GPRC5A Suppresses Protein Synthesis at the Endoplasmic Reticulum to Prevent Radiation-Induced Lung Tumorigenesis

Total Page:16

File Type:pdf, Size:1020Kb

GPRC5A Suppresses Protein Synthesis at the Endoplasmic Reticulum to Prevent Radiation-Induced Lung Tumorigenesis ARTICLE Received 8 Mar 2016 | Accepted 28 Apr 2016 | Published 8 Jun 2016 DOI: 10.1038/ncomms11795 OPEN GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis Jian Wang1, Alton B. Farris2, Kaiming Xu1, Ping Wang1, Xiangming Zhang1, Duc M. Duong3, Hong Yi4, Hui-Kuo Shu1, Shi-Yong Sun5 & Ya Wang1 GPRC5A functions as a lung tumour suppressor to prevent spontaneous and environmentally induced lung carcinogenesis; however, the underlying mechanism remains unclear. Here we reveal that GPRC5A at the endoplasmic reticulum (ER) membrane suppresses synthesis of the secreted or membrane-bound proteins including a number of oncogenes, the most important one being Egfr. The ER-located GPRC5A disturbs the assembly of the eIF4F-mediated translation initiation complex on the mRNA cap through directly binding to the eIF4F complex with its two middle extracellular loops. Particularly, suppression of EGFR by GPRC5A contributes significantly to preventing ionizing radiation (IR)-induced lung tumorigenesis. Thus, GPRC5A deletion enhances IR-promoted EGFR expression through an increased translation rate, thereby significantly increasing lung tumour incidence in Gprc5a À / À mice. Our findings indicate that under-expressed GPRC5A during lung tumor- igenesis enhances any transcriptional stimulation through an active translational status, which can be used to control oncogene expression and potentially the resulting related disease. 1 Department of Radiation Oncology, Emory University School of Medicine and the Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA. 2 Department of Pathology, Emory University School of Medicine and the Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA. 3 Emory Integrated Proteomics Core and Biochemistry Department, Atlanta, Georgia 30322, USA. 4 Robert P. Apkaran Integrated Electron Microscope Core, Emory University, Atlanta, Georgia 30322, USA. 5 Department of Hemotology and Medical Oncology, Emory University School of Medicine and the Winship Cancer Institute, Atlanta, Georgia 30322, USA. Correspondence and requests for materials should be addressed to Y.W. (email: [email protected]). NATURE COMMUNICATIONS | 7:11795 | DOI: 10.1038/ncomms11795 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11795 ung tumours are the second most common tumours and the multiple levels in cells, we used a quantitative global proteomics leading cause of cancer death in both men and women approach by mTRAQ labelling (Fig. 1a) to identify the differen- Laround the world, and adenocarcinoma is one of the most tially expressed proteins between wild-type (Gprc5a þ / þ ) common lung tumours. On the basis of a published analysis of and Gprc5a À / À mouse lung bronchial epithelial (LBE) cells. human data, G-protein-coupled receptor family C group 5 type Interestingly, the quantitative analysis revealed a substantial A (GPRC5A) was significantly repressed in lung tumours, perturbation of the cellular proteome, showing a marked particularly in non-small-cell lung cancers (NSCLC)1. The distribution shift of quantified proteins relative to representative GPRC5A gene locus is 12p13 and loss of heterozygosity of normal distribution (Fig. 1b, top panel and Supplementary chromosome 12p was frequently found in NSCLC2,3. In addition, Data 1), suggesting a structural change in the protein expression B10% of Gprc5a knockout mice spontaneously developed lung profile caused by GPRC5A deletion. Since there is no evidence of adenocarcinoma and lung cancer patients showed a significantly a decrease in the protein expression level in the center of the lower level of GPRC5A (ref. 1), indicating that GPRC5A is a distribution curve (such as PCNA, XRCC5, SEC23a, XRCC1, lung tumour suppressor. However, the mechanism underlying actin and so on) by western blot analysis in Gprc5a À / À LBE cells how GPRC5A prevents lung tumorigenesis remains unclear. compared with equal cell numbers of wild-type LBE cells, we Investigation of GPRC5A-regulated gene expression will facilitate excluded the possibility of a global downregulation of proteins by a better understanding of the role GPRC5A plays in preventing GPRC5A deletion. Thereby, we believe that GPRC5A deletion lung tumorigenesis. might cause a dramatic increase in the expression level of a Epidermal growth factor receptor (EGFR) is a key oncogene in specific group of proteins, resulting in a reduction on the lung adenocarcinoma4. EGFR is a transmembrane protein located proportion of other proteins in total proteins. Although the in the cell surface membrane as well as in the nucleus5, which quantitative global proteomics data only includes a small portion involves transcriptional regulation6,7, DNA replication and DNA of cell membrane proteins due to limitations in the approach, repair8,9. Direct stimulation of EGFR by binding to a ligand, such some cell membrane proteins in Gprc5a À / À LBE cells, such as as EGF, to the receptor’s extracellular domain leads to EGFR, Tmem43, Cdh1, and Itgb4 and so on showed an extremely dimerization and subsequent autophosphorylation of two high expression, implying that GPRC5A might be involved in receptor molecules, thereby creating phosphotyrosine docking suppressing the cell membrane protein expression. Notably, sites that activate intracellular signalling cascades. It is well the previously released mRNA microarray data of wild-type and known, based on mine workers and atomic bomb survivors10,11, Gprc5a À / À LBE cells (GSE21309) did not show a distribution that ionizing radiation (IR) promotes lung tumorigenesis and curve shift (Fig. 1b, bottom panel) and the genes with significant abnormal EGFR is involved in radiation-stimulated lung protein level changes in the quantitative global proteomics cancers12; however, the whole picture needs to be elucidated. IR data did not show corresponding mRNA level changes can stimulate the EGFR transcription, whereas only a moderate (Supplementary Data 1). In addition, the changes in the change in the protein level is induced by IR13, suggesting a steady state of the mRNA levels versus corresponding proteins strict control of EGFR expression aside from transcriptional between wild-type and Gprc5a À / À LBE cells were plotted control. Previous studies have shown a significant increase in in Supplementary Fig. 1a. This analysis does not exhibit a EGFR expression when normal bronchial mucosa transforms correlation between changes in the steady state of the mRNA epithelial hyperplasia and cancer14,15, suggesting that increasing and protein levels in GPRC5A depleted versus control cells, EGFR expression may contribute to lung tumorigenesis in suggesting that GPRC5A depletion affects the proteome in the Gprc5a À / À mice. absence of the major effect on the steady state of the mRNA Recently, it was reported that hypoxia/HIF2 activation could levels. Altogether, these results suggest a post-transcriptional upregulate EGFR overexpression through increasing EGFR regulation of membrane proteins by GPRC5A. synthesis16, suggesting that the translation machinery plays an EGFR is one of the most significantly increased proteins by the important role in EGFR regulation. In mammals, mRNA- proteomic quantitative analysis in Gprc5a À / À LBE cells but independent translational regulation relies mainly on a direct without mRNA changes (Supplementary Data 1). The western modification of the translation initiation factors. The 43S pre- blot of mouse LBE cells verified a much higher EGFR protein initiation complex binds to the messenger RNA (mRNA), which level in the Gprc5a À / À LBE cells (Fig. 1c), and mRNA levels is thought to involve bridging interactions between eIF3 and the measured by semi-quantitative PCR with reverse transcription cap-binding eukaryotic initiation factor 4F (eIF4F) complex that (RT–PCR) or quantitative real-time PCR did not show a is associated with the 50-cap structure of the mRNA17. Alternated significant difference between wild-type and Gprc5a À / À LBE regulation of the eIF4F complex has been recently reported to cells (Fig. 1d). In addition, the deletion of GPRC5A did not cause play an essential role in carcinogenesis18,19. The eIF4F complex any changes in Egfr mRNA turnover rates (Supplementary contains several proteins: eIF4E (it physically binds to the Fig. 1b). Consistent with the data from LBE cells, a stronger m7GpppN cap structure), eIF4A (a dead-box RNA helicase to EGFR staining was observed in the lung tissue of Gprc5a À / À unwind secondary structures in the 50-UTR so that the 43S mice compared with that of their wild-type counterparts (Fig. 1e), complex can bind and scan the mRNA20) and eIF4G that where the GPRC5A expression was examined by immuno- functions as a scaffold protein by interacting with eIF4E, eIF4A histochemistry (IHC) and Laz staining1 (Supplementary Fig. 1c, d). and eIF3 (ref. 21). Also, the Egfr mRNA level did not show any difference between In this study, our data reveal a new regulation for EGFR by wild-type and Gprc5a À / À mouse lung tissue (Fig. 1f). Next, GPRC5A through translational suppression by directly binding complementary expression of GPRC5A in Gprc5a À / À mice LBE to the eIF4F complex. Deletion of Gprc5a significantly enhances cells markedly decreased the EGFR expression (Fig. 1g), but did IR-stimulated EGFR expression due to loss of translational not affect the Egfr mRNA level (Fig. 1h). Taken together, these suppression, thereby causing an increase in IR-induced
Recommended publications
  • Cancer Cells Exploit Eif4e2-Directed Translation to Enhance Their Proliferation, Migration and Invasion
    Cancer cells exploit eIF4E2-directed translation to enhance their proliferation, migration and invasion by Joseph F. Varga A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Molecular and Cellular Biology Guelph, Ontario, Canada © Joseph F. Varga, August, 2016 ABSTRACT Cancer cells exploit eIF4E2-directed translation to enhance their proliferation, migration and invasion Joseph F. Varga Advisor: University of Guelph, 2016 Professor James Uniacke Despite the diversity found in the genetic makeup of cancer, many cancers share the same tumor microenvironment. Hypoxia, an aspect of the tumor microenvironment, causes the suppression of the primary translational machinery. Hypoxic cells switch from using the eukaryotic initiation factor 4E (eIF4E) to using a homologue of eIF4E (eIF4E2), in order to initiate the translation of select mRNAs. This thesis investigates the role of eIF4E2-directed translation in a panel of cancer cell lines during autonomous proliferation, migration and invasion. In this thesis, we show that silencing eIF4E2 abrogates the autonomous proliferation of colon carcinoma. Silencing eIF4E2 in glioblastoma cells resulted in decreased migration and invasion. Furthermore, we link eIF4E2-directed translation of cadherin 22 with the hypoxic migration of glioblastoma. These findings answer questions regarding the biology of cancer and expand the current knowledge of genes exploited during tumor progression. This data also highlights eIF4E2 as a potential therapeutic target. Acknowledgements I would like to express my sincere gratitude to Dr. James Uniacke for taking me on as a graduate student in his laboratory and providing me with the opportunity to contribute to scientific research.
    [Show full text]
  • Structural Characterization of the Human Eukaryotic Initiation Factor 3 Protein Complex by Mass Spectrometry*□S
    Supplemental Material can be found at: http://www.mcponline.org/cgi/content/full/M600399-MCP200 /DC1 Research Structural Characterization of the Human Eukaryotic Initiation Factor 3 Protein Complex by Mass Spectrometry*□S Eugen Damoc‡, Christopher S. Fraser§, Min Zhou¶, Hortense Videler¶, Greg L. Mayeurʈ, John W. B. Hersheyʈ, Jennifer A. Doudna§, Carol V. Robinson¶**, and Julie A. Leary‡ ‡‡ Protein synthesis in mammalian cells requires initiation The initiation phase of eukaryotic protein synthesis involves factor eIF3, an ϳ800-kDa protein complex that plays a formation of an 80 S ribosomal complex containing the initi- Downloaded from central role in binding of initiator methionyl-tRNA and ator methionyl-tRNAi bound to the initiation codon in the mRNA to the 40 S ribosomal subunit to form the 48 S mRNA. This is a multistep process promoted by proteins initiation complex. The eIF3 complex also prevents pre- called eukaryotic initiation factors (eIFs).1 Currently at least 12 mature association of the 40 and 60 S ribosomal subunits eIFs, composed of at least 29 distinct subunits, have been and interacts with other initiation factors involved in start identified (1). Mammalian eIF3, the largest initiation factor, is a codon selection. The molecular mechanisms by which multisubunit complex with an apparent molecular mass of www.mcponline.org eIF3 exerts these functions are poorly understood. Since ϳ800 kDa. This protein complex plays an essential role in its initial characterization in the 1970s, the exact size, translation by binding directly to the 40 S ribosomal subunit composition, and post-translational modifications of and promoting formation of the 43 S preinitiation complex ⅐ ⅐ mammalian eIF3 have not been rigorously determined.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Genes with 5' Terminal Oligopyrimidine Tracts Preferentially Escape Global Suppression of Translation by the SARS-Cov-2 NSP1 Protein
    Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Genes with 5′ terminal oligopyrimidine tracts preferentially escape global suppression of translation by the SARS-CoV-2 Nsp1 protein Shilpa Raoa, Ian Hoskinsa, Tori Tonna, P. Daniela Garciaa, Hakan Ozadama, Elif Sarinay Cenika, Can Cenika,1 a Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA 1Corresponding author: [email protected] Key words: SARS-CoV-2, Nsp1, MeTAFlow, translation, ribosome profiling, RNA-Seq, 5′ TOP, Ribo-Seq, gene expression 1 Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Viruses rely on the host translation machinery to synthesize their own proteins. Consequently, they have evolved varied mechanisms to co-opt host translation for their survival. SARS-CoV-2 relies on a non-structural protein, Nsp1, for shutting down host translation. However, it is currently unknown how viral proteins and host factors critical for viral replication can escape a global shutdown of host translation. Here, using a novel FACS-based assay called MeTAFlow, we report a dose-dependent reduction in both nascent protein synthesis and mRNA abundance in cells expressing Nsp1. We perform RNA-Seq and matched ribosome profiling experiments to identify gene-specific changes both at the mRNA expression and translation level. We discover that a functionally-coherent subset of human genes are preferentially translated in the context of Nsp1 expression. These genes include the translation machinery components, RNA binding proteins, and others important for viral pathogenicity. Importantly, we uncovered a remarkable enrichment of 5′ terminal oligo-pyrimidine (TOP) tracts among preferentially translated genes.
    [Show full text]
  • The Yeast Eif3 Subunits TIF32/A, NIP1/C, and Eif5 Make Critical Connections with the 40Sribosome in Vivo
    Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press The yeast eIF3 subunits TIF32/a, NIP1/c, and eIF5 make critical connections with the 40Sribosome in vivo Leoš Valášek, Amy A. Mathew, Byung-Sik Shin, Klaus H. Nielsen, Béla Szamecz, and Alan G. Hinnebusch1 Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA Initiation factor 3 (eIF3) forms a multifactor complex (MFC) with eIF1, eIF2, and eIF5 that stimulates Met Met-tRNAi binding to 40Sribosomes and promotes scanning or AUG recognition. We have previously characterized MFC subcomplexes produced in vivo from affinity-tagged eIF3 subunits lacking discrete binding domains for other MFC components. Here we asked whether these subcomplexes can bind to 40Sribosomes in vivo. We found that the N- and C-terminal domains of NIP1/eIF3c, the N- and C-terminal domains of TIF32/eIF3a, and eIF5 have critical functions in 40Sbinding, with eIF5 an d the TIF32-CTD performing redundant functions. The TIF32-CTD interacted in vitro with helices 16–18 of domain I in 18SrRNA, and the TIF32-NTD and NIP1 interacted with 40Sprotein RPS0A.These results sugge st that eIF3 binds to the solvent side of the 40Ssubunit in a way that provides access to the interface side fo r the two eIF3 segments Met (NIP1-NTD and TIF32-CTD) that interact with eIF1, eIF5, and the eIF2/GTP/Met-tRNAi ternary complex. [Keywords: Eukaryotic translation initiation factor (eIF); multifactor complex (MFC); translational control; protein synthesis; 40S ribosome binding; TIF32/NIP1] Supplemental material is available at http://www.genesdev.org.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Gene Expression Profiling Analysis Contributes to Understanding the Association Between Non-Syndromic Cleft Lip and Palate, and Cancer
    2110 MOLECULAR MEDICINE REPORTS 13: 2110-2116, 2016 Gene expression profiling analysis contributes to understanding the association between non-syndromic cleft lip and palate, and cancer HONGYI WANG, TAO QIU, JIE SHI, JIULONG LIANG, YANG WANG, LIANGLIANG QUAN, YU ZHANG, QIAN ZHANG and KAI TAO Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China Received March 10, 2015; Accepted December 18, 2015 DOI: 10.3892/mmr.2016.4802 Abstract. The present study aimed to investigate the for NSCL/P were implicated predominantly in the TGF-β molecular mechanisms underlying non-syndromic cleft lip, signaling pathway, the cell cycle and in viral carcinogenesis. with or without cleft palate (NSCL/P), and the association The TP53, CDK1, SMAD3, PIK3R1 and CASP3 genes were between this disease and cancer. The GSE42589 data set found to be associated, not only with NSCL/P, but also with was downloaded from the Gene Expression Omnibus data- cancer. These results may contribute to a better understanding base, and contained seven dental pulp stem cell samples of the molecular mechanisms of NSCL/P. from children with NSCL/P in the exfoliation period, and six controls. Differentially expressed genes (DEGs) were Introduction screened using the RankProd method, and their potential functions were revealed by pathway enrichment analysis and Non-syndromic cleft lip, with or without cleft palate (NSCL/P) construction of a pathway interaction network. Subsequently, is one of the most common types of congenital defect and cancer genes were obtained from six cancer databases, and affects 3.4-22.9/10,000 individuals worldwide (1).
    [Show full text]
  • Apoptotic Genes As Potential Markers of Metastatic Phenotype in Human Osteosarcoma Cell Lines
    17-31 10/12/07 14:53 Page 17 INTERNATIONAL JOURNAL OF ONCOLOGY 32: 17-31, 2008 17 Apoptotic genes as potential markers of metastatic phenotype in human osteosarcoma cell lines CINZIA ZUCCHINI1, ANNA ROCCHI2, MARIA CRISTINA MANARA2, PAOLA DE SANCTIS1, CRISTINA CAPANNI3, MICHELE BIANCHINI1, PAOLO CARINCI1, KATIA SCOTLANDI2 and LUISA VALVASSORI1 1Dipartimento di Istologia, Embriologia e Biologia Applicata, Università di Bologna, Via Belmeloro 8, 40126 Bologna; 2Laboratorio di Ricerca Oncologica, Istituti Ortopedici Rizzoli; 3IGM-CNR, Unit of Bologna, c/o Istituti Ortopedici Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy Received May 29, 2007; Accepted July 19, 2007 Abstract. Metastasis is the most frequent cause of death among malignant primitive bone tumor, usually developing in children patients with osteosarcoma. We have previously demonstrated and adolescents, with a high tendency to metastasize (2). in independent experiments that the forced expression of Metastases in osteosarcoma patients spread through peripheral L/B/K ALP and CD99 in U-2 OS osteosarcoma cell lines blood very early and colonize primarily the lung, and later markedly reduces the metastatic ability of these cancer cells. other skeleton districts (3). Since disseminated hidden micro- This behavior makes these cell lines a useful model to assess metastases are present in 80-90% of OS patients at the time the intersection of multiple and independent gene expression of diagnosis, the identification of markers of invasiveness signatures concerning the biological problem of dissemination. and metastasis forms a target of paramount importance in With the aim to characterize a common transcriptional profile planning the treatment of osteosarcoma lesions and enhancing reflecting the essential features of metastatic behavior, we the prognosis.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • Membrane Proteomics of Cervical Cancer Cell Lines Reveal Insights on the Process of Cervical Carcinogenesis
    INTERNATIONAL JOURNAL OF ONCOLOGY 53: 2111-2122, 2018 Membrane proteomics of cervical cancer cell lines reveal insights on the process of cervical carcinogenesis KALLIOPI I. PAPPA1,2, POLYXENI CHRISTOU3,4, AMARILDO XHOLI3, GEORGE MERMELEKAS3, GEORGIA KONTOSTATHI3,4, VASILIKI LYGIROU3,4, MANOUSOS MAKRIDAKIS3, JEROME ZOIDAKIS3 and NICHOLAS P. ANAGNOU1,4 1Cell and Gene Therapy Laboratory, Centre of Basic Research II, Biomedical Research Foundation of the Academy of Athens, 11527 Athens; 2First Department of Obstetrics and Gynecology, University of Athens School of Medicine, Alexandra Hospital, 11528 Athens; 3Biotechnology Division, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens; 4Laboratory of Biology, University of Athens School of Medicine, 11527 Athens, Greece Received March 22, 2018; Accepted May 4, 2018 DOI: 10.3892/ijo.2018.4518 Abstract. The available therapeutic approaches for cervical biological pathways relevant to malignancy, including ‘HIPPO cancer can seriously affect the fertility potential of patient; signaling’, ‘PI3K/Akt signaling’, ‘cell cycle: G2/M DNA thus, there is a pressing requirement for less toxic and damage checkpoint regulation’ and ‘EIF2 signaling’. These targeted therapies. The membrane proteome is a potential unique membrane protein identifications offer insights on a source of therapeutic targets; however, despite the signifi- previously inaccessible region of the cervical cancer proteome, cance of membrane proteins in cancer, proteomic analysis and may represent putative
    [Show full text]
  • Type of the Paper (Article
    Supplementary figures and tables E g r 1 F g f2 F g f7 1 0 * 5 1 0 * * e e e * g g g * n n n * a a a 8 4 * 8 h h h * c c c d d d * l l l o o o * f f f * n n n o o o 6 3 6 i i i s s s s s s e e e r r r p p p x x x e e e 4 2 4 e e e n n n e e e g g g e e e v v v i i i t t t 2 1 2 a a a l l l e e e R R R 0 0 0 c o n tro l u n in fla m e d in fla m e d c o n tro l u n in fla m e d in fla m e d c o n tro l u n in fla m e d in fla m e d J a k 2 N o tc h 2 H if1 * 3 4 6 * * * e e e g g g n n n a a * * a * h h * h c c c 3 * d d * d l l l * o o o f f 2 f 4 n n n o o o i i i s s s s s s e e e r r 2 r p p p x x x e e e e e e n n n e e 1 e 2 g g g e e 1 e v v v i i i t t t a a a l l l e e e R R R 0 0 0 c o n tro l u n in fla m e d in fla m e d c o n tro l u n in fla m e d in fla m e d c o n tro l u n in fla m e d in fla m e d Z e b 2 C d h 1 S n a i1 * * 7 1 .5 4 * * e e e g g g 6 n n n * a a a * h h h c c c 3 * d d d l l l 5 o o o f f f 1 .0 * n n n * o o o i i i 4 * s s s s s s e e e r r r 2 p p p x x x 3 e e e e e e n n n e e e 0 .5 g g g 2 e e e 1 v v v i i i t t t a a a * l l l e e e 1 * R R R 0 0 .0 0 c o n tro l u n in fla m e d in fla m e d c o n tro l u n in fla m e d in fla m e d c o n tro l u n in fla m e d in fla m e d M m p 9 L o x V im 2 0 0 2 0 8 * * * e e e * g g g 1 5 0 * n n n * a a a * h h h * c c c 1 5 * 6 d d d l l l 1 0 0 o o o f f f n n n o o o i i i 5 0 s s s s s s * e e e r r r 1 0 4 3 0 p p p * x x x e e e * e e e n n n e e e 2 0 g g g e e e 5 2 v v v i i i t t t a a a l l l 1 0 e e e R R R 0 0 0 c o n tro l u n in fla m e d in fla m e d c o n tro l u n in fla m e d in fla m e d c o n tro l u n in fla m e d in fla m e d Supplementary Figure 1.
    [Show full text]