Basic Model Theory / Kees Doets P
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Seven Virtues of Simple Type Theory
The Seven Virtues of Simple Type Theory William M. Farmer∗ McMaster University 26 November 2006 Abstract Simple type theory, also known as higher-order logic, is a natural ex- tension of first-order logic which is simple, elegant, highly expressive, and practical. This paper surveys the virtues of simple type theory and attempts to show that simple type theory is an attractive alterna- tive to first-order logic for practical-minded scientists, engineers, and mathematicians. It recommends that simple type theory be incorpo- rated into introductory logic courses offered by mathematics depart- ments and into the undergraduate curricula for computer science and software engineering students. 1 Introduction Mathematicians are committed to rigorous reasoning, but they usually shy away from formal logic. However, when mathematicians really need a for- mal logic—e.g., to teach their students the rules of quantification, to pin down exactly what a “property” is, or to formalize set theory—they almost invariably choose some form of first-order logic. Taking the lead of mathe- maticians, scientists and engineers usually choose first-order logic whenever they need a formal logic to express mathematical models precisely or to study the logical consequences of theories and specifications carefully. In science and engineering as well as in mathematics, first-order logic reigns supreme! A formal logic can be a theoretical tool for studying rigorous reasoning and a practical tool for performing rigorous reasoning. Today mathemati- cians sometimes use formal logics as theoretical tools, but they very rarely ∗ Address: Department of Computing and Software, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada. -
⊥N AS an ABSTRACT ELEMENTARY CLASS We Show
⊥N AS AN ABSTRACT ELEMENTARY CLASS JOHN T. BALDWIN, PAUL C. EKLOF, AND JAN TRLIFAJ We show that the concept of an Abstract Elementary Class (AEC) provides a unifying notion for several properties of classes of modules and discuss the stability class of these AEC. An abstract elementary class consists of a class of models K and a strengthening of the notion of submodel ≺K such that (K, ≺K) satisfies ⊥ the properties described below. Here we deal with various classes ( N, ≺N ); the precise definition of the class of modules ⊥N is given below. A key innovation is ⊥ that A≺N B means A ⊆ B and B/A ∈ N. We define in the text the main notions used here; important background defini- tions and proofs from the theory of modules can be found in [EM02] and [GT06]; concepts of AEC are due to Shelah (e.g. [She87]) but collected in [Bal]. The surprising fact is that some of the basic model theoretic properties of the ⊥ ⊥ class ( N, ≺N ) translate directly to algebraic properties of the class N and the module N over the ring R that have previously been studied in quite a different context (approximation theory of modules, infinite dimensional tilting theory etc.). Our main results, stated with increasingly strong conditions on the ring R, are: ⊥ Theorem 0.1. (1) Let R be any ring and N an R–module. If ( N, ≺N ) is an AEC then N is a cotorsion module. Conversely, if N is pure–injective, ⊥ then the class ( N, ≺N ) is an AEC. (2) Let R be a right noetherian ring and N be an R–module of injective di- ⊥ ⊥ mension ≤ 1. -
Constructive Models of Uncountably Categorical Theories
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 12, Pages 3711{3719 S 0002-9939(99)04920-5 Article electronically published on May 6, 1999 CONSTRUCTIVE MODELS OF UNCOUNTABLY CATEGORICAL THEORIES BERNHARD HERWIG, STEFFEN LEMPP, AND MARTIN ZIEGLER (Communicated by Carl G. Jockusch, Jr.) Abstract. We construct a strongly minimal (and thus uncountably categori- cal) but not totally categorical theory in a finite language of binary predicates whose only constructive (or recursive) model is the prime model. 0. Introduction Effective (or recursive) model theory studies the degree to which constructions in model theory and algebra can be made effective. A presentation of a count- able model is an isomorphic copy with universe N = !.Aneffective (or computable,orMrecursive) presentation isN one where all the relations, functions, and constants on are given by uniformly computable functions. Now, for a count- able model N of a first-order theory T , there are various degrees to which the constructionM of can be made effective: We call the model constructive (or recursive,orcomputableM ) if it has an effective presentation, orM equivalently if its open diagram (i.e., the collection of all quantifier-free sentences true in ( ;a)a M (in some presentation) is computable (or recursive)). We call the modelM decid-∈ able if its elementary diagram (i.e., the collection of all first-order sentencesM true in ( ;a)a M,insome presentation) is decidable (i.e., computable). Obviously, anyM decidable∈ model is constructive, but the converse fails. In fact, the study of constructive models is much harder than the study of decidable models since, in the former case, much less is known about the first-order theory. -
Beyond First Order Logic: from Number of Structures to Structure of Numbers Part Ii
Bulletin of the Iranian Mathematical Society Vol. XX No. X (201X), pp XX-XX. BEYOND FIRST ORDER LOGIC: FROM NUMBER OF STRUCTURES TO STRUCTURE OF NUMBERS PART II JOHN BALDWIN, TAPANI HYTTINEN AND MEERI KESÄLÄ Communicated by Abstract. The paper studies the history and recent developments in non-elementary model theory focusing in the framework of ab- stract elementary classes. We discuss the role of syntax and seman- tics and the motivation to generalize first order model theory to non-elementary frameworks and illuminate the study with concrete examples of classes of models. This second part continues to study the question of catecoricity transfer and counting the number of structures of certain cardi- nality. We discuss more thoroughly the role of countable models, search for a non-elementary counterpart for the concept of com- pleteness and present two examples: One example answers a ques- tion asked by David Kueker and the other investigates models of Peano Arihmetic and the relation of an elementary end-extension in the terms of an abstract elementary class. Beyond First Order Logic: From number of structures to structure of numbers Part I studied the basic concepts in non-elementary model theory, such as syntax and semantics, the languages Lλκ and the notion of a complete theory in first order logic (i.e. in the language L!!), which determines an elementary class of structures. Classes of structures which cannot be axiomatized as the models of a first-order theory, but might have some other ’logical’ unifying attribute, are called non-elementary. MSC(2010): Primary: 65F05; Secondary: 46L05, 11Y50. -
Notices of the American Mathematical Society
OF THE AMERICAN MATHEMATICAL SOCIETY ISSU! NO. 116 OF THE AMERICAN MATHEMATICAL SOCIETY Edited by Everett Pitcher and Gordon L. Walker CONTENTS MEETINGS Calendar of Meetings ••••••••••••••••••••••••••••••••••.• 874 Program of the Meeting in Cambridge, Massachusetts •••.•.••••..•• 875 Abstracts for the Meeting- Pages 947-953 PRELIMINARY ANNOUNCEMENTS OF MEETINGS •••••••••••••••••.•• 878 AN APPEAL FOR PRESERVATION OF ARCHIVAL MATERIALS .•••••••••• 888 CAN MATHEMATICS BE SAVED? ••••••••••.••••••••..•.•••••••.. 89 0 DOCTORATES CONFERRED IN 1968-1969 ••••••••••••••.••••••.•••• 895 VISITING MATHEMATICIANS .•••••••••••••••••••••••••..•••••.. 925 ANNUAL SALARY SURVEY ••••••••••••.••••.••••.•.•.••••••.•• 933 PERSONAL ITEMS •••••••••••••••••••••••••••••...•••••••••• 936 MEMORANDA TO MEMBERS Audio Recordings of Mathematical Lectures ••••••••..•••••.•••.• 940 Travel Grants. International Congress of Mathematicians ••..•.•••••.• 940 Symposia Information Center ••••.•• o o • o ••••• o o •••• 0 •••••••• 940 Colloquium Lectures •••••••••••••••••••••••.• 0 ••••••••••• 941 Mathematical Sciences E'mployment Register .•.••••••..•. o • o ••••• 941 Retired Mathematicians ••••• 0 •••••••• 0 ••••••••••••••••• 0 •• 942 MOS Reprints .•••••• o •• o ••••••••••••••••••••••• o •••••• 942 NEWS ITEMS AND ANNOUNCEMENTS •••••. o •••••••••••••••• 877, 932, 943 ABSTRACTS PRESENTED TO THE SOCIETY •••••.••••.•.•.••..•..•• 947 RESERVATION FORM. o •••••••••••••••••••••••••••••••••••••• 1000 MEETINGS Calendar of Meetings NOTE: This Calendar lists all of the meetings which have -
The Metamathematics of Putnam's Model-Theoretic Arguments
The Metamathematics of Putnam's Model-Theoretic Arguments Tim Button Abstract. Putnam famously attempted to use model theory to draw metaphysical conclusions. His Skolemisation argument sought to show metaphysical realists that their favourite theories have countable models. His permutation argument sought to show that they have permuted mod- els. His constructivisation argument sought to show that any empirical evidence is compatible with the Axiom of Constructibility. Here, I exam- ine the metamathematics of all three model-theoretic arguments, and I argue against Bays (2001, 2007) that Putnam is largely immune to meta- mathematical challenges. Copyright notice. This paper is due to appear in Erkenntnis. This is a pre-print, and may be subject to minor changes. The authoritative version should be obtained from Erkenntnis, once it has been published. Hilary Putnam famously attempted to use model theory to draw metaphys- ical conclusions. Specifically, he attacked metaphysical realism, a position characterised by the following credo: [T]he world consists of a fixed totality of mind-independent objects. (Putnam 1981, p. 49; cf. 1978, p. 125). Truth involves some sort of correspondence relation between words or thought-signs and external things and sets of things. (1981, p. 49; cf. 1989, p. 214) [W]hat is epistemically most justifiable to believe may nonetheless be false. (1980, p. 473; cf. 1978, p. 125) To sum up these claims, Putnam characterised metaphysical realism as an \externalist perspective" whose \favorite point of view is a God's Eye point of view" (1981, p. 49). Putnam sought to show that this externalist perspective is deeply untenable. To this end, he treated correspondence in terms of model-theoretic satisfaction. -
Set-Theoretic Geology, the Ultimate Inner Model, and New Axioms
Set-theoretic Geology, the Ultimate Inner Model, and New Axioms Justin William Henry Cavitt (860) 949-5686 [email protected] Advisor: W. Hugh Woodin Harvard University March 20, 2017 Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics and Philosophy Contents 1 Introduction 2 1.1 Author’s Note . .4 1.2 Acknowledgements . .4 2 The Independence Problem 5 2.1 Gödelian Independence and Consistency Strength . .5 2.2 Forcing and Natural Independence . .7 2.2.1 Basics of Forcing . .8 2.2.2 Forcing Facts . 11 2.2.3 The Space of All Forcing Extensions: The Generic Multiverse 15 2.3 Recap . 16 3 Approaches to New Axioms 17 3.1 Large Cardinals . 17 3.2 Inner Model Theory . 25 3.2.1 Basic Facts . 26 3.2.2 The Constructible Universe . 30 3.2.3 Other Inner Models . 35 3.2.4 Relative Constructibility . 38 3.3 Recap . 39 4 Ultimate L 40 4.1 The Axiom V = Ultimate L ..................... 41 4.2 Central Features of Ultimate L .................... 42 4.3 Further Philosophical Considerations . 47 4.4 Recap . 51 1 5 Set-theoretic Geology 52 5.1 Preliminaries . 52 5.2 The Downward Directed Grounds Hypothesis . 54 5.2.1 Bukovský’s Theorem . 54 5.2.2 The Main Argument . 61 5.3 Main Results . 65 5.4 Recap . 74 6 Conclusion 74 7 Appendix 75 7.1 Notation . 75 7.2 The ZFC Axioms . 76 7.3 The Ordinals . 77 7.4 The Universe of Sets . 77 7.5 Transitive Models and Absoluteness . -
FOUNDATIONS of RECURSIVE MODEL THEORY Mathematics Department, University of Wisconsin-Madison, Van Vleck Hall, 480 Lincoln Drive
Annals of Mathematical Logic 13 (1978) 45-72 © North-H011and Publishing Company FOUNDATIONS OF RECURSIVE MODEL THEORY Terrence S. MILLAR Mathematics Department, University of Wisconsin-Madison, Van Vleck Hall, 480 Lincoln Drive, Madison, WI 53706, U.S.A. Received 6 July 1976 A model is decidable if it has a decidable satisfaction predicate. To be more precise, let T be a decidable theory, let {0, I n < to} be an effective enumeration of all formula3 in L(T), and let 92 be a countable model of T. For any indexing E={a~ I i<to} of I~1, and any formula ~eL(T), let '~z' denote the result of substituting 'a{ for every free occurrence of 'x~' in q~, ~<o,. Then 92 is decidable just in case, for some indexing E of 192[, {n 192~0~ is a recursive set of integers. It is easy, to show that the decidability of a model does not depend on the choice of the effective enumeration of the formulas in L(T); we omit details. By a simple 'effectivizaton' of Henkin's proof of the completeness theorem [2] we have Fact 1. Every decidable theory has a decidable model. Assume next that T is a complete decidable theory and {On ln<to} is an effective enumeration of all formulas of L(T). A type F of T is recursive just in case {nlO, ~ F} is a recursive set of integers. Again, it is easy to see that the recursiveness of F does not depend .on which effective enumeration of L(T) is used. -
Arxiv:1604.07743V3 [Math.LO] 14 Apr 2017 Aeoiiy Nicrils Re Property
SATURATION AND SOLVABILITY IN ABSTRACT ELEMENTARY CLASSES WITH AMALGAMATION SEBASTIEN VASEY Abstract. Theorem 0.1. Let K be an abstract elementary class (AEC) with amalga- mation and no maximal models. Let λ> LS(K). If K is categorical in λ, then the model of cardinality λ is Galois-saturated. This answers a question asked independently by Baldwin and Shelah. We deduce several corollaries: K has a unique limit model in each cardinal below λ, (when λ is big-enough) K is weakly tame below λ, and the thresholds of several existing categoricity transfers can be improved. We also prove a downward transfer of solvability (a version of superstability introduced by Shelah): Corollary 0.2. Let K be an AEC with amalgamation and no maximal mod- els. Let λ>µ> LS(K). If K is solvable in λ, then K is solvable in µ. Contents 1. Introduction 1 2. Extracting strict indiscernibles 4 3. Solvability and failure of the order property 8 4. Solvability and saturation 10 5. Applications 12 References 18 arXiv:1604.07743v3 [math.LO] 14 Apr 2017 1. Introduction 1.1. Motivation. Morley’s categoricity theorem [Mor65] states that if a countable theory has a unique model of some uncountable cardinality, then it has a unique model in all uncountable cardinalities. The method of proof led to the development of stability theory, now a central area of model theory. In the mid seventies, Shelah L conjectured a similar statement for classes of models of an ω1,ω-theory [She90, Date: September 7, 2018 AMS 2010 Subject Classification: Primary 03C48. -
Scheme Representation for First-Logic
Scheme representation for first-order logic Spencer Breiner Carnegie Mellon University Advisor: Steve Awodey Committee: Jeremy Avigad Hans Halvorson Pieter Hofstra February 12, 2014 arXiv:1402.2600v1 [math.LO] 11 Feb 2014 Contents 1 Logical spectra 11 1.1 The spectrum M0 .......................... 11 1.2 Sheaves on M0 ............................ 20 1.3 Thegenericmodel .......................... 24 1.4 The spectral groupoid M = Spec(T)................ 27 1.5 Stability, compactness and definability . 31 1.6 Classicalfirst-orderlogic. 37 2 Pretopos Logic 43 2.1 Coherentlogicandpretoposes. 43 2.2 Factorization in Ptop ........................ 51 2.3 Semantics, slices and localization . 57 2.4 Themethodofdiagrams. .. .. .. .. .. .. .. .. .. 61 2.5 ClassicaltheoriesandBooleanpretoposes . 70 3 Logical Schemes 74 3.1 StacksandSheaves.......................... 74 3.2 Affineschemes ............................ 80 3.3 Thecategoryoflogicalschemes . 87 3.4 Opensubschemesandgluing . 93 3.5 Limitsofschemes........................... 98 1 4 Applications 110 4.1 OT asasite..............................111 4.2 Structuresheafasuniverse . 119 4.3 Isotropy ................................125 4.4 ConceptualCompleteness . 134 2 Introduction Although contemporary model theory has been called “algebraic geometry mi- nus fields” [15], the formal methods of the two fields are radically different. This dissertation aims to shrink that gap by presenting a theory of “logical schemes,” geometric entities which relate to first-order logical theories in much the same way that -
Continuous First-Order Logic
Continuous First-Order Logic Wesley Calvert Calcutta Logic Circle 4 September 2011 Wesley Calvert (SIU / IMSc) Continuous First-Order Logic 4 September 2011 1 / 45 Definition A first-order theory T is said to be stable iff there are less than the maximum possible number of types over T , up to equivalence. Theorem (Shelah's Main Gap Theorem) If T is a first-order theory and is stable and . , then the class of models looks like . Otherwise, there's no hope. Model-Theoretic Beginnings Problem Given a theory T , describe the structure of models of T . Wesley Calvert (SIU / IMSc) Continuous First-Order Logic 4 September 2011 2 / 45 Theorem (Shelah's Main Gap Theorem) If T is a first-order theory and is stable and . , then the class of models looks like . Otherwise, there's no hope. Model-Theoretic Beginnings Problem Given a theory T , describe the structure of models of T . Definition A first-order theory T is said to be stable iff there are less than the maximum possible number of types over T , up to equivalence. Wesley Calvert (SIU / IMSc) Continuous First-Order Logic 4 September 2011 2 / 45 Model-Theoretic Beginnings Problem Given a theory T , describe the structure of models of T . Definition A first-order theory T is said to be stable iff there are less than the maximum possible number of types over T , up to equivalence. Theorem (Shelah's Main Gap Theorem) If T is a first-order theory and is stable and . , then the class of models looks like . Otherwise, there's no hope. -
Proof Diagrams for Multiplicative Linear Logic
Proof Diagrams for Multiplicative Linear Logic Matteo Acclavio I2M Marseille, France Aix-Marseile Universit´e [email protected] The original idea of proof nets can be formulated by means of interaction nets syntax. Additional machinery as switching, jumps and graph connectivity is needed in order to ensure correspondence between a proof structure and a correct proof in sequent calculus. In this paper we give an interpretationof proof nets in the syntax of string diagrams. Even though we lose standard proof equivalence, our construction allows to define a framework where soundness and well-typeness of a diagram can be verified in linear time. Introduction Proof nets are a geometrical representation of linear logic proofs introduced by J-Y.Girard [5]. The build- ing blocks of proof nets are called proof structures that have been generalized by Y. Lafont [11] in the so-called interaction nets. To recognize if a proof structure is a proof net one needs to verify its sequen- tializability property, that is, whether it corresponds to a linear logic proof derivation. Following Girard’s original correction criterion, others methods have been introduced, notably by Danos-Regnier [4], that ensures graph acyclicity by a notion of switchings on ⊗ cells, and by Guerrini [7], that reformulates correction by means of graph contractability. Proof structures allow to recover the semantic equivalence of derivation under commutation and permutation of some inference rules. Unfortunately this property makes ineffective the aforementioned criteria in presence of the multiplicative unit ⊥. In order to recover a sequentialization condition for the multiplicative fragment with units, Girard has introduced the notion of jumps [6].