Translational Mechanisms of Stem Cell Fate Regulation in Epidermal Oncogene

Total Page:16

File Type:pdf, Size:1020Kb

Translational Mechanisms of Stem Cell Fate Regulation in Epidermal Oncogene Translational mechanisms of stem cell fate regulation in epidermal oncogene tolerance Yi Cai A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2019 Reading Committee: Slobodan Beronja, Chair Adam Geballe Andrew C. Hsieh Program Authorized to Offer Degree: Molecular and Cellular Biology v © Copyright 2019 Yi Cai v University of Washington Abstract Translational mechanisms of stem cell fate regulation in epidermal oncogene tolerance Yi Cai Chair of the Supervisory Committee: Slobodan Beronja, Associate Member Division of Human Biology, Fred Hutchinson Cancer Research Center Morphologically and functionally normal human skin carries a surprisingly high burden of oncogenic lesions, suggesting that the skin has exceptional capacity to tolerate oncogene hyperactivity. To date, we have made significant progress in understanding how homeostatic adult epidermis suppresses the expansion of individual clones derived from somatic mutations. However, the mechanisms behind oncogene tolerance during epidermal development, a time of significant physiological tissue expansion, has not been explored. This is exemplified in RASopathies, where patients rarely develop epidermal defects or cancers despite germline mutations in the RAS/MAPK signaling pathway. Here, we find that oncogenic RAS-induced progenitor cell hyperproliferation is coordinated with differentiation to restrain aberrant growth and preserve epidermal development. We uncover a novel translation mechanism mediated by initiation factor eIF2B5 that co-regulates RAS proliferation and differentiation, resulting in hyperplastic but controlled growth. Using in vivo ribosome profiling, we reveal that eIF2B5 v selectively regulates the translation of a substantial subset of the oncogenic RAS translatome. Furthermore, by coupling ribosome profiling with genetic screening, we provide direct functional evidence that RAS-induced differentiation is driven by eIF2B5-mediated translation of ubiquitination genes. We reveal ubiquitin ligase FBXO32 as a promoter of epidermal differentiation with no effect on proliferation, thus restraining RAS-driven pathological growth and tumorigenesis. Our study challenges the accepted view that oncogenic translation is inherently tumor promoting and unveils how it directly steers cell fate to mediate epidermal oncogene tolerance. v Acknowledgements I would like to thank my doctoral advisor, Slobodan Beronja, for giving me the freedom to grow as a scientist. His encouragement, support, and enthusiasm expanded my critical thinking and curiosity. Thanks to the past and present members of the Beronja lab--Madeline Sandoval, Zhe Ying, Megan Kufeld, Kamya Rajaram, Julie Rytlewski, Na Ge, for making the lab a warm and intellectually stimulating community. I would also like to thank Andrew Hsieh and members of the Hsieh lab, especially Sonali Arora, Yiting Lim, Yuzhen Liu, and Alexandre Germanos, for being wonderful collaborators and sharing their expertise on all things translational. I would like to thank the rest of my thesis committee--Adam Geballe, Julie Overbaugh, and Hannele Ruohola- Baker--for insightful suggestions, constructive criticisms, and guidance. Finally, I thank my family and friends for their generous and unwavering encouragement. v Table of Contents List of Figures................................................................................................................................viii List of Tables....................................................................................................................................x Chapter 1 – Introduction.................................................................................................................1 1.1 Stem cell dynamics in epidermal growth………………………………………………………………..…1 1.2 Epidermal tolerance to oncogene activation……………………………….………………….………..4 1.3 Regulation of epidermal progenitor cell behavior………………………………………………………7 Chapter 2 – Materials and Methods………………………………………………………………………………………....12 Chapter 3 – Oncogenic RAS activation alters stem cell dynamics to preserve epidermal development………..…....................................................................................................................27 3.1 HrasG12V activation induces epidermal overgrowth ....................................................27 3.2 HrasG12V activation alters stem cell dynamics to limit epidermal overgrowth ............28 Summary...........................................................................................................................31 Chapter 4 -- eIF2B5 coordinates progenitor cell behaviors to mediate oncogene tolerance……….37 4.1 eIF2B5 mediates HrasG12V-induced translation upregulation......................................37 4.2 HrasG12V progenitor cell behaviors and tissue growth are dependent on eIF2B5......41 4.3 eIF2B5 mediates the translation of a specific subset of oncogenic mRNAs .................42 Summary…........................................................................................................................45 Chapter 5 – eIF2B5-regulated FBXO32 drives HrasG12V differentiation to restrain tumorigenesis…….63 5.1 -- Oncogenic RAS-induced differentiation is driven by eIF2B5-regulated ubiquitination...63 vi 5.2 eIF2B5-regulated FBXO32 drives RAS-induced differentiation ...................................65 5.3 FBXO32 drives differentiation to restrain RAS tumor initiation and growth................67 5.4 Concurrent manipulation of progenitor cell behaviors downstream of eIF2B5..........68 Summary………………………………………………………………………………………………………………………70 Chapter 6 – Discussion……………………………………............................................................................87 6.1. Coordinated progenitor cell behaviors mediate RAS oncogene tolerance..................87 6.2 eIF2B5 coordinates RAS progenitor cell behaviors to regulate oncogenic growth......89 6.3 eIF2B5-driven differentiation restrains RAS tumorigenesis…………………………………..…91 6.4 Translation dysregulation as a therapeutic target……………………………………………………93 References ...................................................................................................................................96 Appendix A – Translation screen to identify essential oncogenic growth genes……………………....108 Appendix B – In vivo ribosome profiling results……………………………………………………………………….116 vii Figures 1.1 Epidermal stem cell models...................................................................................................11 3.1 Oncogene activation can be induced in mouse epidermis………………......................................32 3.2 HrasG12V induces epidermal expansion……………………………………………………………....................34 3.3 HrasG12V induces compensatory progenitor cell differentiation…………………..........................35 4.1 HrasG12V progenitor cell behaviors are regulated by the translation machinery......................46 4.2 HrasG12V translation upregulation is mediated by eIF2B5........................................................48 4.3 Cultured primary keratinocytes phenocopy in vivo epidermal basal cells...............................50 4.4 HrasG12V regulation of eIF2B5..................................................................................................51 4.5 HrasG12V progenitor cell behaviors and tissue growth are dependent on eIF2B5....................52 4.6 In vivo basal cell ribosome profiling........................................................................................54 4.7 In vivo ribosome profiling generates high quality, reproducible libraries................................55 4.8 eIF2B5 regulates translation of a specific subset of oncogenic mRNAs...................................56 4.9 HrasG12V and eIF2B5 mRNA specific translation is associated with a functional guanine-rich cis-regulatory element..................................................................................................................58 5.1 eIF2B5 regulates oncogenic translation of distinct gene sets that uniquely promote proliferation or differentiation……………………………………………………………………………………………......71 5.2 FBXO32 is translationally regulated by eIF2B5 .......................................................................73 5.3 FBXO32 drives RAS-induced differentiation to suppress clonal expansion…………………………..74 5.4 FBXO32 ubiquitin ligase function drives RAS-induced differentiation to restrain clonal expansion......................................................................................................................................76 5.5 FBXO32 is necessary and sufficient to restrain RAS tumor initaiton and growth…………………..78 viii 5.6 HrasG12V growth inhibition through simultaneous targeting of proliferation and differentiation mechanisms…………………………………………………………………………………………………………………………….80 6.1 Model of translational regulation in epidermal oncogene tolerance……………………………………95 ix Tables Table 2.1 shRNA and primer sequences used in this study............................................................26 Table 4.1 Regulators of HrasG12V progenitor proliferation within translation machinery..............59 Table 4.2 Regulators of HrasG12V progenitor renewal within translation machinery.....................62 Table 5.1 Regulators of HrasG12V progenitor proliferation within eIF2B5-regulated oncogenic translatome..................................................................................................................................82 Table 5.2
Recommended publications
  • CISD2 (NM 001008388) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC207131L3 CISD2 (NM_001008388) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: CISD2 (NM_001008388) Human Tagged ORF Clone Tag: Myc-DDK Symbol: CISD2 Synonyms: ERIS; Miner1; NAF-1; WFS2; ZCD2 Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC207131). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_001008388 ORF Size: 405 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 CISD2 (NM_001008388) Human Tagged ORF Clone – RC207131L3 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_001008388.1 RefSeq Size: 5892 bp RefSeq ORF: 408 bp Locus ID: 493856 UniProt ID: Q8N5K1 Protein Families: Transmembrane MW: 15.3 kDa Gene Summary: The protein encoded by this gene is a zinc finger protein that localizes to the endoplasmic reticulum.
    [Show full text]
  • EEF1D Mouse Monoclonal Antibody [Clone ID: OTI4B9] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for CF811676 EEF1D Mouse Monoclonal Antibody [Clone ID: OTI4B9] Product data: Product Type: Primary Antibodies Clone Name: OTI4B9 Applications: IHC, WB Recommended Dilution: WB 1:500~2000, IHC 1:2000 Reactivity: Human, Mouse, Rat Host: Mouse Isotype: IgG1 Clonality: Monoclonal Immunogen: Full length human recombinant protein of human EEF1D (NP_115754) produced in E.coli. Formulation: Lyophilized powder (original buffer 1X PBS, pH 7.3, 8% trehalose) Reconstitution Method: For reconstitution, we recommend adding 100uL distilled water to a final antibody concentration of about 1 mg/mL. To use this carrier-free antibody for conjugation experiment, we strongly recommend performing another round of desalting process. (OriGene recommends Zeba Spin Desalting Columns, 7KMWCO from Thermo Scientific) Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Gene Name: Homo sapiens eukaryotic translation elongation factor 1 delta (EEF1D), transcript variant 1, mRNA. Database Link: NP_115754 Entrez Gene 1936 Human P29692 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 EEF1D Mouse Monoclonal Antibody [Clone ID: OTI4B9] – CF811676 Background: This gene encodes a subunit of the elongation factor-1 complex, which is responsible for the enzymatic delivery of aminoacyl tRNAs to the ribosome.
    [Show full text]
  • Composition of Herpesvirus Ribonucleoprotein Complexes †
    Abstract Composition of Herpesvirus Ribonucleoprotein Complexes † Eric S. Pringle 1,2,* and Craig McCormick 1,2 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] 2 Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada * Correspondence: [email protected] † Presented at Viruses 2020—Novel Concepts in Virology, Barcelona, Spain, 5–7 February 2020. Published: 4 July 2020 Abstract: Herpesvirus genomes are decoded by host RNA polymerase enzymes, generating messenger ribonucleotides (mRNA) that are post-transcriptionally modified and exported to the cytoplasm through the combined work of host and viral factors. These viral mRNA bear 5′-m7GTP caps and poly(A) tails that should permit the assembly of canonical host eIF4F cap-binding complexes to initiate protein synthesis. However, the precise mechanisms of translation initiation remain to be investigated for Kaposi’s sarcoma-associated herpesvirus (KSHV) and other herpesviruses. During KSHV lytic replication in lymphoid cells, the activation of caspases leads to the cleavage of eIF4G and depletion of eIF4F. Translating mRNPs depleted of eIF4F retain viral mRNA, suggesting that non-eIF4F translation initiation is sufficient to support viral protein synthesis. To identify proteins required to support viral protein synthesis, we isolated and characterized actively translating messenger ribonucleoprotein (mRNP) complexes by ultracentrifugation and sucrose-gradient fractionation followed by quantitative mass spectrometry. The abundance of host translation initiation factors available to initiate viral protein synthesis were comparable between cells undergoing KSHV lytic or latent replication. The translation initiation factors eIF4E2, NCBP1, eIF4G2, and eIF3d were detected in association with actively translating mRNP complexes during KSHV lytic replication, but their depletion by RNA silencing did not affect virion production.
    [Show full text]
  • Structural Characterization of the Human Eukaryotic Initiation Factor 3 Protein Complex by Mass Spectrometry*□S
    Supplemental Material can be found at: http://www.mcponline.org/cgi/content/full/M600399-MCP200 /DC1 Research Structural Characterization of the Human Eukaryotic Initiation Factor 3 Protein Complex by Mass Spectrometry*□S Eugen Damoc‡, Christopher S. Fraser§, Min Zhou¶, Hortense Videler¶, Greg L. Mayeurʈ, John W. B. Hersheyʈ, Jennifer A. Doudna§, Carol V. Robinson¶**, and Julie A. Leary‡ ‡‡ Protein synthesis in mammalian cells requires initiation The initiation phase of eukaryotic protein synthesis involves factor eIF3, an ϳ800-kDa protein complex that plays a formation of an 80 S ribosomal complex containing the initi- Downloaded from central role in binding of initiator methionyl-tRNA and ator methionyl-tRNAi bound to the initiation codon in the mRNA to the 40 S ribosomal subunit to form the 48 S mRNA. This is a multistep process promoted by proteins initiation complex. The eIF3 complex also prevents pre- called eukaryotic initiation factors (eIFs).1 Currently at least 12 mature association of the 40 and 60 S ribosomal subunits eIFs, composed of at least 29 distinct subunits, have been and interacts with other initiation factors involved in start identified (1). Mammalian eIF3, the largest initiation factor, is a codon selection. The molecular mechanisms by which multisubunit complex with an apparent molecular mass of www.mcponline.org eIF3 exerts these functions are poorly understood. Since ϳ800 kDa. This protein complex plays an essential role in its initial characterization in the 1970s, the exact size, translation by binding directly to the 40 S ribosomal subunit composition, and post-translational modifications of and promoting formation of the 43 S preinitiation complex ⅐ ⅐ mammalian eIF3 have not been rigorously determined.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Chemical-Genetic Screen for Identifying Substrates of the Er Kinase Perk
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2014 A Chemical-Genetic Screen for Identifying Substrates of the Er Kinase Perk Nancy L. Maas University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biology Commons, Cell Biology Commons, and the Molecular Biology Commons Recommended Citation Maas, Nancy L., "A Chemical-Genetic Screen for Identifying Substrates of the Er Kinase Perk" (2014). Publicly Accessible Penn Dissertations. 1354. https://repository.upenn.edu/edissertations/1354 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1354 For more information, please contact [email protected]. A Chemical-Genetic Screen for Identifying Substrates of the Er Kinase Perk Abstract Cells constantly encounter changing environments that challenge the ability to adapt and survive. Signal transduction networks enable cells to appropriately sense and respond to these changes, and are often mediated through the activity of protein kinases. Protein kinases are a class of enzyme responsible for regulating a broad spectrum of cellular functions by transferring phosphate groups from ATP to substrate proteins, thereby altering substrate activity and function. PERK is a resident kinase of the endoplasmic reticulum, and is responsible for sensing perturbations in the protein folding capacity of the ER. When the influx of unfolded, nascent proteins exceeds the folding capacity of the ER, PERK initiates a cascade of signaling events that enable cell adaptation and ER stress resolution. These signaling pathways are not only essential for the survival of normal cells undergoing ER stress, but are also co-opted by tumor cells in order to survive the oxygen and nutrient-restricted conditions of the tumor microenvironment.
    [Show full text]
  • Cytotoxic Effects and Changes in Gene Expression Profile
    Toxicology in Vitro 34 (2016) 309–320 Contents lists available at ScienceDirect Toxicology in Vitro journal homepage: www.elsevier.com/locate/toxinvit Fusarium mycotoxin enniatin B: Cytotoxic effects and changes in gene expression profile Martina Jonsson a,⁎,MarikaJestoib, Minna Anthoni a, Annikki Welling a, Iida Loivamaa a, Ville Hallikainen c, Matti Kankainen d, Erik Lysøe e, Pertti Koivisto a, Kimmo Peltonen a,f a Chemistry and Toxicology Research Unit, Finnish Food Safety Authority (Evira), Mustialankatu 3, FI-00790 Helsinki, Finland b Product Safety Unit, Finnish Food Safety Authority (Evira), Mustialankatu 3, FI-00790 Helsinki, c The Finnish Forest Research Institute, Rovaniemi Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland d Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20, FI-00014, Finland e Plant Health and Biotechnology, Norwegian Institute of Bioeconomy, Høyskoleveien 7, NO -1430 Ås, Norway f Finnish Safety and Chemicals Agency (Tukes), Opastinsilta 12 B, FI-00521 Helsinki, Finland article info abstract Article history: The mycotoxin enniatin B, a cyclic hexadepsipeptide produced by the plant pathogen Fusarium,isprevalentin Received 3 December 2015 grains and grain-based products in different geographical areas. Although enniatins have not been associated Received in revised form 5 April 2016 with toxic outbreaks, they have caused toxicity in vitro in several cell lines. In this study, the cytotoxic effects Accepted 28 April 2016 of enniatin B were assessed in relation to cellular energy metabolism, cell proliferation, and the induction of ap- Available online 6 May 2016 optosis in Balb 3T3 and HepG2 cells. The mechanism of toxicity was examined by means of whole genome ex- fi Keywords: pression pro ling of exposed rat primary hepatocytes.
    [Show full text]
  • Assessment of Genetic Mutations in WFS1 & CISD2 in Wolfram
    Online Journal of Neurology and L UPINE PUBLISHERS Brain Disorders Open Access DOI: 10.32474/OJNBD.2018.01.000104 ISSN: 2637-6628 Research Article Assessment of Genetic Mutations in WFS1 & CISD2 in Wolfram Syndrome Human Shahin Asadi*, Mahsa Jamali, Hamideh Mohammadzadeh and Mahya Fattahi Director of the Division of Medical Genetics and Molecular Research, Iran Received: January 25, 2018; Published: February 15, 2018 *Corresponding author: Shahin Asadi, Molecular Genetics Iran Tabriz, Director of the Division of Medical Genetics and Molecular Research, Iran Abstract In this study we have analyzed 30 people. 10 patients Wolfram syndrome and 20 persons control group. The genes WFS1 and CISD2, analyzed in terms of genetic mutations made. In this study, people who have genetic mutations were targeted, with nervous disorders Wolfram syndrome. In fact, of all people with Wolfram syndrome. 10 patients Wolfram syndrome had a genetic mutation in the genes WFS1 and CISD2 Wolfram syndrome. Any genetic mutations in the target genes control group did not show. Keywords: Genetic study; Wolfram syndrome; Mutations The gene WFS1 and CISD2; RT-PCR. Generalizations of Wolfram Syndrome urinary tract, decreased testosterone levels in men (hypogonadism), Wolfram syndrome is a genetic disorder that affects many body Nervous or psychiatric disorders [1]. systems. The specific characteristics of Wolfram syndrome include: mellitus) and progressive vision loss due to degeneration of the syndrome, which is commonly diagnosed at about 6 years of age. high blood sugar levels due to insulin hormone deficiency (diabetes Diabetes mellitus is usually the first symptom of Wolfram nerves that transports visual information from the eye to the brain Almost all people with Wolfram syndrome who have diabetes need (vision atrophy).
    [Show full text]
  • Eif2b Is a Decameric Guanine Nucleotide Exchange Factor with a G2e2 Tetrameric Core
    ARTICLE Received 19 Feb 2014 | Accepted 15 Apr 2014 | Published 23 May 2014 DOI: 10.1038/ncomms4902 OPEN eIF2B is a decameric guanine nucleotide exchange factor with a g2e2 tetrameric core Yuliya Gordiyenko1,2,*, Carla Schmidt1,*, Martin D. Jennings3, Dijana Matak-Vinkovic4, Graham D. Pavitt3 & Carol V. Robinson1 eIF2B facilitates and controls protein synthesis in eukaryotes by mediating guanine nucleotide exchange on its partner eIF2. We combined mass spectrometry (MS) with chemical cross- linking, surface accessibility measurements and homology modelling to define subunit stoichiometry and interactions within eIF2B and eIF2. Although it is generally accepted that eIF2B is a pentamer of five non-identical subunits (a–e), here we show that eIF2B is a decamer. MS and cross-linking of eIF2B complexes allows us to propose a model for the subunit arrangements within eIF2B where the subunit assembly occurs through catalytic g- and e-subunits, with regulatory subunits arranged in asymmetric trimers associated with the core. Cross-links between eIF2 and eIF2B allow modelling of interactions that contribute to nucleotide exchange and its control by eIF2 phosphorylation. Finally, we identify that GTP binds to eIF2Bg, prompting us to propose a multi-step mechanism for nucleotide exchange. 1 Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK. 2 MRC Laboratory of Molecular Biology, University of Cambridge, Francis Crick Avenue, Cambridge CB2 0QH, UK. 3 Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK. 4 Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
    [Show full text]
  • Genes with 5' Terminal Oligopyrimidine Tracts Preferentially Escape Global Suppression of Translation by the SARS-Cov-2 NSP1 Protein
    Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Genes with 5′ terminal oligopyrimidine tracts preferentially escape global suppression of translation by the SARS-CoV-2 Nsp1 protein Shilpa Raoa, Ian Hoskinsa, Tori Tonna, P. Daniela Garciaa, Hakan Ozadama, Elif Sarinay Cenika, Can Cenika,1 a Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA 1Corresponding author: [email protected] Key words: SARS-CoV-2, Nsp1, MeTAFlow, translation, ribosome profiling, RNA-Seq, 5′ TOP, Ribo-Seq, gene expression 1 Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Viruses rely on the host translation machinery to synthesize their own proteins. Consequently, they have evolved varied mechanisms to co-opt host translation for their survival. SARS-CoV-2 relies on a non-structural protein, Nsp1, for shutting down host translation. However, it is currently unknown how viral proteins and host factors critical for viral replication can escape a global shutdown of host translation. Here, using a novel FACS-based assay called MeTAFlow, we report a dose-dependent reduction in both nascent protein synthesis and mRNA abundance in cells expressing Nsp1. We perform RNA-Seq and matched ribosome profiling experiments to identify gene-specific changes both at the mRNA expression and translation level. We discover that a functionally-coherent subset of human genes are preferentially translated in the context of Nsp1 expression. These genes include the translation machinery components, RNA binding proteins, and others important for viral pathogenicity. Importantly, we uncovered a remarkable enrichment of 5′ terminal oligo-pyrimidine (TOP) tracts among preferentially translated genes.
    [Show full text]
  • Cofactor Dependent Conformational Switching of Gtpases
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector 1704 Biophysical Journal Volume 95 August 2008 1704–1715 Cofactor Dependent Conformational Switching of GTPases Vasili Hauryliuk,*y Sebastian Hansson,z and Ma˚ns Ehrenberg* *Department of Cell and Molecular Biology, Molecular Biology Program, Uppsala University, Uppsala, Sweden; yEngelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; and zLaboratoire d’Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France ABSTRACT This theoretical work covers structural and biochemical aspects of nucleotide binding and GDP/GTP exchange of GTP hydrolases belonging to the family of small GTPases. Current models of GDP/GTP exchange regulation are often based on two specific assumptions. The first is that the conformation of a GTPase is switched by the exchange of the bound nucleotide from GDP to GTP or vice versa. The second is that GDP/GTP exchange is regulated by a guanine nucleotide exchange factor, which stabilizes a GTPase conformation with low nucleotide affinity. Since, however, recent biochemical and structural data seem to contradict this view, we present a generalized scheme for GTPase action. This novel ansatz accounts for those important cases when conformational switching in addition to guanine nucleotide exchange requires the presence of cofactors, and gives a more nuanced picture of how the nucleotide exchange is regulated. The scheme is also used to discuss some problems of interpretation that may arise when guanine nucleotide exchange mechanisms are inferred from experiments with analogs of GTP, like GDPNP, GDPCP, and GDP g S.
    [Show full text]