lecture 2 11 2.1 Logics..................................... 13 2.2 Free and bound variables......................... 14 3 Lecture 3 16 3.1 Diagrams................................... 16 3.2 Canonical Models.............................. 19 4 Lecture 4 22 4.1 Relations defined by atomic formulae.................. 22 4.2 Infinitary languages............................ 22 4.3 Axiomatization............................... 24 The Arithmetical Hierarchy........................ 24 1 Contents 2 5 Lecture 5 25 5.1 Preservation of Formulae......................... 26 6 Lecture 6 31 6.1 Theories and Models............................ 31 6.2 Unnested formulae............................. 34 6.3 Definitional expansions.......................... 36 7 Lecture 7 38 7.1 Definitional expansions continued.................... 38 7.2 Atomisation/Morleyisation........................ 39 8 Lecture 8 42 8.1 Quantifier Elimination........................... 42 8.2 Quantifier Elimination for (N, <) ..................... 42 8.3 Skolem’s theorem.............................. 45 8.4 Skolem functions.............................. 46 9 Lecture 9 47 9.1 Skolemisation................................ 47 9.2 Back-and-Forth and Games........................ 49 9.3 The Ehrenfeucht-Fraïssé game...................... 50 10 Lecture 10 52 10.1 The Unnested Ehrenfeucht-Fraïssé Game................ 52 11 Lecture 11 59 11.1 Games and Products............................ 59 12 Lecture 12 60 12.1 Quantifier Elimination for Th(Z) as an Ordered Group........ 60 12.2 Automorphisms............................... 63 13 Lecture 13 65 13.1 Automorphism Groups of Structures................... 65 14 Lecture 14 70 14.1 Interpretations................................ 70 15 Lecture 15 75 15.1 Elimination of Imaginaries......................... 75 15.2 Multi-Sorted Structures, Aeq ....................... 78 Contents 3 16 Lecture 16 79 16.1 Compactness................................. 79 16.2 Upward Löwenheim-Skolem....................... 83 17 Lecture 17 84 17.1 Compactness Applied........................... 84 17.2 Types..................................... 86 18 Lecture 18 89 18.1 Type Spaces................................. 89 19 Lecture 19 95 19.1 Amalgamation................................ 95 20 Lecture 20 101 20.1 Heirs and Coheirs.............................. 101 20.2 Preservation Theorems........................... 104 21 Lecture 21 107 21.1 Interpolation................................. 107 21.2 Indiscernibles................................ 109 22 Lecture 22 114 22.1 Finite Ramsey Theory........................... 114 22.2 Fraïssé Constructions and Ages...................... 115 23 Lecture 23 117 23.1 Fraïssé’s Theorem.............................. 117 24 Lecture 24 124 24.1 Omitting Types............................... 124 24.2 Atomic and Prime Models......................... 127 25 Lecture 25 130 25.1 Countable Categoricity........................... 130 26 Lecture 26 134 26.1 Saturation.................................. 134 26.2 Existence of Saturated Models...................... 139 26.3 Categoricity of Saturated Models..................... 141 27 Lecture 27 144 Contents 4 27.1 Quantifier Elimination........................... 144 27.2 Examples of Quantifier Elimination................... 146 Bibliography 148 General Information These notes are based on a course in Metamathematics taught by Professor Thomas Scanlon at UC Berkeley in the Autumn of 2013. The course focused on Model Theory and the course book was Hodges’ a shorter model theory (see [1]). As with any such notes, these may contain errors and typos. I take full responsi- bility for such occurrences. If you find any errors or typos (no matter how trivial!) please let me know at [email protected]. Thanks to Derric Chien for informing me of several errors and unclear state- ments. 5 Lecture 1 Model Theory is the study of the interrelation between structures and syntax. We shall start by defining the structures. To define a structure we need the data of a signature and then an interpretation of the signature. 1.1 The Category of τ-Structures Definition. A signature τ consists of three (disjoint) sets Cτ, Fτ, Rτ together with a function arity : Fτ [ Rτ Z+ C F R The sets τ, τ, τ will contain the constant! symbols, function symbols and relation symbols, respectively. The arity function assigns to each function symbol and each relation symbol some positive integer thought of as the number of ar- guments that the function (respectively, the relation) takes. Note that we do not allow arities of functions and relations to be zero. Definition. A τ-structure A is given by a set A and interpretations of the elements of Cτ [ Fτ [ Rτ, i.e.: A • each c 2 Cτ is interpreted as an element c in A. A arity(f) • each f 2 Fτ is interpreted as a function f : A A. A arity(R) • each R 2 Rτ is interpreted as a set R ⊆ A . ! The set A is called the domain of A and also denoted dom(A). We also use the notation R(A) for RA in anticipation of definable sets. For a 2 RA we may also write R(a). Remark. In this course we do not require that A be nonempty! Note that in order for ? to be a structure there can be no constant symbols (i.e. Cτ = ?). Remark. There is also a notion of a sorted signature, in which we would have another set Sτ and in which “arity” would be replaced by giving the sort of each 6 1.1 The Category of τ-Structures 7 constant symbol, the domain and target of each function symbol and the field of each relation symbol. This is relevant in many situations for example when describing a vector space over a field (so we need two sorts: vectors and scalars) and in computer science. Example (Groups). A group G may be regarded as a structure. The signature is in this case Cτ = f1g, Fτ = f·g and Rτ = ?, and arity(·) = 2. As an interpretation we might let 1G be the identity element of G and ·G : G × G G the group multiplication. Example (Graphs). A graph G is a triple (V, E, I) of vertices, edges and an incidence relation,! such that for e 2 E and v, w 2 V we have I(v, w, e) is (v, w) 2 e (i.e. if e is an edge between v and w). There are two natural signatures to use that do give different notions of graphs as structures. • Let τ be given by Cτ = ?, Fτ = ? and Rτ = fV, E, Ig where arity(V) = arity(E) = 1 and arity(I) = 3. With this signature we can now set dom(G) = V [ E, VG = V, EG = E and IG = f(v, w, e)j(v, w) 2 eg. • Let σ be the signature given by Cσ = ?, Fσ = ? and Rσ = fEg with arity(E) = 2. Now dom(G) = V and EG = f(v, w) j 9e 2 E such that (v, w) 2 eg. Now both signatures can be used to describe graphs but they are different. In the first case there can be multiple edges between the same vertices, while in the second there cannot. However in the first case we can have an edge e 2 E which is not connected to any vertices. So it makes a difference which language one uses! We want to turn the collection of τ-structures into a category. For this we need morphisms. Definition. A homomorphism f :A B of τ-structures A and B, is given by a function f : dom(A)! dom(B) which respects all the “extra structure”. More precisely ! A B • for all c 2 Cτ we have f(c ) = c • for all g 2 Fτ (with say n = arity(g)) and a1,..., an 2 dom(A) then A B f(g (a1,..., an)) = g (f(a1),..., f(an)). 1.1 The Category of τ-Structures 8 A • for all R 2 Rτ (with say n = arity(R)) if (a1,..., an) 2 R then B (f(a1),..., f(an)) 2 R . Note that the notion of homomorphism depends on the choice of signature. For instance when defining homomorphisms of rings if we use a signature which has a constant symbol for the unit element then we get unit-preserving homo- morphisms. If the signature does not have a constant symbol for the unit then homomorphisms of rings need not preserve the unit. Proposition. If f :A B and g :B C are homomorphisms of τ-structures then g ◦ f is a homomorphism from A to C. Furthermore the identity map 1A : A A gives a homomorphism of τ-structures! 1A :A A!. ! Proof. Exercise (purely formal). ! Thus, the collection of τ-structures together with homomorphisms between them form a category, called Str(τ). Definition. For A and B τ-structures (with dom(A) = A and dom(B) = B) then A is a substructure of B, written A ⊆ B if, A ⊆ B and A B • for all c 2 Cτ, c = c . A B • for all f 2 Fτ, f = f jAn where n = arity(f). A B n • for all R 2 Rτ, R = R \ A where n = arity(R). Proposition. For τ-structures A and B. If A ⊆ B then the inclusion map ι : dom(A) dom(B) is a homomorphism. ! Proof. We have a function from dom(A) to dom(B). We check all three conditions A A B • let c 2 Cτ then ι(c ) = c = c since A is a substructure of B. • ι commutes with all interpretations of the function symbols since ι = 1BjA. A • if (a1,..., an) 2 R then by the substructure property (ι(a1),..., ι(an)) = B (a1,..., an) 2 R . so ι is indeed a homomorphism. Warning!. The converse of the above proposition is not true in general! There exist τ-structures A and B such that dom(A) ⊆ dom(B) and such that the inclusion map is a homomorphism and yet A is not a substructure of B. As an example, let τ be the signature given by Cτ = Fτ = ? and Rτ = fPg with arity(P) = 1. Let B = R and A = R and consider these as τ-structures where B A P = R and P = ?, respectively.
Recommended publications
  • ⊥N AS an ABSTRACT ELEMENTARY CLASS We Show
    ⊥N AS AN ABSTRACT ELEMENTARY CLASS JOHN T. BALDWIN, PAUL C. EKLOF, AND JAN TRLIFAJ We show that the concept of an Abstract Elementary Class (AEC) provides a unifying notion for several properties of classes of modules and discuss the stability class of these AEC. An abstract elementary class consists of a class of models K and a strengthening of the notion of submodel ≺K such that (K, ≺K) satisfies ⊥ the properties described below. Here we deal with various classes ( N, ≺N ); the precise definition of the class of modules ⊥N is given below. A key innovation is ⊥ that A≺N B means A ⊆ B and B/A ∈ N. We define in the text the main notions used here; important background defini- tions and proofs from the theory of modules can be found in [EM02] and [GT06]; concepts of AEC are due to Shelah (e.g. [She87]) but collected in [Bal]. The surprising fact is that some of the basic model theoretic properties of the ⊥ ⊥ class ( N, ≺N ) translate directly to algebraic properties of the class N and the module N over the ring R that have previously been studied in quite a different context (approximation theory of modules, infinite dimensional tilting theory etc.). Our main results, stated with increasingly strong conditions on the ring R, are: ⊥ Theorem 0.1. (1) Let R be any ring and N an R–module. If ( N, ≺N ) is an AEC then N is a cotorsion module. Conversely, if N is pure–injective, ⊥ then the class ( N, ≺N ) is an AEC. (2) Let R be a right noetherian ring and N be an R–module of injective di- ⊥ ⊥ mension ≤ 1.
    [Show full text]
  • [Math.LO] 2 Mar 2011 39,18B40
    GROUPOIDS, IMAGINARIES AND INTERNAL COVERS EHUD HRUSHOVSKI Abstract. Let T be a first-order theory. A correspondence is established between internal covers of models of T and definable groupoids within T . We also consider amalgamations of independent diagrams of algebraically closed substructures, and find strong relation between: covers, uniqueness for 3-amalgamation, existence of 4-amalgamation, imaginaries of T σ, and definable groupoids. As a corollary, we describe the imaginary elements of families of finite- dimensional vector spaces over pseudo-finite fields. The questions this manuscript addresses arose in the course of an investigation of the imag- inary sorts in ultraproducts of p-adic fields. These were shown to be understandable given the imaginary sorts of certain finite-dimensional vector spaces over the residue field. The residue field is pseudo-finite, and the imaginary elements there were previously studied, and shown in fact to be eliminable over an appropriate base. It remains therefore to describe the imaginaries of finite-dimensional vector spaces over a field F , given those of F . I expected this step to be rather easy; but it turned out to become easy only after a number of issues, of interest in themselves, are made clear. Let T be a first-order theory. A correspondence is established between internal covers of models of T and definable groupoids within T . Internal covers were recognized as central in the study of totally categorical structures, but nevertheless remained mysterious; it was not clear how to describe the possible T ′ from the point of view of T . We give an account of this here, in terms of groupoids in place of equivalence relations.
    [Show full text]
  • Beyond First Order Logic: from Number of Structures to Structure of Numbers Part Ii
    Bulletin of the Iranian Mathematical Society Vol. XX No. X (201X), pp XX-XX. BEYOND FIRST ORDER LOGIC: FROM NUMBER OF STRUCTURES TO STRUCTURE OF NUMBERS PART II JOHN BALDWIN, TAPANI HYTTINEN AND MEERI KESÄLÄ Communicated by Abstract. The paper studies the history and recent developments in non-elementary model theory focusing in the framework of ab- stract elementary classes. We discuss the role of syntax and seman- tics and the motivation to generalize first order model theory to non-elementary frameworks and illuminate the study with concrete examples of classes of models. This second part continues to study the question of catecoricity transfer and counting the number of structures of certain cardi- nality. We discuss more thoroughly the role of countable models, search for a non-elementary counterpart for the concept of com- pleteness and present two examples: One example answers a ques- tion asked by David Kueker and the other investigates models of Peano Arihmetic and the relation of an elementary end-extension in the terms of an abstract elementary class. Beyond First Order Logic: From number of structures to structure of numbers Part I studied the basic concepts in non-elementary model theory, such as syntax and semantics, the languages Lλκ and the notion of a complete theory in first order logic (i.e. in the language L!!), which determines an elementary class of structures. Classes of structures which cannot be axiomatized as the models of a first-order theory, but might have some other ’logical’ unifying attribute, are called non-elementary. MSC(2010): Primary: 65F05; Secondary: 46L05, 11Y50.
    [Show full text]
  • The Metamathematics of Putnam's Model-Theoretic Arguments
    The Metamathematics of Putnam's Model-Theoretic Arguments Tim Button Abstract. Putnam famously attempted to use model theory to draw metaphysical conclusions. His Skolemisation argument sought to show metaphysical realists that their favourite theories have countable models. His permutation argument sought to show that they have permuted mod- els. His constructivisation argument sought to show that any empirical evidence is compatible with the Axiom of Constructibility. Here, I exam- ine the metamathematics of all three model-theoretic arguments, and I argue against Bays (2001, 2007) that Putnam is largely immune to meta- mathematical challenges. Copyright notice. This paper is due to appear in Erkenntnis. This is a pre-print, and may be subject to minor changes. The authoritative version should be obtained from Erkenntnis, once it has been published. Hilary Putnam famously attempted to use model theory to draw metaphys- ical conclusions. Specifically, he attacked metaphysical realism, a position characterised by the following credo: [T]he world consists of a fixed totality of mind-independent objects. (Putnam 1981, p. 49; cf. 1978, p. 125). Truth involves some sort of correspondence relation between words or thought-signs and external things and sets of things. (1981, p. 49; cf. 1989, p. 214) [W]hat is epistemically most justifiable to believe may nonetheless be false. (1980, p. 473; cf. 1978, p. 125) To sum up these claims, Putnam characterised metaphysical realism as an \externalist perspective" whose \favorite point of view is a God's Eye point of view" (1981, p. 49). Putnam sought to show that this externalist perspective is deeply untenable. To this end, he treated correspondence in terms of model-theoretic satisfaction.
    [Show full text]
  • Set-Theoretic Geology, the Ultimate Inner Model, and New Axioms
    Set-theoretic Geology, the Ultimate Inner Model, and New Axioms Justin William Henry Cavitt (860) 949-5686 [email protected] Advisor: W. Hugh Woodin Harvard University March 20, 2017 Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics and Philosophy Contents 1 Introduction 2 1.1 Author’s Note . .4 1.2 Acknowledgements . .4 2 The Independence Problem 5 2.1 Gödelian Independence and Consistency Strength . .5 2.2 Forcing and Natural Independence . .7 2.2.1 Basics of Forcing . .8 2.2.2 Forcing Facts . 11 2.2.3 The Space of All Forcing Extensions: The Generic Multiverse 15 2.3 Recap . 16 3 Approaches to New Axioms 17 3.1 Large Cardinals . 17 3.2 Inner Model Theory . 25 3.2.1 Basic Facts . 26 3.2.2 The Constructible Universe . 30 3.2.3 Other Inner Models . 35 3.2.4 Relative Constructibility . 38 3.3 Recap . 39 4 Ultimate L 40 4.1 The Axiom V = Ultimate L ..................... 41 4.2 Central Features of Ultimate L .................... 42 4.3 Further Philosophical Considerations . 47 4.4 Recap . 51 1 5 Set-theoretic Geology 52 5.1 Preliminaries . 52 5.2 The Downward Directed Grounds Hypothesis . 54 5.2.1 Bukovský’s Theorem . 54 5.2.2 The Main Argument . 61 5.3 Main Results . 65 5.4 Recap . 74 6 Conclusion 74 7 Appendix 75 7.1 Notation . 75 7.2 The ZFC Axioms . 76 7.3 The Ordinals . 77 7.4 The Universe of Sets . 77 7.5 Transitive Models and Absoluteness .
    [Show full text]
  • FOUNDATIONS of RECURSIVE MODEL THEORY Mathematics Department, University of Wisconsin-Madison, Van Vleck Hall, 480 Lincoln Drive
    Annals of Mathematical Logic 13 (1978) 45-72 © North-H011and Publishing Company FOUNDATIONS OF RECURSIVE MODEL THEORY Terrence S. MILLAR Mathematics Department, University of Wisconsin-Madison, Van Vleck Hall, 480 Lincoln Drive, Madison, WI 53706, U.S.A. Received 6 July 1976 A model is decidable if it has a decidable satisfaction predicate. To be more precise, let T be a decidable theory, let {0, I n < to} be an effective enumeration of all formula3 in L(T), and let 92 be a countable model of T. For any indexing E={a~ I i<to} of I~1, and any formula ~eL(T), let '~z' denote the result of substituting 'a{ for every free occurrence of 'x~' in q~, ~<o,. Then 92 is decidable just in case, for some indexing E of 192[, {n 192~0~ is a recursive set of integers. It is easy, to show that the decidability of a model does not depend on the choice of the effective enumeration of the formulas in L(T); we omit details. By a simple 'effectivizaton' of Henkin's proof of the completeness theorem [2] we have Fact 1. Every decidable theory has a decidable model. Assume next that T is a complete decidable theory and {On ln<to} is an effective enumeration of all formulas of L(T). A type F of T is recursive just in case {nlO, ~ F} is a recursive set of integers. Again, it is easy to see that the recursiveness of F does not depend .on which effective enumeration of L(T) is used.
    [Show full text]
  • Arxiv:1604.07743V3 [Math.LO] 14 Apr 2017 Aeoiiy Nicrils Re Property
    SATURATION AND SOLVABILITY IN ABSTRACT ELEMENTARY CLASSES WITH AMALGAMATION SEBASTIEN VASEY Abstract. Theorem 0.1. Let K be an abstract elementary class (AEC) with amalga- mation and no maximal models. Let λ> LS(K). If K is categorical in λ, then the model of cardinality λ is Galois-saturated. This answers a question asked independently by Baldwin and Shelah. We deduce several corollaries: K has a unique limit model in each cardinal below λ, (when λ is big-enough) K is weakly tame below λ, and the thresholds of several existing categoricity transfers can be improved. We also prove a downward transfer of solvability (a version of superstability introduced by Shelah): Corollary 0.2. Let K be an AEC with amalgamation and no maximal mod- els. Let λ>µ> LS(K). If K is solvable in λ, then K is solvable in µ. Contents 1. Introduction 1 2. Extracting strict indiscernibles 4 3. Solvability and failure of the order property 8 4. Solvability and saturation 10 5. Applications 12 References 18 arXiv:1604.07743v3 [math.LO] 14 Apr 2017 1. Introduction 1.1. Motivation. Morley’s categoricity theorem [Mor65] states that if a countable theory has a unique model of some uncountable cardinality, then it has a unique model in all uncountable cardinalities. The method of proof led to the development of stability theory, now a central area of model theory. In the mid seventies, Shelah L conjectured a similar statement for classes of models of an ω1,ω-theory [She90, Date: September 7, 2018 AMS 2010 Subject Classification: Primary 03C48.
    [Show full text]
  • Oort Conjecture for the Moduli Space of Abelian Surfaces
    COMPOSITIO MATHEMATICA The Andr´e{Oortconjecture for the moduli space of abelian surfaces Jonathan Pila and Jacob Tsimerman Compositio Math. 149 (2013), 204{216. doi:10.1112/S0010437X12000589 FOUNDATION COMPOSITIO MATHEMATICA Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.234, on 28 Sep 2021 at 16:32:51, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0010437X12000589 Compositio Math. 149 (2013) 204{216 doi:10.1112/S0010437X12000589 The Andr´e{Oortconjecture for the moduli space of abelian surfaces Jonathan Pila and Jacob Tsimerman Abstract We provide an unconditional proof of the Andr´e{Oortconjecture for the coarse moduli space A2;1 of principally polarized abelian surfaces, following the strategy outlined by Pila{Zannier. 1. Introduction and notation Let Ag;1 denote the coarse moduli space of principally polarized abelian varieties of dimension g. Our main theorem is the following, proving the Andr´e{Oortconjecture for A2;1. Theorem 1.1. Let V ⊂ A2;1 be an algebraic subvariety, which is equal to the Zariski closure of its CM points. Then V is a special subvariety. Here, a subvariety means a relatively closed irreducible subvariety. Varieties will be identified with their sets of complex-valued points. We follow the general strategy of Pila{Zannier. Set Hg to be the Siegel upper half space t Hg = fZ 2 Mg×g(C) j Z = Z ; Im(Z) > 0g: We denote by π : Hg !Ag;1 t g(g+1)=2 the natural projection map. The set fZ 2 Mg×g(C)jZ = Z g is naturally identified with C , g(g+1)=2 g(g+1) identifying Hg with an open domain.
    [Show full text]
  • Scheme Representation for First-Logic
    Scheme representation for first-order logic Spencer Breiner Carnegie Mellon University Advisor: Steve Awodey Committee: Jeremy Avigad Hans Halvorson Pieter Hofstra February 12, 2014 arXiv:1402.2600v1 [math.LO] 11 Feb 2014 Contents 1 Logical spectra 11 1.1 The spectrum M0 .......................... 11 1.2 Sheaves on M0 ............................ 20 1.3 Thegenericmodel .......................... 24 1.4 The spectral groupoid M = Spec(T)................ 27 1.5 Stability, compactness and definability . 31 1.6 Classicalfirst-orderlogic. 37 2 Pretopos Logic 43 2.1 Coherentlogicandpretoposes. 43 2.2 Factorization in Ptop ........................ 51 2.3 Semantics, slices and localization . 57 2.4 Themethodofdiagrams. .. .. .. .. .. .. .. .. .. 61 2.5 ClassicaltheoriesandBooleanpretoposes . 70 3 Logical Schemes 74 3.1 StacksandSheaves.......................... 74 3.2 Affineschemes ............................ 80 3.3 Thecategoryoflogicalschemes . 87 3.4 Opensubschemesandgluing . 93 3.5 Limitsofschemes........................... 98 1 4 Applications 110 4.1 OT asasite..............................111 4.2 Structuresheafasuniverse . 119 4.3 Isotropy ................................125 4.4 ConceptualCompleteness . 134 2 Introduction Although contemporary model theory has been called “algebraic geometry mi- nus fields” [15], the formal methods of the two fields are radically different. This dissertation aims to shrink that gap by presenting a theory of “logical schemes,” geometric entities which relate to first-order logical theories in much the same way that
    [Show full text]
  • Continuous First-Order Logic
    Continuous First-Order Logic Wesley Calvert Calcutta Logic Circle 4 September 2011 Wesley Calvert (SIU / IMSc) Continuous First-Order Logic 4 September 2011 1 / 45 Definition A first-order theory T is said to be stable iff there are less than the maximum possible number of types over T , up to equivalence. Theorem (Shelah's Main Gap Theorem) If T is a first-order theory and is stable and . , then the class of models looks like . Otherwise, there's no hope. Model-Theoretic Beginnings Problem Given a theory T , describe the structure of models of T . Wesley Calvert (SIU / IMSc) Continuous First-Order Logic 4 September 2011 2 / 45 Theorem (Shelah's Main Gap Theorem) If T is a first-order theory and is stable and . , then the class of models looks like . Otherwise, there's no hope. Model-Theoretic Beginnings Problem Given a theory T , describe the structure of models of T . Definition A first-order theory T is said to be stable iff there are less than the maximum possible number of types over T , up to equivalence. Wesley Calvert (SIU / IMSc) Continuous First-Order Logic 4 September 2011 2 / 45 Model-Theoretic Beginnings Problem Given a theory T , describe the structure of models of T . Definition A first-order theory T is said to be stable iff there are less than the maximum possible number of types over T , up to equivalence. Theorem (Shelah's Main Gap Theorem) If T is a first-order theory and is stable and . , then the class of models looks like . Otherwise, there's no hope.
    [Show full text]
  • 1 1. Stability Stability Is Fundamentally a Local Hypothesis, Indeed A
    1 1 1. Stability Stability is fundamentally a local hypothesis, indeed a combinatorial hy- pothesis on a bipartite graph. A bi-partite graph is just a triple of sets G = (G1;G2; I) with I G1 G2; one thinks of I as relating elements of ⊂ × G1 to elements of G2. An example is Ln, where G1 and G2 are two copies of 1; : : : ; n , and I is the graph of the order relation i < j. f g Definition 1.1. A bi-partite graph is stable if for some n, G does not embed the graph Ln Definition 1.2. A Γ-formula a formula equivalent to a quantifier-free formula, possibly with additional parameters. A set C is Γ-algebraically-closed if for every Γ-formula E over C defining an equivalence relation with finitely many classes, each class of E is coded by an element of C.A Γ-type over C is a maximal consistent collection of Γ-formulas over C.A Γ-type p over Γ is clearly determined by its restriction to atomic formulas; we will say p is definable if there exists a formula α(y) such that xIy p iff α(y) (or dually; we will write 2 xIy or yIx interchangeably.) If p is definable, the defining formula is unique up to logical equivalence, and will be denoted (dpx)(xIy). Atomic types over Γ are assumed consistent with Th(Γ) (equivalently, with the universal theory of Γ.) Lemma 1.3. The following are equivalent: i) Γ is stable ii) For every countable Γ0 satisfying the universal theory T of Γ, there are 8 countably many atomic types over Γ0 consistent with the universal theory of Γ0.
    [Show full text]
  • Proof Diagrams for Multiplicative Linear Logic
    Proof Diagrams for Multiplicative Linear Logic Matteo Acclavio I2M Marseille, France Aix-Marseile Universit´e [email protected] The original idea of proof nets can be formulated by means of interaction nets syntax. Additional machinery as switching, jumps and graph connectivity is needed in order to ensure correspondence between a proof structure and a correct proof in sequent calculus. In this paper we give an interpretationof proof nets in the syntax of string diagrams. Even though we lose standard proof equivalence, our construction allows to define a framework where soundness and well-typeness of a diagram can be verified in linear time. Introduction Proof nets are a geometrical representation of linear logic proofs introduced by J-Y.Girard [5]. The build- ing blocks of proof nets are called proof structures that have been generalized by Y. Lafont [11] in the so-called interaction nets. To recognize if a proof structure is a proof net one needs to verify its sequen- tializability property, that is, whether it corresponds to a linear logic proof derivation. Following Girard’s original correction criterion, others methods have been introduced, notably by Danos-Regnier [4], that ensures graph acyclicity by a notion of switchings on ⊗ cells, and by Guerrini [7], that reformulates correction by means of graph contractability. Proof structures allow to recover the semantic equivalence of derivation under commutation and permutation of some inference rules. Unfortunately this property makes ineffective the aforementioned criteria in presence of the multiplicative unit ⊥. In order to recover a sequentialization condition for the multiplicative fragment with units, Girard has introduced the notion of jumps [6].
    [Show full text]