Be Aware of Schistosomiasis | 2015 1 Fig

Total Page:16

File Type:pdf, Size:1020Kb

Be Aware of Schistosomiasis | 2015 1 Fig From our Whitepaper Files: Be Aware of > See companion document Schistosomiasis World Schistosomiasis 2015 Edition Risk Chart Canada 67 Mowat Avenue, Suite 036 Toronto, Ontario M6K 3E3 (416) 652-0137 USA 1623 Military Road, #279 Niagara Falls, New York 14304-1745 (716) 754-4883 New Zealand 206 Papanui Road Christchurch 5 www.iamat.org | [email protected] | Twitter @IAMAT_Travel | Facebook IAMATHealth THE HELPFUL DATEBOOK It was clear to him that this young woman must It’s noon, the skies are clear, it is unbearably have spent some time in Africa or the Middle hot and a caravan snakes its way across the East where this type of worm is prevalent. When Sahara. Twenty-eight people on camelback are interviewed she confirmed that she had been heading towards the oasis named El Mamoun. in Africa, participating in one of the excursions They are tourists participating in ‘La Sahari- organized by the club. enne’, a popular excursion conducted twice weekly across the desert of southern Tunisia The young woman did not have cancer at all, by an international travel club. In the bound- but had contracted schistosomiasis while less Sahara, they were living a fascinating swimming in the oasis pond. When investiga- experience, their senses thrilled by the majestic tors began to fear that other members of her grandeur of the desert. After hours of riding, group might also be infected, her date book they reached the oasis and were dazzled to see came to their aid. Many of her companions had Fig. 1 Biomphalaria fresh-water snail. a clear pond fed by a bubbling spring. The idea exchanged addresses with this attractive young Image source: Eduardo Rivera (Shutterstock) of jumping into the cool water to relieve the lady, and eventually all members of the group intense heat must have been exciting. There was were contacted and examined. The toll was heavy a momentary pause at the pond’s edge to test – out of 28 persons, nine were added to the long the water, then the tourists waded in. Although list of travellers infected at El Mamoun.1 they had been warned never to wade or bathe in the freshwater in the tropics, the cool water THE LIFE OF THE FLATWORM was irresistible after travelling for so long under the scorching sun. The advice given at home How did it happen? The swimmers hadn’t was forgotten in the momentary relief of the noticed among the vegetation at the edge of the refreshing oasis pond. pond the presence of minute snails so small that a dozen would easily fit into a teaspoon. In some Milan – five months later. A pathologist was ponds and rivers as many as 1,000 can be found examining a cervical biopsy of a young woman in a square metre. They are the freshwater snails suspected of having cancer. Under the micro- belonging to the genus Bulinus, which serve as scope, he was amazed to see some peculiar the specific hosts to the larval stages of the Schis- worm eggs. There was no doubt in his mind tosoma haematobium worm. that these were not the common worm eggs routinely seen in his work, but the eggs of the The Snail – flatworm called Schistosoma haematobium. The Creature Nurturing Infection The eggs of the worm are eliminated via the urine The eggs of this worm damage the urinary of those infected. When an egg reaches freshwa- and genital tracts which become inflamed ter, it hatches rapidly – see picture of the life cycle and scarred. The disease, called Schistosomiasis of the human schistosomes (1). The ensuing larva 1. Although Schistosomiasis cases are no (Bilharzia), is a languishing, debilitating (an immature form of life called miracidium) is longer reported from Tunisia, this true story highlights how the disease can go undetect- illness which saps the physical and mental an oval shaped organism clothed with minute ed in unsuspecting travellers. energies of its victims. cilia (2) swimming in search of the Bulinus snail. Be Aware of Schistosomiasis | 2015 1 Fig. 2 Life cycle of human schistosomes. Themiracidium [Gr.: meirákon = young form of Humans – The Sexual Life of the Worm life] is attracted by the snail’s mucous secretion The tail-less cercariae, now called schistosomulae, and burrows into the soft tissue of the mollusc (e). then reach the lymph vessels which drain into Once inside, the miracidium transforms itself into the two major veins, allowing the schistosomulae an elongated, thin walled sack called mother of both sexes to reach first the lungs and then the sporocyst [Gr.: sporá = sowing, seed; kústis = liver, where they mature and mate. sack] (3), which gives rise to about four hundred daughter sporocysts (4). Each one forms within its The worms have a rounded and elongated ap- cavity numerous fork-tailed cercariae [Gr.: kerkos pearance. In the animal kingdom they are placed = tail], representing the early stages of matur- under the group Platyhelmintes (Gr.: platús = ing worms. A single miracidium may produce broad; élmis = worm). They are greyish-white thousands of cercariae in only six weeks and this in colour and measure between 1/2 and 1 inch production may carry on in the snail for months. (1.2-2.5 cm) in length and have two suction discs for adhesion and feeding. They belong to The water in the pond of El Mamoun was teem- the family of flukes or Trematoda (Gr.: tre – ma ing with this kind of microscopic life when our = hole) and are commonly called ‘blood flukes’ tourists arrived at the oasis. Previous visits to the because they live in the blood vessels of mam- oasis by Bedouins had left the pond infected, a mals. The name for their genus, Schistosoma (Gr.: legacy of the disease for the tourists to contract. schistós = cleft, split; soma = body), indicates their difference from all other flukes: They are Like divers jumping from their boats, the not hermaphroditic, but have two genders – cercariae, stimulated by the bright light and the male and female. When they mate, the edges of high temperature of the day, abandon the snails. the larger male worm fold over to form a groove Seen under the microscope they look like minia- to hold the slender and longer female close to ture tadpoles, with a pear shaped buoy and a him (8). Then, tightly embraced, they leave the long tail ending in a y-shaped fork which acts as liver, swimming against the flow of the venous a propeller to move the organism through the blood, to settle in the blood vessels surrounding water (5). They are now swimming in a desparate the bladder and the adjacent organs in the geni- race against time, searching for a human host to to-urinary system. Fig. 3 Electron micrograph of a male/female pair of adult schistosomes. ensure their survival. They will die within 48 hours if the search fails. The reason? Since the only way to ensure the Image source: Natural History Museum, London survival of the species is to get the eggs into Attracted by the oily secretion lubricating freshwater, the worms live close to the natural the human body, they attach themselves to the openings of the human body – the bladder or skin with their oral suckers. They do not need the openings of the reproductive organs – so that to find a wound or break in the skin since the eggs can easily escape to the outside. they secrete an enzyme which splits the ‘cement’ holding the cells of the skin together (6). The human body doesn’t suspect their presence As soon as the cercariae start to penetrate the because the worms disguise themselves with a outer layers, they shed their tails (7) and burrow coating of protein similar to that of the host. a tunnel through the epidermis. This coating fools the human’s defense system, IAMAT Whitepaper Files 2 which otherwise would fight off foreign particles. • Schistosoma haematobium lives Undisturbed, the worms may live for years in the blood vessels of the bladder producing an incredible number of eggs. and genitalia. The eggs, characterized by a terminal spike (d), are passed The Eggs – The Quest for Freedom with urine. The intermediate host The eggs, which are oval-shaped with a snail belongs to the genus Bulinus spike protruding from one end, are deposited in which has a conical shaped shell, large numbers in the tissue of the bladder. Some dark grey in colour measuring about reach the innermost part through the tiniest of 1 cm in length (d1). The infection blood vessels. They are now only separated from caused by S. haematobium is found the urine by a thin layer of tissue, which they in Africa (including Madagascar) and pierce with the spike to allow them to fall into the Middle East. Humans are the the urine. When the eggs are eliminated from only known reservoir of this species, the bladder and reach fresh water, they will therefore, with improved sanitation hatch into miracidia, search out the snails, and public health initiatives the and start the cycle anew. prospects of eradication are excellent in communities who are infected with However, a great number of eggs remain S. haematobium only. trapped in the tissue. Unlike their shrewd parents, they are not able to cheat the defense • Schistosoma mansoni lives in the In countries where system of the host. Immediately, they are blood vessels surrounding the large Schistosomiasis is endemic, surrounded by scores of white blood cells, bowel. The eggs, which have a lateral avoid contact with fresh water. the body’s main defense system. These spine (c), are passed with the stools.
Recommended publications
  • Schistosomiasis
    MODULE \ Schistosomiasis For the Ethiopian Health Center Team Laikemariam Kassa; Anteneh Omer; Wutet Tafesse; Tadele Taye; Fekadu Kebebew, M.D.; and Abdi Beker Haramaya University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education January 2005 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2005 by Laikemariam Kassa, Anteneh Omer, Wutet Tafesse, Tadele Taye, Fekadu Kebebew, and Abdi Beker All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. ACKNOWLEDGMENTS The authors are grateful to The Carter Center and its staffs for the financial, material, and moral support without which it would have been impossible to develop this module.
    [Show full text]
  • CDC Overseas Parasite Guidelines
    Guidelines for Overseas Presumptive Treatment of Strongyloidiasis, Schistosomiasis, and Soil-Transmitted Helminth Infections for Refugees Resettling to the United States U.S. Department of Health and Human Services Centers for Disease Control and Prevention National Center for Emerging and Zoonotic Infectious Diseases Division of Global Migration and Quarantine February 6, 2019 Accessible version: https://www.cdc.gov/immigrantrefugeehealth/guidelines/overseas/intestinal- parasites-overseas.html 1 Guidelines for Overseas Presumptive Treatment of Strongyloidiasis, Schistosomiasis, and Soil-Transmitted Helminth Infections for Refugees Resettling to the United States UPDATES--the following are content updates from the previous version of the overseas guidance, which was posted in 2008 • Latin American and Caribbean refugees are now included, in addition to Asian, Middle Eastern, and African refugees. • Recommendations for management of Strongyloides in refugees from Loa loa endemic areas emphasize a screen-and-treat approach and de-emphasize a presumptive high-dose albendazole approach. • Presumptive use of albendazole during any trimester of pregnancy is no longer recommended. • Links to a new table for the Treatment Schedules for Presumptive Parasitic Infections for U.S.-Bound Refugees, administered by IOM. Contents • Summary of Recommendations • Background • Recommendations for overseas presumptive treatment of intestinal parasites o Refugees originating from the Middle East, Asia, North Africa, Latin America, and the Caribbean o Refugees
    [Show full text]
  • First Morphogenetic Analysis of Parasite Eggs from Schistosomiasis
    First morphogenetic analysis of parasite eggs from Schistosomiasis haematobium infected sub-Saharan migrants in Spain and proposal for a new standardised study methodology Marta Reguera-Gomez, M Valero, M Carmen Oliver-Chiva, Alejandra de Elias-Escribano, Patricio Artigas, M Cabeza-Barrera, Joaquín Salas-Coronas, Jérôme Boissier, Santiago Mas-Coma, M Dolores Bargues To cite this version: Marta Reguera-Gomez, M Valero, M Carmen Oliver-Chiva, Alejandra de Elias-Escribano, Patricio Artigas, et al.. First morphogenetic analysis of parasite eggs from Schistosomiasis haematobium infected sub-Saharan migrants in Spain and proposal for a new standardised study methodology. Acta Tropica, Elsevier, 2021, 223, pp.106075. 10.1016/j.actatropica.2021.106075. hal-03332420 HAL Id: hal-03332420 https://hal.archives-ouvertes.fr/hal-03332420 Submitted on 2 Sep 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. First morphogenetic analysis of parasite eggs from Schistosomiasis haematobium infected sub-Saharan migrants in Spain and proposal for a new standardised study methodology Marta Reguera-Gomez a, M. Adela Valero a,*, M. Carmen Oliver-Chiva a, Alejandra de Elias-Escribano a, Patricio Artigas a, M. Isabel Cabeza-Barrera b, Joaquín Salas- Coronas b, Jérôme Boissierc, Santiago Mas-Coma a, M.
    [Show full text]
  • Angiostrongylus Cantonensis: a Review of Its Distribution, Molecular Biology and Clinical Significance As a Human
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303551798 Angiostrongylus cantonensis: A review of its distribution, molecular biology and clinical significance as a human... Article in Parasitology · May 2016 DOI: 10.1017/S0031182016000652 CITATIONS READS 4 360 10 authors, including: Indy Sandaradura Richard Malik Centre for Infectious Diseases and Microbiolo… University of Sydney 10 PUBLICATIONS 27 CITATIONS 522 PUBLICATIONS 6,546 CITATIONS SEE PROFILE SEE PROFILE Derek Spielman Rogan Lee University of Sydney The New South Wales Department of Health 34 PUBLICATIONS 892 CITATIONS 60 PUBLICATIONS 669 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Create new project "The protective rate of the feline immunodeficiency virus vaccine: An Australian field study" View project Comparison of three feline leukaemia virus (FeLV) point-of-care antigen test kits using blood and saliva View project All content following this page was uploaded by Indy Sandaradura on 30 May 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. 1 Angiostrongylus cantonensis: a review of its distribution, molecular biology and clinical significance as a human pathogen JOEL BARRATT1,2*†, DOUGLAS CHAN1,2,3†, INDY SANDARADURA3,4, RICHARD MALIK5, DEREK SPIELMAN6,ROGANLEE7, DEBORAH MARRIOTT3, JOHN HARKNESS3, JOHN ELLIS2 and DAMIEN STARK3 1 i3 Institute, University of Technology Sydney, Ultimo, NSW, Australia 2 School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia 3 Department of Microbiology, SydPath, St.
    [Show full text]
  • Sex and the Single Schistosome Once Thought to Pair for Life, Infective Flatworms Often Lose Their Mates in Battle
    SEX AND THE SINGLE SCHISTOSOME ONCE THOUGHT TO PAIR FOR LIFE, INFECTIVE FLATWORMS OFTEN LOSE THEIR MATES IN BATTLE. UNNARI N BY PATRICK J. SKELLY JOHN GEMAN ART LIBRARY D HE BRI T © DAHESH MUSEUM OF ART / Opposite page: Adult male schistosome reveals the large suction cup underneath his “head,” which he uses to anchor himself against blood flow and shinny through veins inside a host (image magnified 200×). Above: Oil painting by Charles-Théodore Frère, circa 1850, entitled “Along the Nile at Gyzeh.” For millennia the Nile River has served as a primary site of schistosome infection for millions of Egyptians. CALL ME NAÏVE, BUT I WAS A LITTLE Many millions of Egyptians are infected today with surprised that the trip to the ancient temple of the pha- schistosomes. In their time, the pharaohs too were infected. raohs in Luxor, Egypt, did not require a couple of days’ Schistosome eggs have been detected in royal mummies ride into the desert on a camel. I had visions of heat and thousands of years old. In addition, X-ray examination dust and sandstorms, with the temple emerging like a of mummies has revealed the pathological calcifications mirage, magnificent in the distance. Nothing like it: the typical of schistosome infection, and worm proteins have temple (magnificent indeed) sits in downtown Luxor, been identified in rehydrated ancient tissue. If they have not far from the post office and the train station. A little prevailed across time, schistosomes have also been un- farther along the road, keeping the Nile River on your daunted by space: they are endemic in rural and suburban left, you will find the great temple of the god Amun at areas of seventy-four countries in Africa, Asia, and Latin Karnak.
    [Show full text]
  • Rapid Screening for Schistosoma Mansoni in Western Coã Te D'ivoire Using a Simple School Questionnaire J
    Rapid screening for Schistosoma mansoni in western Coà te d'Ivoire using a simple school questionnaire J. Utzinger,1 E.K. N'Goran,2 Y.A. Ossey,3 M. Booth,4 M. TraoreÂ,5 K.L. Lohourignon,6 A. Allangba,7 L.A. Ahiba,8 M. Tanner,9 &C.Lengeler10 The distribution of schistosomiasis is focal, so if the resources available for control are to be used most effectively, they need to be directed towards the individuals and/or communities at highest risk of morbidity from schistosomiasis. Rapid and inexpensive ways of doing this are needed, such as simple school questionnaires. The present study used such questionnaires in an area of western Coà te d'Ivoire where Schistosoma mansoni is endemic; correctly completed questionnaires were returned from 121 out of 134 schools (90.3%), with 12 227 children interviewed individually. The presence of S. mansoni was verified by microscopic examination in 60 randomly selected schools, where 5047 schoolchildren provided two consecutive stool samples for Kato±Katz thick smears. For all samples it was found that 54.4% of individuals were infected with S. mansoni. Moreover, individuals infected with S. mansoni reported ``bloody diarrhoea'', ``blood in stools'' and ``schistosomiasis'' significantly more often than uninfected children. At the school level, Spearman rank correlation analysis showed that the prevalence of S. mansoni significantly correlated with the prevalence of reported bloody diarrhoea (P = 0.002), reported blood in stools (P = 0.014) and reported schistosomiasis (P = 0.011). Reported bloody diarrhoea and reported blood in stools had the best diagnostic performance (sensitivity: 88.2%, specificity: 57.7%, positive predictive value: 73.2%, negative predictive value: 78.9%).
    [Show full text]
  • Coinfection of Schistosoma (Trematoda) with Bacteria, Protozoa and Helminths
    CHAPTER 1 Coinfection of Schistosoma (Trematoda) with Bacteria, Protozoa and Helminths ,† ‡ Amy Abruzzi* and Bernard Fried Contents 1.1. Introduction 3 1.2. Coinfection of Species of Schistosoma and Plasmodium 4 1.2.1. Animal studies 21 1.2.2. Human studies 23 1.3. Coinfection of Schistosoma Species with Protozoans other than in the Genus Plasmodium 24 1.3.1. Leishmania 32 1.3.2. Toxoplasma 32 1.3.3. Entamoeba 34 1.3.4. Trypanosoma 35 1.4. Coinfection of Schistosoma Species with Salmonella 36 1.4.1. Animal studies 36 1.4.2. Human studies 42 1.5. Coinfection of Schistosoma Species with Bacteria other than Salmonella 43 1.5.1. Mycobacterium 43 1.5.2. Helicobacter pylori 49 1.5.3. Staphylococcus aureus 50 1.6. Coinfection of Schistosoma and Fasciola Species 50 1.6.1. Animal studies 57 1.6.2. Human studies 58 * Skillman Library, Lafayette College, Easton, Pennsylvania, USA { Epidemiology, University of Medicine and Dentistry of New Jersey (UMDNJ), Piscataway, New Jersey, USA { Department of Biology, Lafayette College, Easton, Pennsylvania, USA Advances in Parasitology, Volume 77 # 2011 Elsevier Ltd. ISSN 0065-308X, DOI: 10.1016/B978-0-12-391429-3.00005-8 All rights reserved. 1 2 Amy Abruzzi and Bernard Fried 1.7. Coinfection of Schistosoma Species and Helminths other than the Genus Fasciola 59 1.7.1. Echinostoma 59 1.7.2. Hookworm 70 1.7.3. Trichuris 70 1.7.4. Ascaris 71 1.7.5. Strongyloides and Trichostrongyloides 72 1.7.6. Filarids 73 1.8. Concluding Remarks 74 References 75 Abstract This review examines coinfection of selected species of Schisto- soma with bacteria, protozoa and helminths and focuses on the effects of the coinfection on the hosts.
    [Show full text]
  • Waterborne Zoonotic Helminthiases Suwannee Nithiuthaia,*, Malinee T
    Veterinary Parasitology 126 (2004) 167–193 www.elsevier.com/locate/vetpar Review Waterborne zoonotic helminthiases Suwannee Nithiuthaia,*, Malinee T. Anantaphrutib, Jitra Waikagulb, Alvin Gajadharc aDepartment of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Patumwan, Bangkok 10330, Thailand bDepartment of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Bangkok 10400, Thailand cCentre for Animal Parasitology, Canadian Food Inspection Agency, Saskatoon Laboratory, Saskatoon, Sask., Canada S7N 2R3 Abstract This review deals with waterborne zoonotic helminths, many of which are opportunistic parasites spreading directly from animals to man or man to animals through water that is either ingested or that contains forms capable of skin penetration. Disease severity ranges from being rapidly fatal to low- grade chronic infections that may be asymptomatic for many years. The most significant zoonotic waterborne helminthic diseases are either snail-mediated, copepod-mediated or transmitted by faecal-contaminated water. Snail-mediated helminthiases described here are caused by digenetic trematodes that undergo complex life cycles involving various species of aquatic snails. These diseases include schistosomiasis, cercarial dermatitis, fascioliasis and fasciolopsiasis. The primary copepod-mediated helminthiases are sparganosis, gnathostomiasis and dracunculiasis, and the major faecal-contaminated water helminthiases are cysticercosis, hydatid disease and larva migrans. Generally, only parasites whose infective stages can be transmitted directly by water are discussed in this article. Although many do not require a water environment in which to complete their life cycle, their infective stages can certainly be distributed and acquired directly through water. Transmission via the external environment is necessary for many helminth parasites, with water and faecal contamination being important considerations.
    [Show full text]
  • Epidemiology of Angiostrongylus Cantonensis and Eosinophilic Meningitis
    Epidemiology of Angiostrongylus cantonensis and eosinophilic meningitis in the People’s Republic of China INAUGURALDISSERTATION zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Shan Lv aus Xinyang, der Volksrepublik China Basel, 2011 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakult¨at auf Antrag von Prof. Dr. Jürg Utzinger, Prof. Dr. Peter Deplazes, Prof. Dr. Xiao-Nong Zhou, und Dr. Peter Steinmann Basel, den 21. Juni 2011 Prof. Dr. Martin Spiess Dekan der Philosophisch- Naturwissenschaftlichen Fakultät To my family Table of contents Table of contents Acknowledgements 1 Summary 5 Zusammenfassung 9 Figure index 13 Table index 15 1. Introduction 17 1.1. Life cycle of Angiostrongylus cantonensis 17 1.2. Angiostrongyliasis and eosinophilic meningitis 19 1.2.1. Clinical manifestation 19 1.2.2. Diagnosis 20 1.2.3. Treatment and clinical management 22 1.3. Global distribution and epidemiology 22 1.3.1. The origin 22 1.3.2. Global spread with emphasis on human activities 23 1.3.3. The epidemiology of angiostrongyliasis 26 1.4. Epidemiology of angiostrongyliasis in P.R. China 28 1.4.1. Emerging angiostrongyliasis with particular consideration to outbreaks and exotic snail species 28 1.4.2. Known endemic areas and host species 29 1.4.3. Risk factors associated with culture and socioeconomics 33 1.4.4. Research and control priorities 35 1.5. References 37 2. Goal and objectives 47 2.1. Goal 47 2.2. Objectives 47 I Table of contents 3. Human angiostrongyliasis outbreak in Dali, China 49 3.1. Abstract 50 3.2.
    [Show full text]
  • Performance of Two Serodiagnostic Tests for Loiasis in A
    Performance of two serodiagnostic tests for loiasis in a Non-Endemic area Federico Gobbi, Dora Buonfrate, Michel Boussinesq, Cédric Chesnais, Sébastien Pion, Ronaldo Silva, Lucia Moro, Paola Rodari, Francesca Tamarozzi, Marco Biamonte, et al. To cite this version: Federico Gobbi, Dora Buonfrate, Michel Boussinesq, Cédric Chesnais, Sébastien Pion, et al.. Perfor- mance of two serodiagnostic tests for loiasis in a Non-Endemic area. PLoS Neglected Tropical Dis- eases, Public Library of Science, 2020, 14 (5), pp.e0008187. 10.1371/journal.pntd.0008187. inserm- 02911633 HAL Id: inserm-02911633 https://www.hal.inserm.fr/inserm-02911633 Submitted on 4 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PLOS NEGLECTED TROPICAL DISEASES RESEARCH ARTICLE Performance of two serodiagnostic tests for loiasis in a Non-Endemic area 1 1 2 2 Federico GobbiID *, Dora Buonfrate , Michel Boussinesq , Cedric B. Chesnais , 2 1 1 1 3 Sebastien D. Pion , Ronaldo Silva , Lucia Moro , Paola RodariID , Francesca Tamarozzi , Marco Biamonte4, Zeno Bisoffi1,5 1 IRCCS Sacro
    [Show full text]
  • Pocket Guide to Clinical Microbiology
    4TH EDITION Pocket Guide to Clinical Microbiology Christopher D. Doern 4TH EDITION POCKET GUIDE TO Clinical Microbiology 4TH EDITION POCKET GUIDE TO Clinical Microbiology Christopher D. Doern, PhD, D(ABMM) Assistant Professor, Pathology Director of Clinical Microbiology Virginia Commonwealth University Health System Medical College of Virginia Campus Washington, DC Copyright © 2018 Amer i can Society for Microbiology. All rights re served. No part of this publi ca tion may be re pro duced or trans mit ted in whole or in part or re used in any form or by any means, elec tronic or me chan i cal, in clud ing pho to copy ing and re cord ing, or by any in for ma tion stor age and re trieval sys tem, with out per mis sion in writ ing from the pub lish er. Disclaimer: To the best of the pub lish er’s knowl edge, this pub li ca tion pro­ vi des in for ma tion con cern ing the sub ject mat ter cov ered that is ac cu rate as of the date of pub li ca tion. The pub lisher is not pro vid ing le gal, med i cal, or other pro fes sional ser vices. Any ref er ence herein to any spe cific com mer cial prod ucts, pro ce dures, or ser vices by trade name, trade mark, man u fac turer, or oth er wise does not con sti tute or im ply en dorse ment, rec om men da tion, or fa vored sta tus by the Ameri can Society for Microbiology (ASM).
    [Show full text]
  • The Complete Mitochondrial Genome of Echinostoma Miyagawai
    Infection, Genetics and Evolution 75 (2019) 103961 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Research paper The complete mitochondrial genome of Echinostoma miyagawai: Comparisons with closely related species and phylogenetic implications T Ye Lia, Yang-Yuan Qiua, Min-Hao Zenga, Pei-Wen Diaoa, Qiao-Cheng Changa, Yuan Gaoa, ⁎ Yan Zhanga, Chun-Ren Wanga,b, a College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China b College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China ARTICLE INFO ABSTRACT Keywords: Echinostoma miyagawai (Trematoda: Echinostomatidae) is a common parasite of poultry that also infects humans. Echinostoma miyagawai Es. miyagawai belongs to the “37 collar-spined” or “revolutum” group, which is very difficult to identify and Echinostomatidae classify based only on morphological characters. Molecular techniques can resolve this problem. The present Mitochondrial genome study, for the first time, determined, and presented the complete Es. miyagawai mitochondrial genome. A Comparative analysis comparative analysis of closely related species, and a reconstruction of Echinostomatidae phylogeny among the Phylogenetic analysis trematodes, is also presented. The Es. miyagawai mitochondrial genome is 14,416 bp in size, and contains 12 protein-coding genes (cox1–3, nad1–6, nad4L, cytb, and atp6), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and one non-coding region (NCR). All Es. miyagawai genes are transcribed in the same direction, and gene arrangement in Es. miyagawai is identical to six other Echinostomatidae and Echinochasmidae species. The complete Es. miyagawai mitochondrial genome A + T content is 65.3%, and full- length, pair-wise nucleotide sequence identity between the six species within the two families range from 64.2–84.6%.
    [Show full text]