Per Lindström FIRST-ORDER LOGIC
Philosophical Communications, Web Series, No 36 Dept. of Philosophy, Göteborg University, Sweden ISSN 1652-0459 Per Lindström FIRST-ORDER LOGIC May 15, 2006 PREFACE Predicate logic was created by Gottlob Frege (Frege (1879)) and first-order (predicate) logic was first singled out by Charles Sanders Peirce and Ernst Schröder in the late 1800s (cf. van Heijenoort (1967)), and, following their lead, by Leopold Löwenheim (Löwenheim (1915)) and Thoralf Skolem (Skolem (1920), (1922)). Both these contributions were of decisive importance in the development of modern logic. In the case of Frege's achievement this is obvious. However, Frege's (second-order) logic is far too complicated to lend itself to the type of (mathematical) investigation that completely dominates modern logic. It turned out, however, that the first-order fragment of predicate logic, in which you can quantify over “individuals” but not, as in Frege's logic, over sets of “individuals”, relations between “individuals”, etc., is a logic that is strong enough for (most) mathematical purposes and still simple enough to admit of general, nontrivial theorems, the Löwenheim theorem, later sharpened and extended by Skolem, being the first example. In stating his theorem, Löwenheim made use of the idea, introduced by Peirce and Schröder, of satisfiability in a domain D, i.e., an arbitrary set of “individuals” whose nature need not be specified; the cardinality of D is all that matters. This concept, a forerunner of the present-day notion of truth in a model, was quite foreign to the Frege-Peano-Russell tradition dominating logic at the time and its introduction and the first really significant theorem, the Löwenheim (-Skolem) theorem, may be said to mark the beginning of modern logic.
[Show full text]