No Pre-Zygotic Isolation Mechanisms Between Schistosoma

Total Page:16

File Type:pdf, Size:1020Kb

No Pre-Zygotic Isolation Mechanisms Between Schistosoma No pre-zygotic isolation mechanisms between Schistosoma haematobium and Schistosoma bovis parasites: From mating interactions to differential gene expression Julien Kincaid-Smith, Eglantine Mathieu-Bégné, Cristian Chaparro, Marta Reguera-Gomez, Stephen Mulero, Jean-Francois Allienne, Eve Toulza, Jérôme Boissier To cite this version: Julien Kincaid-Smith, Eglantine Mathieu-Bégné, Cristian Chaparro, Marta Reguera-Gomez, Stephen Mulero, et al.. No pre-zygotic isolation mechanisms between Schistosoma haematobium and Schisto- soma bovis parasites: From mating interactions to differential gene expression. PLoS Neglected Trop- ical Diseases, Public Library of Science, 2021, 15 (5), pp.e0009363. 10.1371/journal.pntd.0009363. hal-03255515 HAL Id: hal-03255515 https://hal.archives-ouvertes.fr/hal-03255515 Submitted on 9 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE No pre-zygotic isolation mechanisms between Schistosoma haematobium and Schistosoma bovis parasites: From mating interactions to differential gene expression 1,2³ 1³ 1 Julien Kincaid-Smith , Eglantine Mathieu-BeÂgne ID *, Cristian ChaparroID , 3 1 1 1 Marta Reguera-GomezID , Stephen MuleroID , Jean-Francois AllienneID , Eve ToulzaID , 1 JeÂroà me BoissierID * 1 Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan, France, 2 Centre for Emerging, Endemic a1111111111 and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal a1111111111 Veterinary College, University of London, Hawkshead Campus, Herts, United Kingdom, 3 Departamento de a1111111111 ParasitologõÂa, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain a1111111111 ³ These authors share first authorship on this work. a1111111111 * [email protected] (EM-B); [email protected] (JB) Abstract OPEN ACCESS Species usually develop reproductive isolation mechanisms allowing them to avoid inter- Citation: Kincaid-Smith J, Mathieu-BeÂgne E, breeding. These preventive barriers can act before reproduction, ªpre-zygotic barriersº, or Chaparro C, Reguera-Gomez M, Mulero S, Allienne J-F, et al. (2021) No pre-zygotic isolation after reproduction, ªpost-zygotic barriersº. Pre-zygotic barriers prevent unfavourable mating, mechanisms between Schistosoma haematobium while post-zygotic barriers determine the viability and selective success of the hybrid off- and Schistosoma bovis parasites: From mating spring. Hybridization in parasites and the underlying reproductive isolation mechanisms interactions to differential gene expression. PLoS maintaining their genetic integrity have been overlooked. Using an integrated approach this Negl Trop Dis 15(5): e0009363. https://doi.org/ 10.1371/journal.pntd.0009363 work aims to quantify the relative importance of pre-zygotic barriers in Schistosoma haema- tobium x S. bovis crosses. These two co-endemic species cause schistosomiasis, one of Editor: Poppy H. L. Lamberton, University of Glasgow School of Life Sciences, UNITED the major debilitating parasitic diseases worldwide, and can hybridize naturally. Using mate KINGDOM choice experiments we first tested if a specific mate recognition system exists between both Received: September 4, 2020 species. Second, using RNA-sequencing we analysed differential gene expression between homo- and hetero-specific pairing in male and female adult parasites. We show that homo- Accepted: April 6, 2021 and hetero-specific pairing occurs randomly between these two species, and few genes in Published: May 4, 2021 both sexes are affected by hetero-specific pairing. This suggests that i) mate choice is not a Peer Review History: PLOS recognizes the reproductive isolating factor, and that ii) no pre-zygotic barrier except spatial isolation ªby benefits of transparency in the peer review the final vertebrate hostº seems to limit interbreeding between these two species. Interest- process; therefore, we enable the publication of all of the content of peer review and author ingly, among the few genes affected by the pairing status of the worms, some can be related responses alongside final, published articles. The to pathways affected during male and female interactions and may also present interesting editorial history of this article is available here: candidates for species isolation mechanisms and hybridization in schistosome parasites. https://doi.org/10.1371/journal.pntd.0009363 Copyright: © 2021 Kincaid-Smith et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009363 May 4, 2021 1 / 24 PLOS NEGLECTED TROPICAL DISEASES No pre-zygotic barriers between schistosome species Data Availability Statement: The authors confirm that all data underlying the findings are fully Author summary available without restriction. Raw sequences used in this study have been submitted to the Sequence Understanding how species maintain their genetic integrity is a central question in evolu- Read Archive under the BioProject PRJNA491632, tionary biology. While isolation mechanisms are well documented in free-living organ- the transcriptome assembly have been submitted isms, it is currently not the case for parasite species. Yet, occurrence of parasite hybrids is on the Figshare repository (https://doi.org/10.6084/ a critical global health concern since these hybrids are expected to be more harmful than m9.figshare.12581156). parental species. We addressed the question of reproductive isolation mechanisms in par- Funding: This work has been funded by the French asitic species by conducting an integrative experimental study (from mate choice to gene Research National Agency (project HySWARM, expression) on two schistosome species (Schistosoma haematobium and S. bovis) that par- grant no. ANR-18-CE35-0001). SM was supported asitize human and cattle, respectively. Importantly, their hybrid progeny has been by the Occitania region (project MOLRISK, award no. NREST 2019/1/059), the European ªFonds involved in recent outbreaks, including outbreaks outside of endemic areas. We showed EuropeÂen de DeÂveloppement ReÂgionalº (FEDER) that rather than having a homo-specific mate choice, S. haematobium and S. bovis mate and MRG by the Fellowship of "Estancias breves" randomly. Also, male and female worms only express a few genes differentially when (linked to the Programa de Ayudas de Formacion involved in a hetero-specific pair compared to a homo-specific pair. We consequently sug- de Profesorado Universitario 2015, Ministerio de gest that these two schistosome species lack strong reproduction isolation mechanisms, Ciencia, InnovacioÂn y Universidades, Spain, https:// www.educacionyfp.gob.es/servicios-al-ciudadano/ except those imposed by specificity to the final host species. Our results raise the concern catalogo/general/20/200487/ficha/200487-2017. that in the absence of post-zygotic barriers in sympatric zones hybridization might be html#dc1). The funders had no role in study more common than previously thought if these two species are able to encounter each design, data collection and analysis, decision to other. publish, or preparation of the manuscript. Competing interests: The authors have declared that no competing interests exist. Introduction A subset of obstacles evolved in the course of speciation in order to limit gene flow via hybrid- ization and maintain species boundaries. These obstacles are traditionally classified as pre- and post-zygotic barriers (also known as pre- or post-mating barriers) and can be defined as any mechanism preventing or reducing gene flow between groups of potentially interbreeding individuals [1]. Pre-zygotic barriers include spatial isolation (e.g., two species live in different habitats), behavioural isolation (e.g., individuals can choose to mate with individuals of their own species), temporal isolation (reproduction does not occur at the same time e.g., different seasons), mechanical isolation (sex organs are not compatible) and gametic isolation (sperm and eggs mix but fertilization does not occur). When the first barrier is crossed, post-zygotic isolation mechanisms can arise to prevent gene flow. Post-zygotic barriers include hybrid unviability (hybrids die prematurely), reduced fitness with low fertility (hybrids are less fertile, infertile or non-viable) or hybrid breakdown (a longer process where the hybrid lines are counter-selected compared to their parental forms). The strength and/or the order of each reproductive barrier vary among species. This makes difficult to predict the outcome of inter- species mating, and the evolution of reproductive isolation mechanisms [2]. Moreover, repro- ductive isolation is often the result of an accumulation and interaction of multiple pre- and post-zygotic mechanisms restricting most gene flow [3]. However, it is generally recognized that pre-zygotic isolation barriers
Recommended publications
  • Schistosomiasis
    MODULE \ Schistosomiasis For the Ethiopian Health Center Team Laikemariam Kassa; Anteneh Omer; Wutet Tafesse; Tadele Taye; Fekadu Kebebew, M.D.; and Abdi Beker Haramaya University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education January 2005 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2005 by Laikemariam Kassa, Anteneh Omer, Wutet Tafesse, Tadele Taye, Fekadu Kebebew, and Abdi Beker All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. ACKNOWLEDGMENTS The authors are grateful to The Carter Center and its staffs for the financial, material, and moral support without which it would have been impossible to develop this module.
    [Show full text]
  • First Morphogenetic Analysis of Parasite Eggs from Schistosomiasis
    First morphogenetic analysis of parasite eggs from Schistosomiasis haematobium infected sub-Saharan migrants in Spain and proposal for a new standardised study methodology Marta Reguera-Gomez, M Valero, M Carmen Oliver-Chiva, Alejandra de Elias-Escribano, Patricio Artigas, M Cabeza-Barrera, Joaquín Salas-Coronas, Jérôme Boissier, Santiago Mas-Coma, M Dolores Bargues To cite this version: Marta Reguera-Gomez, M Valero, M Carmen Oliver-Chiva, Alejandra de Elias-Escribano, Patricio Artigas, et al.. First morphogenetic analysis of parasite eggs from Schistosomiasis haematobium infected sub-Saharan migrants in Spain and proposal for a new standardised study methodology. Acta Tropica, Elsevier, 2021, 223, pp.106075. 10.1016/j.actatropica.2021.106075. hal-03332420 HAL Id: hal-03332420 https://hal.archives-ouvertes.fr/hal-03332420 Submitted on 2 Sep 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. First morphogenetic analysis of parasite eggs from Schistosomiasis haematobium infected sub-Saharan migrants in Spain and proposal for a new standardised study methodology Marta Reguera-Gomez a, M. Adela Valero a,*, M. Carmen Oliver-Chiva a, Alejandra de Elias-Escribano a, Patricio Artigas a, M. Isabel Cabeza-Barrera b, Joaquín Salas- Coronas b, Jérôme Boissierc, Santiago Mas-Coma a, M.
    [Show full text]
  • Coinfection of Schistosoma (Trematoda) with Bacteria, Protozoa and Helminths
    CHAPTER 1 Coinfection of Schistosoma (Trematoda) with Bacteria, Protozoa and Helminths ,† ‡ Amy Abruzzi* and Bernard Fried Contents 1.1. Introduction 3 1.2. Coinfection of Species of Schistosoma and Plasmodium 4 1.2.1. Animal studies 21 1.2.2. Human studies 23 1.3. Coinfection of Schistosoma Species with Protozoans other than in the Genus Plasmodium 24 1.3.1. Leishmania 32 1.3.2. Toxoplasma 32 1.3.3. Entamoeba 34 1.3.4. Trypanosoma 35 1.4. Coinfection of Schistosoma Species with Salmonella 36 1.4.1. Animal studies 36 1.4.2. Human studies 42 1.5. Coinfection of Schistosoma Species with Bacteria other than Salmonella 43 1.5.1. Mycobacterium 43 1.5.2. Helicobacter pylori 49 1.5.3. Staphylococcus aureus 50 1.6. Coinfection of Schistosoma and Fasciola Species 50 1.6.1. Animal studies 57 1.6.2. Human studies 58 * Skillman Library, Lafayette College, Easton, Pennsylvania, USA { Epidemiology, University of Medicine and Dentistry of New Jersey (UMDNJ), Piscataway, New Jersey, USA { Department of Biology, Lafayette College, Easton, Pennsylvania, USA Advances in Parasitology, Volume 77 # 2011 Elsevier Ltd. ISSN 0065-308X, DOI: 10.1016/B978-0-12-391429-3.00005-8 All rights reserved. 1 2 Amy Abruzzi and Bernard Fried 1.7. Coinfection of Schistosoma Species and Helminths other than the Genus Fasciola 59 1.7.1. Echinostoma 59 1.7.2. Hookworm 70 1.7.3. Trichuris 70 1.7.4. Ascaris 71 1.7.5. Strongyloides and Trichostrongyloides 72 1.7.6. Filarids 73 1.8. Concluding Remarks 74 References 75 Abstract This review examines coinfection of selected species of Schisto- soma with bacteria, protozoa and helminths and focuses on the effects of the coinfection on the hosts.
    [Show full text]
  • The Effect of Triaenophorus Nodulosus (Cestoda: Bothriocephalidea) Infection on Some Biochemical Parameters of the Liver of Perca fluviatilis
    J Parasit Dis (Oct-Dec 2019) 43(4):566–574 https://doi.org/10.1007/s12639-019-01128-0 ORIGINAL ARTICLE The effect of Triaenophorus nodulosus (Cestoda: Bothriocephalidea) infection on some biochemical parameters of the liver of Perca fluviatilis 1 1 1 Ekaterina V. Borvinskaya • Irina V. Sukhovskaya • Lev P. Smirnov • 1 1 1 Albina A. Kochneva • Aleksey N. Parshukov • Marina Yu. Krupnova • 1 1 1 Elizaveta A. Buoy • Rimma U. Vysotskaya • Maria V. Churova Received: 2 February 2019 / Accepted: 29 May 2019 / Published online: 5 June 2019 Ó Indian Society for Parasitology 2019 Abstract Natural infection of 2 to 6-year-old perch with Keywords Helminth Á Triaenophorus Á Cestoda Á the cestode parasites Triaenophorus nodulosus was shown Perca fluviatilis Á Invasion Á Biochemical status to have minor effects on the studied components of the antioxidant defense system, nucleic acids degradation, and carbohydrate metabolism enzymes in the liver of the fish. Introduction The level of infection of 1–4 parasite larvae per fish observed in wild population of perch was shown to be The study of the effect of parasites on the biochemical moderate in terms of its effect on the health of the host fish. status of their host is important for clarifying the mutual The activity of hepatic enzymes b-galactosidase, b-glu- adaptations in the parasite–host system. A parasite directly cosidase, cathepsin D, and glutathione S-transferase affects its host by competing with it for resources; never- showed different responses in infected males and females, theless, there is usually a balance in the system, where which indicates different potential resistance of fish to the parasites cannot cause major damage to the host popula- stress exposure between genders.
    [Show full text]
  • Waterborne Zoonotic Helminthiases Suwannee Nithiuthaia,*, Malinee T
    Veterinary Parasitology 126 (2004) 167–193 www.elsevier.com/locate/vetpar Review Waterborne zoonotic helminthiases Suwannee Nithiuthaia,*, Malinee T. Anantaphrutib, Jitra Waikagulb, Alvin Gajadharc aDepartment of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Patumwan, Bangkok 10330, Thailand bDepartment of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Bangkok 10400, Thailand cCentre for Animal Parasitology, Canadian Food Inspection Agency, Saskatoon Laboratory, Saskatoon, Sask., Canada S7N 2R3 Abstract This review deals with waterborne zoonotic helminths, many of which are opportunistic parasites spreading directly from animals to man or man to animals through water that is either ingested or that contains forms capable of skin penetration. Disease severity ranges from being rapidly fatal to low- grade chronic infections that may be asymptomatic for many years. The most significant zoonotic waterborne helminthic diseases are either snail-mediated, copepod-mediated or transmitted by faecal-contaminated water. Snail-mediated helminthiases described here are caused by digenetic trematodes that undergo complex life cycles involving various species of aquatic snails. These diseases include schistosomiasis, cercarial dermatitis, fascioliasis and fasciolopsiasis. The primary copepod-mediated helminthiases are sparganosis, gnathostomiasis and dracunculiasis, and the major faecal-contaminated water helminthiases are cysticercosis, hydatid disease and larva migrans. Generally, only parasites whose infective stages can be transmitted directly by water are discussed in this article. Although many do not require a water environment in which to complete their life cycle, their infective stages can certainly be distributed and acquired directly through water. Transmission via the external environment is necessary for many helminth parasites, with water and faecal contamination being important considerations.
    [Show full text]
  • Pocket Guide to Clinical Microbiology
    4TH EDITION Pocket Guide to Clinical Microbiology Christopher D. Doern 4TH EDITION POCKET GUIDE TO Clinical Microbiology 4TH EDITION POCKET GUIDE TO Clinical Microbiology Christopher D. Doern, PhD, D(ABMM) Assistant Professor, Pathology Director of Clinical Microbiology Virginia Commonwealth University Health System Medical College of Virginia Campus Washington, DC Copyright © 2018 Amer i can Society for Microbiology. All rights re served. No part of this publi ca tion may be re pro duced or trans mit ted in whole or in part or re used in any form or by any means, elec tronic or me chan i cal, in clud ing pho to copy ing and re cord ing, or by any in for ma tion stor age and re trieval sys tem, with out per mis sion in writ ing from the pub lish er. Disclaimer: To the best of the pub lish er’s knowl edge, this pub li ca tion pro­ vi des in for ma tion con cern ing the sub ject mat ter cov ered that is ac cu rate as of the date of pub li ca tion. The pub lisher is not pro vid ing le gal, med i cal, or other pro fes sional ser vices. Any ref er ence herein to any spe cific com mer cial prod ucts, pro ce dures, or ser vices by trade name, trade mark, man u fac turer, or oth er wise does not con sti tute or im ply en dorse ment, rec om men da tion, or fa vored sta tus by the Ameri can Society for Microbiology (ASM).
    [Show full text]
  • In Vitro and in Vivo Trematode Models for Chemotherapeutic Studies
    589 In vitro and in vivo trematode models for chemotherapeutic studies J. KEISER* Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, CH-4002 Basel, Switzerland (Received 27 June 2009; revised 7 August 2009 and 26 October 2009; accepted 27 October 2009; first published online 7 December 2009) SUMMARY Schistosomiasis and food-borne trematodiases are chronic parasitic diseases affecting millions of people mostly in the developing world. Additional drugs should be developed as only few drugs are available for treatment and drug resistance might emerge. In vitro and in vivo whole parasite screens represent essential components of the trematodicidal drug discovery cascade. This review describes the current state-of-the-art of in vitro and in vivo screening systems of the blood fluke Schistosoma mansoni, the liver fluke Fasciola hepatica and the intestinal fluke Echinostoma caproni. Examples of in vitro and in vivo evaluation of compounds for activity are presented. To boost the discovery pipeline for these diseases there is a need to develop validated, robust high-throughput in vitro systems with simple readouts. Key words: Schistosoma mansoni, Fasciola hepatica, Echinostoma caproni, in vitro, in vivo, drug discovery, chemotherapy. INTRODUCTION by chemotherapy. However, only two drugs are currently available: triclabendazole against fascio- Thus far approximately 6000 species in the sub-class liasis and praziquantel against the other food-borne Digenea, phylum Platyhelminthes have been de- trematode infections and schistosomiasis (Keiser and scribed in the literature. Among them, only a dozen Utzinger, 2004; Keiser et al. 2005). Hence, there is a or so species parasitize humans. These include need for discovery and development of new drugs, the blood flukes (five species of Schistosoma), liver particularly in view of growing concern about re- flukes (Clonorchis sinensis, Fasciola gigantica, Fasciola sistance developing to existing drugs.
    [Show full text]
  • Schistosoma-Associated Salmonella Resist Antibiotics Via Specific Fimbrial
    Barnhill et al. Parasites & Vectors 2011, 4:123 http://www.parasitesandvectors.com/content/4/1/123 RESEARCH Open Access Schistosoma-associated Salmonella resist antibiotics via specific fimbrial attachments to the flatworm Alison E Barnhill, Ekaterina Novozhilova, Tim A Day* and Steve A Carlson Abstract Background: Schistosomes are parasitic helminths that infect humans through dermo-invasion while in contaminated water. Salmonella are also a common water-borne human pathogen that infects the gastrointestinal tract via the oral route. Both pathogens eventually enter the systemic circulation as part of their respective disease processes. Concurrent Schistosoma-Salmonella infections are common and are complicated by the bacteria adhering to adult schistosomes present in the mesenteric vasculature. This interaction provides a refuge in which the bacterium can putatively evade antibiotic therapy and anthelmintic monotherapy can lead to a massive release of occult Salmonella. Results: Using a novel antibiotic protection assay, our results reveal that Schistosoma-associated Salmonella are refractory to eight different antibiotics commonly used to treat salmonellosis. The efficacy of these antibiotics was decreased by a factor of 4 to 16 due to this association. Salmonella binding to schistosomes occurs via a specific fimbrial protein (FimH) present on the surface on the bacterium. This same fimbrial protein confers the ability of Salmonella to bind to mammalian cells. Conclusions: Salmonella can evade certain antibiotics by binding to Schistosoma. As a result, effective bactericidal concentrations of antibiotics are unfortunately above the achievable therapeutic levels of the drugs in co-infected individuals. Salmonella-Schistosoma binding is analogous to the adherence of Salmonella to cells lining the mammalian intestine.
    [Show full text]
  • The Substructure of Three Repetitive DNA Regions of Schistosoma
    Abbasi et al. Parasites & Vectors (2017) 10:364 DOI 10.1186/s13071-017-2281-7 RESEARCH Open Access The substructure of three repetitive DNA regions of Schistosoma haematobium group species as a potential marker for species recognition and interbreeding detection Ibrahim Abbasi1,2, Bonnie L. Webster3,4,5, Charles H. King6, David Rollinson3,4,5 and Joseph Hamburger1* Abstract Background: Schistosoma haematobium is the causative agent of human urogenital schistosomiasis affecting ~112 million people in Africa and the Middle East. The parasite is transmitted by snails of the genus Bulinus, which also transmit other closely related human and animal schistosomes. The accurate discrimination of S. haematobium from species infecting animals will aid effective control and elimination programs. Previously we have shown the utility of different repetitive nuclear DNA sequences (DraI, sh73bp, and sh77bp) for the identification of S. haematobium- group species and inter-repeat sequences for discriminating S. haematobium from S. bovis. Results: In this current study we clarify the structural arrangement and association between the three repetitive sequences (DraI, sh73bp, and sh77bp) in both S. haematobium and S. bovis, with a unique repeat linker being found in S. haematobium (Sh64bp repeat linker) and in S. bovis (Sb30bp repeat linker). Sequence data showed that the 3′- end of the repeat linker was connected to the DraI repetitive sequence array, and at the 5′-end of the repeat linker sh73bp and sh77bp were arranged in an alternating manner. Species-specific oligonucleotides were designed targeting the species-specific repeat linkers and used in a reverse line blot (RLB) hybridization assay enabling differentiation between S.
    [Show full text]
  • Evolution of the Schistosomes (Digenea: Schistosomatoidea): the Origin of Dioecy and Colonization of the Venous System
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 12-1997 Evolution of the Schistosomes (Digenea: Schistosomatoidea): The Origin of Dioecy and Colonization of the Venous System Thomas R. Platt St. Mary's College Daniel R. Brooks University of Toronto, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Platt, Thomas R. and Brooks, Daniel R., "Evolution of the Schistosomes (Digenea: Schistosomatoidea): The Origin of Dioecy and Colonization of the Venous System" (1997). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 229. https://digitalcommons.unl.edu/parasitologyfacpubs/229 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. J. Parasitol., 83(6), 1997 p. 1035-1044 ? American Society of Parasitologists 1997 EVOLUTIONOF THE SCHISTOSOMES(DIGENEA: SCHISTOSOMATOIDEA): THE ORIGINOF DIOECYAND COLONIZATIONOF THE VENOUS SYSTEM Thomas R. Platt and Daniel R. Brookst Department of Biology, Saint Mary's College, Notre Dame, Indiana 46556 ABSTRACT: Trematodesof the family Schistosomatidaeare
    [Show full text]
  • Neglected Tropical Diseases
    Neglected Tropical Diseases David Mabey London School of Hygiene & Tropical Medicine Disease Control strategy Elimination target Schistosomiasis MDA, health education, sanitation, snail control Yes (in some countries) Onchocerciasis MDA, (vector control) Yes (in Americas) Lymphatic filariasis MDA, vector control Yes (as a PH problem) Trachoma MDA, water and sanitation, health education Yes (as a PH problem) Yaws MDA Yes Soil transmitted helminths MDA No Guinea worm Safe water, health education Yes African trypanosomiasis Case finding and treatment, (vector control) Yes (T.b. gambiense) Visceral leishmaniasis Case finding and treatment Yes (subcontinent) Leprosy Case finding and treatment Yes Cysticercosis Sanitation, meat inspection, vaccination of pigs No Echinococcosis Abattoir control, treatment of dogs, education No Fascioliasis Treatment of sheep, health education No Chagas disease Vector control, blood screening Yes (some countries) Buruli ulcer Case finding and treatment No Rabies Vaccination of dogs, health education No Dengue Vector control No 35 year old English man • Unwell for 3 days • Fever • Cough • Itchy rash • Holiday in Malawi for 2 weeks • Returned 5 weeks ago • What else would you like to know? Travel History is important Where exactly has the patient been? • Which countries? • Rural or urban? • Dates of travel, when did symptoms begin? What exactly has the patient been doing? • New sexual partner(s)? • Fresh water contact? • Exposure to sick people? Immunisations before travel? Malaria prophylaxis? Any other medication
    [Show full text]
  • Pediculus Order Siphonaptera Family Culicidae Phlebotomus Hypoderma
    TAXONOMY Adapted from: Veterinary Parasitology (2016), Taylor MA, Coop RL & Wall RL, 4th Edition, Ed. Wiley Blackwell ARTHROPODS (Kingdom Animalia; Phylum Arthropoda) Class Insecta Order Phthiraptera Suborder Anoplura Family Pediculidae Pediculus Order Siphonaptera Order Diptera Suborder Nematocera Family Culicidae Family Psychodidae Phlebotomus Suborder Brachycera Family Oestridae Hypoderma lineatum Order Hemiptera Family Cimicidae Cimex Class Arachnida Order Astigmata Family Sarcoptidae Sarcoptes scabiei Family Psoroptidae Psoroptes Order Prostigmata Family Cheyletidae Cheyletiella Family Demodecidae Demodex Order Mesostigmata Family Varroidae Varroa destructor Order Ixodida Family Ixodidae PROTOZOA (Kingdom Protozoa) Phylum Formicata Class Metamonadea Order Giardiida Family Giardiidae Genus Giardia Phylum Ciliophora Class Litostomatea Order Trichostomatorida Family Balantidiidae Genus Balantidium Phylum Euglenozoa Class Kinetoplasta Order Trypanosomatida Family Trypanosomatidae Trypanosoma cruzi Leishmania infantum Phylum Parabasalia Class Trichomonadea Order Trichomonadida Family Trichomonadidae Trichomonas gallinae Phylum Apicomplexa Class Conoidasida Order Eucoccidiorida Family Eimeriidae Eimeria Cystoisospora Family Cryptosporidiidae Cryptosporidium parvum Family Sarcocystiidae Toxoplasma gondii Sarcocystis Neospora caninum Class Aconoidasida Order Haemosporida Family Plasmodiidae Plasmodium Order Piroplasmorida Family Babesiidae Babesia PLATYHELMINTHES (Kingdom Animalia; Phylum Platyhelminthes) Class Cestoidea Order Pseudophyllidea
    [Show full text]