Wolfram Syndrome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Endoplasmic Reticulum Stress As Target for Treatment of Hearing Loss
REVIEW ARTICLE Endoplasmic reticulum stress as target for treatment of hearing loss Yanfei WANG, Zhigang XU* Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China *Correspondence: [email protected] https://doi.org/10.37175/stemedicine.v1i3.21 ABSTRACT The endoplasmic reticulum (ER) plays pivotal roles in coordinating protein biosynthesis and processing. Under ER stress, when excessive misfolded or unfolded proteins are accumulated in the ER, the unfolded protein response (UPR) is activated. The UPR blocks global protein synthesis while activates chaperone expression, eventually leading to the alleviation of ER stress. However, prolonged UPR induces cell death. ER stress has been associated with various types of diseases. Recently, increasing evidences suggest that ER stress and UPR are also involved in hearing loss. In the present review, we will discuss the role of ER stress in hereditary hearing loss as well as acquired hearing loss. Moreover, we will discuss the emerging ER stress-based treatment of hearing loss. Further investigations are warranted to understand the mechanisms in detail how ER stress contributes to hearing loss, which will help us develop better ER stress-related treatments. Keywords: ER stress · Unfolded protein response (UPR) · Hearing loss · Inner ear · Cochlea 1. Introduction far, which are mediated by ER stress sensors that reside The endoplasmic reticulum (ER) is a highly dynamic on the ER membranes, namely the inositol-requiring organelle in eukaryotic cells, playing important roles in enzyme 1α (IRE1α), the PKR-like ER kinase (PERK), protein synthesis, processing, folding, and transportation, and the activating transcription factor 6α (ATF6α) as well as lipid synthesis and calcium homeostasis. -
CISD2 (NM 001008388) Human Tagged ORF Clone Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC207131L3 CISD2 (NM_001008388) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: CISD2 (NM_001008388) Human Tagged ORF Clone Tag: Myc-DDK Symbol: CISD2 Synonyms: ERIS; Miner1; NAF-1; WFS2; ZCD2 Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC207131). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_001008388 ORF Size: 405 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 CISD2 (NM_001008388) Human Tagged ORF Clone – RC207131L3 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_001008388.1 RefSeq Size: 5892 bp RefSeq ORF: 408 bp Locus ID: 493856 UniProt ID: Q8N5K1 Protein Families: Transmembrane MW: 15.3 kDa Gene Summary: The protein encoded by this gene is a zinc finger protein that localizes to the endoplasmic reticulum. -
Mutations in the WFS1 Gene Are a Frequent Cause of Autosomal Dominant Nonsyndromic Low-Frequency Hearing Loss in Japanese
J Hum Genet (2007) 52:510–515 DOI 10.1007/s10038-007-0144-3 ORIGINAL ARTICLE Mutations in the WFS1 gene are a frequent cause of autosomal dominant nonsyndromic low-frequency hearing loss in Japanese Hisakuni Fukuoka Æ Yukihiko Kanda Æ Shuji Ohta Æ Shin-ichi Usami Received: 14 January 2007 / Accepted: 27 March 2007 / Published online: 11 May 2007 Ó The Japan Society of Human Genetics and Springer 2007 Abstract Mutations in WFS1 are reported to be respon- sites are likely to be mutational hot spots. All three families sible for two conditions with distinct phenotypes; DFNA6/ with WFS1 mutations in this study showed a similar phe- 14/38 and autosomal recessive Wolfram syndrome. They notype, LFSNHL, as in previous reports. In this study, one- differ in their associated symptoms and inheritance mode, third (three out of nine) autosomal dominant LFSNHL and although their most common clinical symptom is families had mutations in the WFS1 gene, indicating that in hearing loss, it is of different types. While DNFA6/14/38 is non-syndromic hearing loss WFS1 is restrictively and characterized by low frequency sensorineural hearing loss commonly found within autosomal dominant LFSNHL (LFSNHL), in contrast, Wolfram syndrome is associated families. with various hearing severities ranging from normal to profound hearing loss that is dissimilar to LFSNHL (Pen- Keywords WSF1 Á Low-frequency hearing loss Á nings et al. 2002). To confirm whether within non-syn- DFNA6/14/38 dromic hearing loss patients WFS1 mutations are found restrictively in patients with LFSNHL and to summarize the mutation spectrum of WFS1 found in Japanese, we Introduction screened 206 Japanese autosomal dominant and 64 auto- somal recessive (sporadic) non-syndromic hearing loss WFS1 is a gene encoding an 890 amino-acid glycoprotein probands with various severities of hearing loss. -
Fumihiko Urano: Wolfram Syndrome: Diagnosis, Management, And
Curr Diab Rep (2016) 16:6 DOI 10.1007/s11892-015-0702-6 OTHER FORMS OF DIABETES (JJ NOLAN, SECTION EDITOR) Wolfram Syndrome: Diagnosis, Management, and Treatment Fumihiko Urano1,2 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Wolfram syndrome is a rare genetic disorder char- diabetes insipidus, optic nerve atrophy, hearing loss, and acterized by juvenile-onset diabetes mellitus, diabetes neurodegeneration. It was first reported in 1938 by Wol- insipidus, optic nerve atrophy, hearing loss, and neurodegen- fram and Wagener who found four of eight siblings with eration. Although there are currently no effective treatments juvenile diabetes mellitus and optic nerve atrophy [1]. that can delay or reverse the progression of Wolfram syn- Wolfram syndrome is considered a rare disease and esti- drome, the use of careful clinical monitoring and supportive mated to afflict about 1 in 160,000–770,000 [2, 3]. In care can help relieve the suffering of patients and improve 1995, Barrett, Bundey, and Macleod described detailed their quality of life. The prognosis of this syndrome is current- clinical features of 45 patients with Wolfram syndrome ly poor, and many patients die prematurely with severe neu- and determined the best available diagnostic criteria for rological disabilities, raising the urgency for developing novel the disease [3]. According to the draft International Clas- treatments for Wolfram syndrome. In this article, we describe sification of Diseases (ICD-11), Wolfram Syndrome is natural history and etiology, provide recommendations for categorized as a rare specified diabetes mellitus (subcate- diagnosis and clinical management, and introduce new treat- gory 5A16.1, Wolfram Syndrome). -
The ENT Manifestation of Wolfram Syndrome (DIDMOAD): a Case Report
Journal of Clinical Science & Translational Medicine MEDWIN PUBLISHERS Committed to Create Value for Researchers The ENT Manifestation of Wolfram Syndrome (DIDMOAD): A Case Report Gliti MA1,3*, Allouche I1,3, Razika B2,3, Anas BM2,3 and Houssyni LE2,3 Case Report 1Department of Otorhinolaryngology, Head and Neck Surgery, Ibn Sina University Hospital, Volume 3 Issue 1 Morocco Received Date: May 15, 2021 2Department of Otorhinolaryngology, Head and Neck Surgery, Ibn Sina University Hospital, Published Date: June 23, 2021 Morocco 3Faculty of Medicine and Pharmacy of Rabat, Mohammed V University, Morocco *Corresponding author: Mohamed Ali Gliti, Department of Otorhinolaryngology, Head and Neck Surgery, Ibn Sina University Hospital, Rabat, Morocco, Tel: 0633725750; Email: [email protected] Abstract Objective: Describe the clinical and therapeutic aspects of WOLFRAM syndrome (DIDMOAD) presenting with deafness. Materials and Methods: We report the case of a 21-year-old man who presented with a WOLFRAM syndrome associated with a tympanic perforation. Clinical Case: This is a 21-year-old R.Y from a consanguineous marriage (first cousin 1st degree) Due to the association syndrome. of symptoms (type 1 diabetes, urinary and ophthalmologic signs), genetic counseling was sought to confirm WOLFRAM Conclusion: vigilant in referring patients with hearing loss for an ophthalmic examination. Since sensorineural hearing loss can be the first symptom of SW, audiologists, and otolaryngologists should be Keywords: WOLFRAM Syndrome; Sensorineural Hearing Loss; Tympanic Perforation; Tympanoplasty Abbreviations: SW: Wolfram Syndrome. feature. For this reason, the same Wolfram syndrome (SW) Introduction (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness)is defined in with the literaturethe term [2-7].Wolfram It is syndromea recessive DIDMOAD inherited disease, the pathogenesis of which is still poorly understood Wagener, a clinical feature characterized by diabetes [8-10]. -
Cytotoxic Effects and Changes in Gene Expression Profile
Toxicology in Vitro 34 (2016) 309–320 Contents lists available at ScienceDirect Toxicology in Vitro journal homepage: www.elsevier.com/locate/toxinvit Fusarium mycotoxin enniatin B: Cytotoxic effects and changes in gene expression profile Martina Jonsson a,⁎,MarikaJestoib, Minna Anthoni a, Annikki Welling a, Iida Loivamaa a, Ville Hallikainen c, Matti Kankainen d, Erik Lysøe e, Pertti Koivisto a, Kimmo Peltonen a,f a Chemistry and Toxicology Research Unit, Finnish Food Safety Authority (Evira), Mustialankatu 3, FI-00790 Helsinki, Finland b Product Safety Unit, Finnish Food Safety Authority (Evira), Mustialankatu 3, FI-00790 Helsinki, c The Finnish Forest Research Institute, Rovaniemi Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland d Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20, FI-00014, Finland e Plant Health and Biotechnology, Norwegian Institute of Bioeconomy, Høyskoleveien 7, NO -1430 Ås, Norway f Finnish Safety and Chemicals Agency (Tukes), Opastinsilta 12 B, FI-00521 Helsinki, Finland article info abstract Article history: The mycotoxin enniatin B, a cyclic hexadepsipeptide produced by the plant pathogen Fusarium,isprevalentin Received 3 December 2015 grains and grain-based products in different geographical areas. Although enniatins have not been associated Received in revised form 5 April 2016 with toxic outbreaks, they have caused toxicity in vitro in several cell lines. In this study, the cytotoxic effects Accepted 28 April 2016 of enniatin B were assessed in relation to cellular energy metabolism, cell proliferation, and the induction of ap- Available online 6 May 2016 optosis in Balb 3T3 and HepG2 cells. The mechanism of toxicity was examined by means of whole genome ex- fi Keywords: pression pro ling of exposed rat primary hepatocytes. -
The Epidemiology of Deafness
Downloaded from http://perspectivesinmedicine.cshlp.org/ on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press The Epidemiology of Deafness Abraham M. Sheffield1 and Richard J.H. Smith2,3,4,5 1Department of Otolaryngology, Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242 2Molecular Otolaryngology and Renal Research Laboratories (MORL), Department of Otolaryngology, University of Iowa, Iowa City, Iowa 52242 3Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, Iowa 52242 4Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242 5Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242 Correspondence: [email protected] Hearing loss is the most common sensory deficit worldwide. It affects ∼5% of the world population, impacts people of all ages, and exacts a significant personal and societal cost. This review presents epidemiological data on hearing loss. We discuss hereditary hearing loss, complex hearing loss with genetic and environmental factors, and hearing loss that is more clearly related to environment. We also discuss the disparity in hearing loss across the world, with more economically developed countries having overall lower rates of hearing loss compared with developing countries, and the opportunity to improve diagnosis, preven- tion, and treatment of this disorder. earing loss is the most common sensory refer to people with mild-to-moderate (and Hdeficit worldwide, affecting more than half sometimes severe) hearing loss, whereas the a billion people (Smith et al. 2005; Wilson et al. term “deaf” (lower case “d”) is more commonly 2017). Normal hearing is defined as having hear- reserved for those with severe or profound hear- ing thresholds of ≤25 dB in both ears. -
Assessment of Genetic Mutations in WFS1 & CISD2 in Wolfram
Online Journal of Neurology and L UPINE PUBLISHERS Brain Disorders Open Access DOI: 10.32474/OJNBD.2018.01.000104 ISSN: 2637-6628 Research Article Assessment of Genetic Mutations in WFS1 & CISD2 in Wolfram Syndrome Human Shahin Asadi*, Mahsa Jamali, Hamideh Mohammadzadeh and Mahya Fattahi Director of the Division of Medical Genetics and Molecular Research, Iran Received: January 25, 2018; Published: February 15, 2018 *Corresponding author: Shahin Asadi, Molecular Genetics Iran Tabriz, Director of the Division of Medical Genetics and Molecular Research, Iran Abstract In this study we have analyzed 30 people. 10 patients Wolfram syndrome and 20 persons control group. The genes WFS1 and CISD2, analyzed in terms of genetic mutations made. In this study, people who have genetic mutations were targeted, with nervous disorders Wolfram syndrome. In fact, of all people with Wolfram syndrome. 10 patients Wolfram syndrome had a genetic mutation in the genes WFS1 and CISD2 Wolfram syndrome. Any genetic mutations in the target genes control group did not show. Keywords: Genetic study; Wolfram syndrome; Mutations The gene WFS1 and CISD2; RT-PCR. Generalizations of Wolfram Syndrome urinary tract, decreased testosterone levels in men (hypogonadism), Wolfram syndrome is a genetic disorder that affects many body Nervous or psychiatric disorders [1]. systems. The specific characteristics of Wolfram syndrome include: mellitus) and progressive vision loss due to degeneration of the syndrome, which is commonly diagnosed at about 6 years of age. high blood sugar levels due to insulin hormone deficiency (diabetes Diabetes mellitus is usually the first symptom of Wolfram nerves that transports visual information from the eye to the brain Almost all people with Wolfram syndrome who have diabetes need (vision atrophy). -
Journalist Soledad O'brien Helps Her Hearing-Impaired Son Advocate for Himself
FEBRUARY/MARCH 2018 BY ROBERT FIRPO-CAPPIELLO Journalist Soledad O’Brien Helps Her Hearing-Impaired Son Advocate for Himself O'Brien has made a career of tuning in to the stories of those in need. As the mother of a hearing-impaired child, she does the same at home. During her years as a broadcast journalist, Soledad O'Brien has never backed down from challenges or controversy. As the host of Matter of Fact with Soledad O'Brien, a syndicated news show owned by Hearst Television, O'Brien has covered everything from the high rate of suicide among veterans to the hurricane relief and recovery efforts in Puerto Rico. And while she's proud of her mixed heritage—her Australian father is of Irish and Scottish descent and her mother is from Havana, Cuba, of Afro-Cuban descent— she knows what it's like to be different. "Growing up in the only Afro-Cuban family in my town on Long Island may have given me some appreciation for outsiders, for people who look and speak differently," she says. Her skills as a reporter—her tenacity, determination, and compassion—and her experience as an outsider served Soledad O'Brien helps her hearing-impaired son her well when her son Jackson began exhibiting Jackson advocate for himself. COURTESY troubling behavior as a toddler. "When he was about 2, SOLEDAD O'BRIEN he would slam his head against the wall until he had bruises, sometimes cuts. Ordinarily he was a very sweet kid, but then he would have meltdowns unlike any we'd seen. -
Missense Variant of Endoplasmic Reticulum Region of WFS1 Gene Causes Autosomal Dominant Hearing Loss Without Syndromic Phenotype
Hindawi BioMed Research International Volume 2021, Article ID 6624744, 9 pages https://doi.org/10.1155/2021/6624744 Research Article Missense Variant of Endoplasmic Reticulum Region of WFS1 Gene Causes Autosomal Dominant Hearing Loss without Syndromic Phenotype Jinying Li ,1,2 Hongen Xu ,3,4 Jianfeng Sun ,5 Yongan Tian ,6,7 Danhua Liu ,4 Yaping Qin ,4 Huanfei Liu,3 Ruijun Li ,3 Lingling Neng ,1 Xiaohua Deng ,8 Binbin Xue ,1 Changyun Yu ,1 and Wenxue Tang 3,4,7 1Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Jianshedong Road No. 1, Zhengzhou 450052, China 2Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China 3Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China 4The Second Affiliated Hospital of Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China 5Department of Bioinformatics, Technical University of Munich, Wissenschaftszentrum Weihenstephan, 85354 Freising, Germany 6BGI College, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China 7Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China 8The Third Affiliated Hospital of Xinxiang Medical University, Hualan Road, No. 83, Xinxiang 453000, China Correspondence should be addressed to Changyun Yu; [email protected] and Wenxue Tang; [email protected] Received 24 November 2020; Revised 1 February 2021; Accepted 14 February 2021; Published 4 March 2021 Academic Editor: Burak Durmaz Copyright © 2021 Jinying Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -
UNIVERSITY of CALIFORNIA, SAN DIEGO Biochemical and Structural
UNIVERSITY OF CALIFORNIA, SAN DIEGO Biochemical and Structural Characterization of the NEET Protein Family and their Role in Iron Homeostasis and Disease A Dissertation submitted in partial satisfaction of the requirements of the degree Doctor of Philosophy in Chemistry by Colin Harrison Lipper Committee in charge: Professor Patricia A. Jennings, Chair Professor Joseph A. Adams Professor Michael Galperin Professor Stanley J. Opella Professor Navtej Toor 2017 Copyright Colin Harrison Lipper, 2017 All rights reserved The dissertation of Colin Harrison Lipper is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair UNIVERSITY OF CALIFORNIA, SAN DIEGO 2017 iii DEDICATION To my wife Hope. Thank you for all of your love and support. I could not have done this without you. iv TABLE OF CONTENTS Signature Page ................................................................................................ iii Dedication ....................................................................................................... iv Table of Contents ............................................................................................. v List of Figures .................................................................................................. vi List of Tables ................................................................................................... ix List of Abbreviations ..............................................................................……... x Acknowledgements ....................................................................................... -
Pathophysiology and Gene Therapy of the Optic Neuropathy in Wolfram Syndrome Jolanta Jagodzinska
Pathophysiology and gene therapy of the optic neuropathy in Wolfram Syndrome Jolanta Jagodzinska To cite this version: Jolanta Jagodzinska. Pathophysiology and gene therapy of the optic neuropathy in Wolfram Syndrome. Human health and pathology. Université Montpellier, 2016. English. NNT : 2016MONTT057. tel-02000983 HAL Id: tel-02000983 https://tel.archives-ouvertes.fr/tel-02000983 Submitted on 1 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ! Délivré par l’Université de Montpellier Préparée au sein de l’école doctorale Sciences Chimiques et Biologiques pour la Santé et de l’unité de recherche INSERM U1051 Institut des Neurosciences de Montpellier Spécialité : Neurosciences Présentée par Jolanta JAGODZINSKA Pathophysiology and gene therapy of the optic neuropathy in Wolfram Syndrome Soutenue le 22/12/2016 devant le jury composé de Timothy BARRETT, Pr, University of Birmingham Président Sulev KOKS, Pr, University of Tartu Rapporteur Marisol CORRAL-DEBRINSKI, DR2 CNRS, UPMC Paris 06 Examinateur Benjamin DELPRAT, CR1 INSERM, INM, Montpellier Examinateur Agathe ROUBERTIE, PH, CHRU Montpellier Examinateur Cécile DELETTRE-CRIBAILLET, CR1 INSERM, INM, Montpellier Directeur de thèse Christian HAMEL, Pr, PU-PH, CHRU Montpellier Co-directeur de thèse ACKNOWLEDGEMENTS I would like to express deep gratitude to my research supervisor, Dr Cécile Delettre-Cribaillet for her constant advice, trust, motivation, kindness and patience.